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Pattern Recognition Group, Department of Applied Physics
Delft University of Technology, The Netherlands
{duin,ela}@ph.tn.tudelft.nl

Abstract. 
Feature based approaches to pattern recognition suffer from the fact that feature 
representations of different classes of objects may overlap. This is the conse-
quence of reducing the description of an object to a feature vector. As a result an 
error free recognition system is even asymptotically (for infinite training sizes) 
impossible. In this paper it is argued that this limitation does not hold for dissim-
ilarity based representations. Suggestions are made how this may be exploited in 
practice.

1 Introduction
Template matching is a simple and early approach to pattern recognition. Objects are 
classified on the basis of distances to prototypes. Often, just a single prototype per class 
is selected. This approach, however, does not take into account the distribution of the 
object variations. Therefore, it puts high demands on the possibilities to normalize ob-
jects such that an accurate matching can be realized.

Feature-based classifiers are more advanced. In this case, objects are described 
by carefully selected properties (measurements) which are combined in feature vectors. 
Such features build a feature space. A classifier can be trained in this space, using a set 
of examples reflecting the variations in the classes to be distinguished. Usually, the fea-
tures are a reduced description of the objects. Some information is lost and, as a conse-
quence, essentially different objects may be represented by the same point in the feature 
space. If this happens for objects of different classes, these classes overlap. There is no 
way to distinguish such objects in the feature space and, thereby, any recognition 
scheme based on such a feature representation has a non-zero classification error.

A different, not yet very intensively studied approach is to use distances between 
objects, like in template matching, but now making use of the variations in distances 
between the objects in the training set. So, objects are not represented by features, but 
by distances or dissimilarities directly measured on the raw data. The loss of informa-
tion by the reduction to features, that was just mentioned, may hereby be avoided.

It is the purpose of this paper to clarify the consequences for the class overlap of 
such a dissimilarity representation. We will argue that under some circumstances this 
overlap can be entirely avoided, resulting in a zero-error classification. Let us first intro-
duce the dissimilarity representation further.

The starting point of this approach is a given set of dissimilarities between a 
training set of objects of known class memberships (their labels) and a selected set of 
prototypes. These prototypes may be selected by some expert, or may be the result of 
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an automatic selection procedure [7], [8]. Classification is usually done by the nearest 
neighbor rule (or in this context by the nearest prototype rule). Sometimes more 
advanced schemes are used, see for instance [14], [15], [16].

An intriguing point in relation with the nearest neighbor rule is that it is usually 
not trained. Just the distances to the prototypes are used for classifying new objects. The 
set of distances between the training set and the prototypes themselves is information 
that is sometimes used in the selection of prototypes, but is often completely neglected 
by using this classification rule. Recently, we have shown that these distances may be 
used by the so called dissimilarity-based classifiers [2], [3], [17]. They may not only 
demand less prototypes and, thereby, the computation of less distances, but, at the same 
time, perform significantly better than the nearest neighbor rule. In section 2, an over-
view of the various approaches to build classifiers from a given dissimilarity represen-
tation is presented.

As mentioned above, under some conditions, the class overlap related to the use 
of feature spaces can be avoided by the use of dissimilarities. The question to be dis-
cussed in section 3 is whether we can build classifiers that exploit this in practice. In 
other words, whether we can construct classifiers that have asymptotically (for increas-
ing training set sizes) a zero classification error. In section 4, a few examples will be 
given and in the last section conclusions are summarized.

2 Classification approaches to dissimilarity descriptions
Here we will present a summary of the various approaches that can be used for building 
classifiers from a dissimilarity matrix of the training data. This section is based on, and 
makes use of some of, our previous papers, [1]-[5]. 

To construct a classifier on dissimilarities, the training set T of size n (having n 
objects) and the representation set R [5] of size r will be used. R is a set of prototypes 
covering all classes present. R is chosen here to be a subset of T (R ⊆ T), although, in 
general, R and T might be disjunct. In the learning process, a classifier is built on the 
n × r distance matrix D(T, R), relating all training objects to all prototypes. The infor-
mation on a set S of s new objects is provided in terms of their distances to R, i.e. as an 
s × r matrix D(S, R).

