
A simplified extension of the Area under the ROC to the multiclass domain

Thomas Landgrebe, and Robert P.W. Duin

Elect. Eng., Maths and Comp. Sc.,
Delft University of Technology, The Netherlands

t.c.w.landgrebe@ewi.tudelft.nl r.duin@ieee.org

Abstract
The Receiver Operator Characteristic (ROC) plot allows a clas-
sifier to be evaluated and optimised over all possible operat-
ing points. The Area Under the ROC (AUC) has become a
standard performance evaluation criterion in two-class pattern
recognition problems, used to compare different classification
algorithms independently of operating points, priors, and costs.
Extending the AUC to the multiclass case is considered in this
paper, called the volume under the ROC hypersurface (VUS). A
simplified VUS measure is derived that ignores specific intra-
class dimensions, and regards inter-class performances only. It
is shown that the VUS measure generalises from the 2-class
case, but the bounds between random and perfect classification
differ, with the lower bound tending towards zero as the di-
mensionality increases. A number of experiments with known
distributions are used to verify the bounds, and to investigate
a numerical integration approach to estimating the VUS. Ex-
periments on real data compare several competing classifiers
in terms of both error-rate and VUS. It was found that some
classifiers compete in terms of error-rate, but have significantly
different VUS scores, illustrating the importance of the VUS
approach.

1. Introduction
A very active area in pattern recognition has been the consider-
ation of classifier design and evaluation in less well-defined en-
vironments e.g. undefined or varying prior probabilities [1], or
poorly defined costs [2]. A primary analysis tool developed for
this domain is Receiver Operator Characteristic (ROC) analysis
[3], allowing a classifier to be inspected over a range of possi-
ble conditions. A popular scalar performance measure that has
emerged is the Area Under the ROC (AUC) [4], allowing classi-
fiers to be evaluated independent of priors, costs, and operating
points. The AUC measure is however only applicable to the 2-
class case. Considering the multiclass extension of this measure
has become a topic of interest more recently, often referred to
as the Volume Under the ROC hyper-Surface (VUS). Formal-
isation and computational aspects are more complex, but nev-
ertheless a number of steps have been taken to generalise the
AUC. In [5], a simplified VUS is estimated from a multiclass
classifier by considering the AUC between each class, and all
other classes (a one vs all approach), resulting in a computa-
tionally tractable algorithm O(C), where there are C classes.
This measure is however inherently dependent on class priors
and costs, and ignores higher-order interactions. In [6], a sim-
ilar estimation of the VUS is proposed that averages the AUC
between all pairs of classes, which has a higher complexity of
O((C − 1)(C − 3)(C − 5) . . . 1). The exact theoretical exten-
sion to the VUS in the 3-class case has been considered in [7]
and [8]. In [9] the generalised VUS has been studied, provid-

ing calculations/estimations of the performance bounds of the
VUS as a function of an increasing number of classes C. This
involved comparing performance between perfect (separable)
classifiers and random classifiers (random performance). This
non-trivial study provides an important step in understanding
the VUS performance measure. A related paper was presented
in [10], which argued that since the VUS of a random classifier
approaches that of a perfect classifier as C increases, the VUS
may not in fact be a very useful performance measure.

Previous works have not gone into detail as to how the VUS
can practically be applied to an arbitrary set of classifiers in re-
alistic scenarios. In this paper we consider the practical im-
plementation of the VUS, applied to the simplified scenario in
which the overall class performances are considered, ignoring
specific intra- and inter-class errors. This type of simplifica-
tion restricts the VUS analysis, but nevertheless may be suit-
able for some problems e.g. where we are still interested in
all operating points in terms of overall class performance, but
the class to which an erroneous object is assigned is arbitrary
(hand-written digit recognition/ face recognition are two pos-
sible applications). This simplification ensures that good clas-
sifiers tend to result in higher VUS scores than poorer ones,
irrespective of C (as will be shown), resulting in an alternative
measure in line with the argument in [10]. The approach pre-
sented here provides a practical methodology for computing the
VUS for problems with low C1, demonstrated via a number of
experiments. In Section 2 the notation is presented, followed by
a brief formalisation of multiclass ROC analysis, and the well-
known AUC in Section 3. In Section 4 the simplified VUS is
presented. First performance bounds are derived as a function
of C. A numerical integration procedure is then proposed in or-
der to resample the irregularly-spaced multiclass ROC, allowing
for accurate estimations of the VUS. A number of problems in-
volving known distributions are used to verify the bounds and
the methodology. In Section 5 a number of experiments involv-
ing real data are presented, demonstrating practical usage of the
VUS measure in 3- and 4-class problems. Finally conclusions
are presented in Section 6.

2. Notation

We use a framework similar to [11], in which observations x

are to be classified into one of C classes, ω1, ω2, . . . , ωC . Each
class ωi has a class-conditional distribution p(x|ωi), and prior
probability P (ωi). Class assignment is based on Bayes rule,

1Extension to the high C case remains computationally infeasible,
and thus our approach is restricted to low C problems e.g. C = 3 to 6.
Simpler approaches such as [6] are the only candidates for high C.
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which assigns membership to the highest posterior output:

P (ωi|x) =
P (ωi)p(x|ωi)

P (ω1)p(x|ω1) + P (ω2)p(x|ω2) + . . . P (ωC)p(x|ωC)
(1)

Thus x is assigned according to:

argmax
C
i=1P (ωi|x) (2)

In the practical case in which class conditional distributions are
usually unknown, these are typically estimated from representa-
tive examples that are assumed to be randomly drawn from the
true distribution, and the same framework can be used. A given
classifier is analysed in detail via the C × C dimensional nor-
malised confusion matrix Ξ, in which diagonal elements rep-
resent the overall performance of each class, and off-diagonal
elements the errors related to each class. Each element (i, j) of
Ξ is denoted ξi,j . Ξ can be written as:

estimated
ω1 ω2 . . . ωC

ω1 ξ1,1 ξ1,2 . . . ξ1,C

true ω2 ξ2,1 ξ2,2 . . . ξ2,C

...
...

. . .
ωC ξC,1 ξC,2 . . . ξC,C

Table 1: Defining the multi-class normalised confusion matrix
Ξ.

Each element ξi,j is computed as follows:

ξi,j = p(ωi)

Z

p(x|ωi)Iij(x)dx (3)

The indicator function Iij(x) specifies the relevant domain
(with the second line specifying performances on the diagonal
elements):

Iij(x) =

8

>

<

>

:

1 if p(ωj |x) > p(ωk|x) ∀k, k 6= j, i 6= j

1 if p(ωi|x) > p(ωk|x) ∀k, k 6= i, i = j

0 otherwise
(4)

In the practical case, ξi,j is estimated via representative test sets,
counting the number of objects classified to each element, nor-
malised by the number of objects in that class.

3. Multi-class ROC analysis
It is important to understand that the confusion matrix actu-
ally only indicates the performance of a trained classifier at
a single operating point i.e. different operating points result
in different confusion matrices. The operating point is var-
ied by weighting the posterior output of the classifier by the
vector Φ = [φ1, φ2, . . . , φC ], φi > 0, ∀i, which is analo-
gous to classifier thresholds. Thus Equation 2 is modified as
argmaxC

i=1φiP (ωi|x). All combinations of Φ result in all pos-
sible operating points of the classifier, which is the multiclass
ROC. Note that there are in fact only (C − 1) degrees of free-
dom for a trained classifier, so one weight can be held constant,
or normalised by the others. After applying all combinations
of Φ, a C2−dimensional operating characteristic results, with
each confusion matrix element attributed to a new dimension.
Note that only (C2 − C) dimensions are required, since:

εi,i = 1 −

j=C
X

j=1,j 6=i

εi,j (5)

The two class case is very well known, with two off-diagonal
elements resulting (ξ1,2 and ξ2,1, popularly known as the false
negative- and false positive-rates), and two diagonal elements
(ξ1,1 and ξ2,2, the true positive and true negative-rates). This
operating characteristic has well understood characteristics and
bounds [4], [1]. Varying the classifier threshold results in a 1D

ROC curve. Figure 1 show ROC plots for three different scenar-
ios, ranging from a perfect/separable classifier (A), to a classi-
fier with some overlap (B), and finally to the random classifica-
tion case (C). Considering the area consumed by each classifier
allows performance to be inspected independent of priors, costs,
and operating points. In this 2-class case, perfect classification
results in a larger area, bounded by 1, and poor classification in
a smaller area, bounded by 0.5 (since the random classifier bi-
sects the unit square). This area is known as the Area Under the
ROC (AUC). Note that traditionally the ROC is plotted between
ξ1,1 and ξ2,1, but Figure 1 results in an equivalent performance
measure, and is extensible to the multiclass case.
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Figure 1: Comparing 3 different 2-class ROC plots. ’A’ depicts
perfect classification, ’B’ is a classifier with some overlap, and
’C’ is a random classifier.