The following three different approaches to classification based on distances are 
distinguished:
1. The nearest neighbor rule, finding the smallest distances in D(S, R).
2. Dissimilarity representations, directly using the distances of D(T, R) to build an r-di-

mensional space. In this space, the n training objects, represented by their distances 
to the objects of R, are used for training a classifier.

3. Embedding, i.e. constructing a new space ℜ  in which the Euclidean distances be-
tween the training objects correspond as well as possible to the given dissimilarities 
D(R, R).

2.1 Nearest neighbor method
A straightforward approach to dissimilarity representations leads to the k-Near-

est-Neighbor (k-NN) rule [9],[11]. Such classifiers make use of distance information in 
a rank-based way. The NN rule, in its simplest form, i.e. 1-NN rule, assigns a new object 
to the class of its nearest neighbor from the representation set R by finding minima in 
the rows of D(S, R). The k-NN decision rule is based on majority voting: an unknown 
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object becomes a member of the class the most frequently occurring among the k near-
est neighbors. The 1-NN rule does not make any use of the available information in the 
dissimilarity matrix D(T,R), it directly operates on D(S,R). One may expect, therefore, 
that improvements are possible. On the other hand, the asymptotic error of this rule for 
r→∞ is 2ε*(1-ε*), in which ε* is the Bayes error. So, for non-overlapping classes (ε* = 
0), the error of the 1-NN rule is also zero. This may be, however, unfeasible, since it 
may demand the storage and handling of an infinite training set.

2.2 Linear/quadratic dissimilarity classifiers
This approach relies on interpreting distances as a representation of a dissimilar-

ity space. In particular, D(T, R) is treated as a description of a space where each dimen-
sion corresponds to the distance to a prototype. The prototypes constitute, thereby, an r-
dimensional dissimilarity space. In general, D(x, R) defines a vector consisting of r dis-
tances found between the object x and all the objects in the representation set R, i.e. if 
R = {p1, ..., pr}, then D(x, R) = [D(x, p1), ..., D(x, pr)]. Therefore, D(• , R) is seen as a 
mapping on an r-dimensional dissimilarity space. In this convention, neither x nor R 
refers to points in a feature space, instead they refer to the objects themselves. The 
advantage of such a representation is that any traditional classifier operating on feature 
spaces can be used. Moreover, it can be optimized by using training sets larger than the 
given representation set. This does not complicate the decision rule, but does increase 
its accuracy.

The choice of Bayesian classifiers [11] assuming normal distributions, is a natu-
ral consequence of the central limit theorem applied to dissimilarities. It is supported by 
the observation that most of the commonly-used dissimilarity measures, e.g. Euclidean 
distance or Hamming distance, are based on sums of differences between measure-
ments. The central limit theorem states that the sum of random variables tends to be nor-
mally distributed in the limit, provided that none of the variances of the sum’s 
components dominates. Therefore, summation-based distances (built from many com-
ponents) tend to be approximately normally distributed, which suggests that Bayesian 
classifiers, and also Fisher’s linear discriminant [11],[12], should perform well in dis-
similarity spaces. A problem arises for representation set sizes that are almost equal to 
the size of the training set. In these cases it is needed to estimate the normal densities 
from D(T,R) by using robust estimators, e.g. based on regularization [12].

2.3 Linear embedding of dissimilarities
There is a number of ways to embed dissimilarity data in a feature space. Since, we are 
interested in a faithful configuration, a (non-)linear embedding is performed such that 
the distances are preserved as well as possible. Since nonlinear projections require more 
computational effort and, moreover, the way of projecting new points to the existing 
configuration is not straightforward (or not defined), linear mappings are preferable.

2.3.1 Embedding of Euclidean distances
Let the representation set R = {p1, p2, . . . , pr} refer to r objects. Given an Euclidean 
distance matrix D ∈ℜ r×r between those objects, a distance preserving mapping on an 
Euclidean space can be found. Such a projection is known in the literature as classical 
scaling or metric multidimensional scaling [20]. In other words, the dimensionality 
k ≤ r and the configuration D ∈ℜ r×k can be found such that the (squared) Euclidean dis-
tances are preserved. Note that having determined one configuration, another one can 
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be found by a rotation or a translation. To remove the last degree of freedom, without 
loss of generality, the mapping will be constructed such that the origin coincides with 
the centroid (i.e. the mean vector) of the configuration X.