The AUC can be written as:

AUC =

Z

ξ2,2dξ1,1 (6)

The AUC can be applied to the realistic scenario by a numerical
integration scheme. This work uses the trapezoidal integration
rule. The AUC can also be estimated by counting the number
of times two arbitrary objects in the test set from both classes
are correctly ranked by the classifier, and normalising.

4. Simplified Volume Under the ROC
Extending the AUC to the multiclass case, i.e. the volume un-
der the ROC hypersurface, can be achieved by measuring the
volume bounded by the operating characteristic. In this case we
consider only ROC dimensions pertaining to diagonal elements
of the confusion matrix. The simplified VUS can be written as:

V US =

Z

. . .

Z Z

xi1,1dξ2,2dξ3,3 . . . dξC,C (7)

Thus the simplified measure considers the C−dimensional op-
erating characteristic of a C−dimensional problem. This mea-
sure allows a classifier to be evaluated over all operating points
responsible for the ROC dimensions corresponding to the diag-
onal confusion matrix elements. If these performances only are
considered, the VUS is similar to the AUC in that better classi-
fiers will result in a high VUS, and poorer classifiers in a lower
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score. However, before the VUS is blindly applied, it is im-
portant to characterise and understand the performance bounds
between random and perfect classifiers.

4.1. Bounds as a function of dimensionality

Considering the 3-class case first, the simplified ROC dimen-
sionality is 3, between the dimensions ξ1,1, ξ2,2, and ξ3,3. A
random classifier produces the ROC depicted in Figure 2. A
more effective classifier (or more separable problem) is depicted
in Figure 3, showing how the VUS increases.
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Figure 2: Random classification performance of the simplified
3-class ROC.
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Figure 3: ROC plot for a 3-class problem with partially over-
lapping distributions.

In fact, the VUS approaches 1.0 as the classification be-
comes perfect. The VUS occupied by the random classifier
can be found geometrically by computing the volume of the
tri-rectangular tetrahedron formed under the surface, which is
simply 1

6
ξ1,1ξ2,2ξ3,3 = 1

6
. Thus the bound has altered from

1

2
in the two-class case, to 1

6
= 0.16666 in the 3-class case.

Generalising the bounds to C classes is more difficult geomet-
rically. A more extensible approach is to formalise the random
ROC as a hyper-polyhedron, as proposed in [9]. Each vertex vi

of the hyper-polyhedron can easily be defined as (note that the
origin is always included as a vertex, and there are C points per

vertex):
v1 0 0 0 . . . 0
v2 1 0 0 . . . 0
v3 0 1 0 . . . 0
v4 0 0 1 . . . 0

...
vC+1 0 0 0 . . . 1

(8)

As in [9], the optimised QHull [12] algorithm is used to estimate
the volume occupied by the hyper-polyhedron. The following
lower bounds result, up to C = 12, showing how the lower
bound approaches zero with an increasing C2, with a conjec-
tured formula of 1

C!
:

C Estimated VUS
2 0.50000000001826
3 0.16666666668765
4 0.04166666667598
5 0.00833333333563
6 0.00138888888932
7 0.00019841269853
8 0.00002480158732
9 0.00000275573193
10 0.00000027557319
11 0.00000002505211
12 0.00000000208768

(9)

4.2. Estimating the VUS for general classifiers

In the practical situation in which a sparse set of points are
given, representing the multiclass ROC, a different approach is
required. Since the ROC surface is derived by the nature of the
problem and classifier, it cannot be computed analytically. A
more appropriate approach to estimating the VUS is to use a
numerical integration approach. The inherent uneven sampling
of the ROC is converted to an even form via linear resampling
and interpolation. The trapezoidal rule is then used to estimate
the volume (in C−dimensions), with the following results as a
function of r, the number of ROC steps used:

C r VUS estimation Actual VUS
3 50 0.1667014 0.1666666
3 100 0.1666752 0.1666666
4 50 0.0417014 0.0416667
4 100 0.0416752 0.0416667
5 50 0.0083507 0.0083333
5 100 0.0083376 0.0083333
6 20 0.0014275 0.0013889
6 40 0.0013980 0.0013889

These results show that the numerical integration approach
provides a good approximation of the true VUS, and that as
expected a higher step size results in higher accuracy.