To define X, the relation between Euclidean distances and inner products are 
used. First, it can be proven that

(1)

where D(2) is a matrix of square Euclidean distances, B is the matrix of inner products 
of the underlying configuration X, i.e. B = XXT and b is a vector of the diagonal elements 
of B. B can also be expressed as:

(2)

where J is the centering matrix  and I is the identity matrix. J 
projects the data such that the final configuration has zero mean. B is positive definite 
since it is a Gram matrix [21]. Then, the factorization of B by its eigendecomposition 
can be found as:

(3)

where Λ is a diagonal matrix of the first non-negative eigenvalues, ranked in descending 
order, followed by the zero values, and Q is an orthogonal matrix of the corresponding 
eigenvectors [20]. For k < r non-zero eigenvalues, a k-dimensional representation X can 
be then found as:

, , (4)

where Qk is a matrix of the first k leading eigenvectors and  contains the square roots 
of the corresponding eigenvalues. Note that X, determined in this procedure, is unique 
up to rotation (the centroid is now fixed), since for any orthogonal matrix T, 
XXT = (XT)(XT)T. Note also that X is an uncorrelated representation, i.e. given w.r.t. the 
principal axes. 

2.3.2 Linear embedding of non-metric dissimilarity data
Non-metric distances may arise when shapes or objects in images are compared 

e.g. by template matching [13],[14]. For projection purposes, the symmetry condition 
is necessary, but for any symmetric distance matrix, an Euclidean space is not ‘large 
enough’ for a distance-preserving linear mapping onto the specified dimensionality. It 
is, however, always possible [18] for a pseudo-Euclidean space.

A pseudo-Euclidean space ℜ (p,q) of the signature (p,q) [18] is a real linear vector 
space of dimension p+q, composed of two Euclidean subspaces, ℜ p and ℜ q , such that 
ℜ (p,q) = ℜ p ⊕  ℜ q and the inner product 〈.,.〉 is positive definite on ℜ p and negative def-
inite on ℜ q. The inner product w.r.t. the orthonormal basis is defined as

(5)
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(6)

where I is the identity matrix. Using the notion of inner product, 

(7)

can be positive, negative or zero. Note that an Euclidean space ℜ p, is a pseudo-Euclid-
ean space ℜ (p,0).

The matrix  is positive definite if and only if the distance matrix 
D ∈ℜ r×r is Euclidean [20]. Therefore, for a non-Euclidean D, B is not positive definite, 
i.e. B has negative eigenvalues. As a result, X cannot be constructed from B, since it 
relies on the square roots of eigenvalues. However, it is possible to use a pseudo-Euclid-
ean space.

To embed the data, the same reasoning as for an Euclidean space is applied here. 
The essential difference refers to the notion of an inner product and a distance. Now, 

, is still the matrix of inner products, but it is expressed as

(8)

where M is a matrix of the inner product operation in a pseudo-Euclidean space. Fol-
lowing [19], we can write (compare to equation (3)):

(9)

where M is given by () and p + q = k. Λ is now based on p positive and q negative eigen-
values, which are presented in the following order: first, positive eigenvalues with de-
creasing values, then negative ones with decreasing magnitude and finally, zero values. 
Therefore, X can be now represented in a pseudo-Euclidean space ℜ k =ℜ (p,q) (see [18]), 
as follows:

(10)

2.3.3 Projection of new points
Having found a configuration X in a pseudo-Euclidean space that preserves all pair wise 
distances D(R,R), new objects can be can added to this space via the linear projection. 
Given the distance matrix , expressing dissimilarities between s novel ob-
jects and all objects of the representation set R, a configuration Xs is to be determined 
in a pseudo-Euclidean space ℜ k =ℜ (p,q). First, the matrix  of inner products 
relating all new objects to all objects from R should be found, which becomes:

(11)

where J is the centering matrix and . Since Bs can be expressed as:

(12)
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therefore, Xs is found as the mean-square error solution to , i.e. 
. Knowing that  and , Xs is alterna-

tively presented as:

 or (13)

2.3.4 Reduction of dimensionality
Originally, the (pseudo-)Euclidean configuration X is found such that the distances are 
preserved exactly and the dimensionality of X is determined by the number of non-zero 
eigenvalues of B. However, there might be many relatively small non-zero eigenvalues 
as compared to the large ones. Knowing that dissimilarities are noisy measurements, the 
small eigenvalues correspond to non-significant directions of X. In such a framework, 
neglecting small eigenvalues stands for reducing noise contribution or for finding a rep-
resentation with the intrinsic dimension. 