4.3. Experiments with known distributions

In order to judge the numerical VUS approach and verify the
bounds, a number of controlled experiments are conducted,
consisting of generated Gaussian classes with known parame-
ters. The first set of experiments consist of 3-class Gaussian

2The bounds of the simplified VUS suggest this method is a good
alternative to the true unsimplified VUS (regarding the argument given
in [10] pertaining to poor resolution between perfect and random clas-
sifiers for high dimensions, bringing the validity of the VUS into ques-
tion). This is because in the simplified case for high C, good classifiers
tend to 1, and poor ones tend to 0.
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problems with classes ω1, ω2, and ω3, in which the means are
varied, and the variances held at unity. The means are varied
such that the problems range from near-separable problems, to
near-random. Similarly the second set of experiments involve
varying the means of 4 Gaussian classes. Tables 2 and 3 depict
the results for the 3- and 4-class cases respectively, also show-
ing r (a higher resolution was required as the distributions ap-
proached complete overlap). In Figure 4, the distributions used
in the 2nd and 4th 4-class experiments are shown, demonstrat-
ing how class overlap was increased.

Means r VUS est.
−0.05; 0.0; 0.05 200 0.16876
−0.3; 0.0; 0.3 100 0.24140
−0.5; 0.0; 0.5 100 0.31428
−1.0; 0.0; 1.0 100 0.51214
−1.5; 0.0; 1.5 100 0.70597
−4.0; 0.0; 4.0 100 0.98582

(10)

Table 2: Results for 3-class experiments with known distribu-
tions.

Means r VUS est.
−0.15;−0.05; 0.05; 0.15 70 0.05688
−0.75;−0.25; 0.25; 0.75 50 0.07782
−1.00;−0.33; 0.33; 1.00 50 0.19972
−1.50;−0.50; 0.50; 1.5 50 0.33097
−2.25;−0.75; 0.75; 2.25 50 0.57990
−3.00;−1.00; 1.00; 3.0 50 0.75451

(11)

Table 3: Results for 4-class experiments with known distribu-
tions.

These experiments verify that the VUS approach used does
make intuitive sense, since it can be seen that as the problems
vary from the separable to the random case, the VUS decreases
accordingly. For highly overlapping cases, the two sets of ex-
periments demonstrate a VUS that approaches the predicted
lower bounds.

5. Experiments
The VUS methodology is demonstrated in real settings by com-
paring a number of competing classifiers over a number of dif-
ferent problems. The first group of experiments consist of 3-
class problems, with the following datasets used: Banana is a 2-
dimensional dataset consisting of a Banana-shaped class [13], a
Gaussian distributed class, and a bimodal Gaussian class, which
are all overlapping, with 5073 objects generated in total. The
Sign dataset [14] consists of images of 3-classes of road-signs,
with a total of 381 objects. The Sat dataset [15] consists of 6435
multi-spectral values of a satellite image, with 36 dimensions (4
spectral bands in a 9 pixel neighbourhood). Classes 1, 3, 5 and
6 have been grouped together into a single class, forming a 3-
class problem together with classes 2 and 4. The second group
of experiments consist of 4-class problems. The Vehicle dataset
[16] consists of 846 objects of vehicle silhouettes from 4 vehicle
types, and the Digits dataset consists of examples of ten hand-
written digits, originating from Dutch utility maps (available
from [16]). In this dataset, Fourier components have been ex-
tracted from the original images, resulting in a 76-dimensional
representation of each digit. Digits ’3’, ’6’, and ’9’ have been
extracted, and the remaining digits grouped into a single class.
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Figure 4: Demonstrating the 2nd and 4th experiment in the 4-
class case.

The experimental methodology involves rotation of the data us-
ing a randomised hold-out method in which 80% of the data
is used in training, and the remainder for testing, repeated 10
times. Two performance measures are compared, namely the
well-known equal-error rate (priors inherent to dataset used),
and the simplified VUS measure. Results are compared statis-
tically via a 2-way ANOVA (ANalysis Of VAriance) scheme,
with significance judged via a p− value of 0.995. In each ex-
periment, a number of classifiers are compared, with the fol-
lowing abbreviations: sc is where unit-variance scaling of the
data is used; pca is a principal component feature extraction
followed by the number of components used; fisher and nlfisher
are the Fisher and non-linear Fisher projections; nmc, ldc, and
qdc are nearest-mean, Bayes-linear, and Bayes-quadratic classi-
fiers respectively; mogc is a Bayes mixture of Gaussians classi-
fier followed by the number of mixtures used per class; knn3 is
a 3-nearest neighbour classifier; svc p is a support vector clas-
sifier with a polynomial kernel, followed by the order of the
polynomial.