In such a case, distances will be preserved approximately. One has, however, a 
control over the dimensionality of the reduced vector representation. Basically, the 
dimensionality reduction can be achieved by the orthogonal projection, governed by 
Principal Component Analysis (PCA). The particular construction of  
and the fact that X is an uncorrelated vector representation, i.e. , 
stand for X being given in the form of the orthogonal PCA projection. It means that the 
reduction of dimensionality is performed in a simple way by neglecting directions cor-
responding to eigenvalues small in magnitude. The reduced representation (being an 
orthogonal projection) is then determined by the p’ significant positive eigenvalues and 
q’ significant (in magnitude) negative eigenvalues. Therefore, , , is 
found as , where k’ = p’ + q’ and  is a diagonal matrix of first, 
decreasing positive eigenvalues and then increasing negative eigenvalues, and Qk’ is the 
matrix of corresponding eigenvectors.

2.3.5 Classifiers in the reduced embedded space
For a pseudo-Euclidean configuration, a linear classifier f(x) = 〈v,x〉 + v0 = vTMx + v0 
can be constructed by addressing it as in the Euclidean case, i.e f(x) = 〈w,x〉Eucl + v0 = 
wTx + v0, where w = Mv (see [18],[4]).

2.4 Example of dissimilarity based classifiers.

The following example illustrates the use and benefits of dissimilarity-based classifiers 
over the direct use of the 1-NN rule. We used two datasets, one real, based on digit rec-
ognition, obtained from Jain and Zongker [15], and one based on artificially generated 
polygons. 

For the 10-class digit recognition problem we used a 2000x2000 dissimilarity 
matrix computed by Zongker [15] using deformable templates. The polygon dataset is 
similar to the one described in section 4. It has two classes and is given by a 2000x2000 
matrix of Hausdorff distances [13] computed for the polygon corners. In both cases, 
training sets T of 1500 objects were used and a test set S of 500 objects. For growing 
representation sets R ⊂ T, the following classifiers are built on D(R,R) and tested on 
D(S,R):
1. The regularized Bayes linear discriminant assuming normal densities (RLDC) on the 

dissimilarity representation D(R,R), see section 2.2.
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2. A linear programming optimizer (LP) for D(R,R). Since this matrix is square, there 
are as many points as dimensions, so there exists a perfect, error-free solution for R, 
[10].

3. The regularized Bayes linear discriminant assuming normal densities (RLDC) on an 
embedded space of fixed dimensionality, see section 2.3. For the digit data this di-
mensionality was set to 100, for the polygon data we used 45.

The results are shown in figure 1and figure 2. For comparison, the test results of the 1-
NN and 3-NN classifiers are shown as well. (The 3-NN seems to be best over for the k-
NN rule over a range of k=1, ..., 15). These pictures make clear that the dissimilarity 
based classifiers may perform very well. The increasing error for RLDC in the digit 
classification problem is due to bad (i.e. constant) regularization as we did not optimize 
that in this experiment.

3 The asymptotic separability of classes
If for the dissimilarities holds that they can only be zero if and only if the corresponding 
objects are identical, then class overlap is avoided if objects are allowed to belong to 
one class only. As stated in section 2.1, this implies that the 1-NN rule will constitute a 
zero-error classifier. It may demand, however a very large training set. As the dissimi-
larity-based classifiers (section 2.2) and the embedding classifiers (section 2.3) appear 
to be much more efficient in the requirement of storing a training set (the representation 
sets needed to be stored by them are much smaller than the training sets needed by the 
1-NN rule), the question arises whether these classifiers may also have an asymptotic 
zero error.

The following discussion is based on a set of assumptions. They are often ful-
filled, or can easily be fulfilled:
1. The real, physical object classes are separable, i.e. there is no physical object that is 

a member of more than one class. For optical character recognition this implies for 
instance that there is still a difference between the characters ‘0’ (zero) and ‘O’ (the 
letter ‘O’)
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Fig. 1 Dissimilarity based classifiers com-
pared with the nearest neighbor rule for a 
two-class digit classification problem.

Fig. 2 Dissimilarity based classifiers com-
pared with the nearest neighbor rule for a 
two-class polygon classification problem.
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2. The raw measurements of the objects are made such that this separability is main-
tained. One way to inspect this is to have the objects labeled by human analysts from 
the measurements (e.g. a video screen that displays the object image to be used for 
further processing). It is fulfilled if the characters can still be labeled correctly after 
scanning and display.

3. For a distance measure D(x,y) between objects x and y represented by their raw mea-
surements (e.g. scanned images) holds that D(x,x) = 0 and D(x,y) > δ > 0 if x and y 
belong to different classes. This assumption states that there is some ‘gap’ between 
the classes of size δ: Objects of different classes have a distance of at least δ.

4. The raw measurement of any object includes just continuous noise (e.g. changing 
lighting conditions, small rotations or sensor deviations). This noise is such that for 
any two measurements x and y of the same physical object holds that D(x,y) < δ. 

5. The digitalization of the measurements and thereby the computer representation of 
the objects is such that the minimum class gap δ is preserved.

Since the digitized world is finite, there is a finite probability that in the δ-environment 
of an object x there is another object y of the same class:

(14)

Because of assumption number 3 there is no object in that neighborhood of another 
class:

(15)

From this, it can be concluded that with probability one an infinitely growing training 
set will contain an object y ∈ω  within a δ-environment of a given test object x ∈ω . 
Therefore, D(x,y) is smaller than the distance to all objects z ∉ω. Consequently, any ob-
ject x will be asymptotically correctly classified by the nearest neighbor rule.

As long as we are able to correctly label the objects from the digitized measure-
ments and we have a distance measure between objects for which holds that D(x,y) = 0 
for x = y, the nearest neighbor rule has this asymptotic property. However, this is not a 
feasible approach, since it implies the storage of an almost infinitely growing set of 
objects. 

In the previous section, we showed that dissimilarity based classifiers may gen-
eralize better and may need smaller representation sets then the nearest neighbor rule. 
This will depend on how much ‘space’ there is between the classes, i.e. the smallest dis-
tances between objects of different classes. If the size of this gap is sufficient then a clas-
sifier defined by a subset of the data might fit into it. It depends on t the definition of the 
distance measure whether this can be achieved by a linear classifier.

The two classifiers discussed in the sections 2.2 and 2.3 depend on a representa-
tion set and a training set. The necessary size of the representation set is determined by 
the complexity of the problem, i.e. the nonlinearity. For smaller gaps between the 
classes, larger training set sizes may be needed to position the classifiers more accu-
rately. In the next section we will experimentally investigate this further.

Prob y D x y,( ) δ< x ω y ω∈,∈,( )( ) ε 0> >

Prob y D x y,( ) δ< x ω y ω∉,∈,( )( ) 0=
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4 Some experiments
The experiments in this section are based on two datasets, one artificial and one real. 
The real world dataset consists of the digits ‘3’ and ‘8’ of the NIST character database 
[22]. We computed the Hamming difference between 32x32 sampled versions of the 
digits. The first question that arises is whether the dataset fulfills the assumptions for-
mulated in section 3. We checked all the nearest neighbor relations. In figure 3, the ob-
jects are shown that are misclassified by the nearest neighbor rule together with their 
nearest neighbors in both classes. For some objects, it may be concluded that they are 
badly segmented as they contain isolated dots. As a consequence, they do not fulfill as-
sumption 4 in section 3. Object representations based on segmentation errors are not ex-
pected to have close neighbors. In a practical situation, they may be removed from the 
training set. New objects, having such defects, are thereby expected to be misclassified.