The 3-class table presents the first set of results. The Ba-
nana dataset shows that the VUS scores tend to track the equal
error scores, for example the nmc classifier has a high error, and
significantly lower VUS than the other classifiers. An interest-
ing result can be seen for the Sat case, comparing the second and
third models. In this case both classifiers have the same (statis-
tical) error-rate, but significantly different VUS scores (F-value
of 275), showing that the third model is a better choice on aver-
age over all operating points. In the Sign experiments, similar
VUS scores result for all classifiers.

Next the 4-class experiments are considered. A few inter-
esting observations can again be made, for example the first and
second classifiers have competing error-rates, but significantly
different VUS scores. It appears the linear classifier was a far
better fit to the data than the fisher-nmc model, which only per-
formed well for some operating points. Finally in the Digits
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3-class Classifier Error VUS
Banana sc-pca1 nmc 0.329(0.004) 0.667(0.083)

sc-mogc2,2,1 0.058(0.003) 0.990(0.002)
sc-qdc 0.077(0.004) 0.970(0.006)
sc-ldc 0.091(0.004) 0.964(0.007)

Sat knn3 0.064(0.002) 0.911(0.020)
ldc 0.111(0.001) 0.729(0.015)
qdc 0.108(0.002) 0.862(0.012)
mogc2,1,2 0.099(0.002) 0.866(0.012)

Sign sc pca8 svc p2 0.115(0.018) 0.948(0.023)
sc-pca10 mog2,2,2 0.075(0.003) 0.946(0.025)
pca5 mog2,2,2 0.099(0.011) 0.954(0.019)
pca5 qdc 0.179(0.020) 0.945(0.023)

Table 4: Experimental results on 3-class problems.

case, the VUS tended to track the error-rates. It can be seen
that some classifiers perform very well, approaching a VUS of
1, whereas others are poor.

4-class Classifier Error VUS
Vehicle fisher nmc 0.218(0.007) 0.512(0.037)

ldc 0.219(0.006) 0.714(0.035)
qdc 0.150(0.010) 0.834(0.036)
sc-svc p2 0.164(0.007) 0.794(0.022)
sc-svc p3 0.187(0.009) 0.727(0.039)
nlfisher qdc 0.208(0.005) 0.724(0.041)

Digits pca10 mog1,1,1,3 0.119(0.004) 0.985(0.008)
pca15 mog1,1,1,3 0.114(0.003) 0.955(0.007)
pca5 mog1,1,1,3 0.133(0.003) 0.956(0.008)
pca10 qdc 0.127(0.004) 0.978(0.006)
pca10 ldc 0.211(0.005) 0.704(0.041)
nlfisher mogc1,1,1,3 0.158(0.003) 0.857(0.024)

Table 5: Experimental results on 4-class problems.
The experiments showed the usefulness of the VUS ap-

proach in the multiclass case, clearly showing examples where
the VUS was required to perform better model selection for
classifiers that competed from an equal-error perspective.

6. Conclusions
This paper considered the extension of the AUC measure to the
multiclass case, termed the volume under the ROC hypersur-
face. A simplified extension was considered that evaluates the
VUS over the C−dimensional ROC surface pertaining to diago-
nal elements of the confusion matrix only, thus ignoring specific
inter- and intra-class performances. This allows for a measure
that generalises from the 2-class case, in which high scores re-
sult for good classifiers, and low ones for poor ones. It was seen
that the VUS bounds vary as a function of the ROC dimension-
ality, with the lower bound tending to 0 with high dimension-
ality. A few experiments using known distributions verified the
bounds, as well as a proposed numerical integration approach to
estimating the hyper-volumes. Finally a set of real experiments
were performed that compared equal-errors to VUS scores for
a number of competing classifiers. It was found that poor error
rates often lead to poor VUS scores, but in some cases compet-
ing classifiers in terms of error-rate are not competing in terms
of VUS, implying that some classifiers perform better on av-
erage over all operating points than others. This work is con-
sidered useful to problems involving a low number of classes,
restricted by the computational complexity of the ROC genera-
tion, but may nevertheless be useful for many real problems.
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