In figure 4, the distances to the 
nearest neighbors in the dataset are 
shown for a fraction of the data. In a 
very few cases the nearest neighbor 
belongs to a different class. This causes 
a classification error. The total error for 
this set, using the leave-one-out error 
estimate, is 0.0185. The figure clearly 
suggests that there is a gap between the 
classes. In the following experiments, 
we try to construct some classifiers in 
this area. We use a fixed training set of 
2x500 objects. The remaining 2x500 
objects are used for testing.
1. Dissimilarity-based classification by 

Fisher’s linear classifier using a ran-
domly selected representation set, 
see section 2.2.

2. Dissimilarity-based classification by Fisher’s linear classifier based on a systemati-
cally selected representation set, see section 2.2. Starting from a few objects in the 
set R, this selection is done in an iterative procedure. In each step, the classifier is 
trained and the training object that is the closest to the decision boundary is added to 
the representation set.

3. Embedding-based classification by Fisher’s linear classifier defined by an interac-
tively growing representation set as above. For the construction of the embedded 
space we used the eigenvectors corresponding to the largest eigenvalues, jointly ex-
plaining 70% of the variance.

Fig. 3 Objects misclassified by the nearest neighbor rule (top), their nearest neighbor ‘3’ 
and their nearest neighbor ‘8’.
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Fig. 5 The errors of the training set and 
the test set as a function of the size of the 
representation set for the NIST digits ‘3’ 
and ‘8’ represented by their Hamming 
distances. The 1-NN error on the repre-
sentations set is given as a reference.

Fig. 6 The errors of the training set and the 
test set as a function of the size of the rep-
resentation set for two sets of polygons rep-
resented by their Hausdorff distances. The 
1-NN error on the representations set is 
given as a reference.
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In order to achieve a better generalization, D(T,R) was used for training all these classi-
fiers instead of using only D(R,R) as in section 2.4. In figure 5, the errors on the training 
set and test set are shown as a function of the size of the representation set. The test er-
rors for the 1-NN rule on the representation set are shown for comparison. This figure 
shows that we can construct a zero-error classifier for the training set, but that it ap-
peared impossible to get this result also for the test set. This might be caused by the fact 
that this real world example did not fulfill our assumption number 4. Note the instability 
of the results for the embedding procedure (bottom figure) in case of small sizes of the 
representation set. It should also be noted that a systematic selection of objects for the 
representation set is not better at all than a random selection. This is in agreement with 
previous results [1], [3].

In an attempt to verify the statements in section 3 we constructed an artificial 
dataset based on polygons. Two classes, of 2000 objects each, are generated, one class 
with 5 corners on the unit circle and one with 7 corners, deviating from that circle by a 
standard deviation of 0.4. In figure 5 some examples are shown. In order to guarantee 
that these classes are really separable we made sure that the shortest edges of the 7-cor-
ner polygons are longer than 0.2. Thereby, they cannot degenerate to a 5-corner poly-
gon. This determines the gap we discussed in section 3. 

The Hausdorff distances [13] between polygon corners have been computed to 
build the dissimilarity representation. 500 objects per class are used for training and the 
remaining 1500 objects per class for testing. In its entirety we fulfilled the assumptions 
as discussed in section 3. The results in figure 6 show, however, that we did not reach 
our goal to construct a zero-error classifier for this problem. The error curves even look 
very similar to those of the digit recognition problem in figure 5, in spite of the fact that 
the polygon problem is intuitively much simpler and has definitely no class overlap.

In order to investigate the dependency of the results for the distance measure we 
computed for the same set of polygons the Modified Hausdorff distance. This distance 
measure is not metric but has to be preferred for a better class separability [13]. Instead 
of an Euclidean space, now a pseudo-Euclidean space has to be used for embedding, see 
section 2.3. The results, shown in figure 8, are much better than for the original Haus-
dorff distance (figure 6). Note, however, the difference in scale. Also in this case the 
error seems to be asymptotically constant and we fail to find a zero-error for large sizes 
of the representation set.

Fig. 7 Some examples of the two classes of polygons generated. Upper row, polygons with 
5 corners, f on the unit circle. Bottom row, polygons with 7 corners, having a standard de-
viation of 0.4 from the unit circle.
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5 Discussion and conclusions
The overlap of pattern classes may be avoided 
by a dissimilarity based representation con-
structed from the raw data if the assumptions as 
listed in section 3 are fulfilled. We showed that 
linear classifiers built for such representations 
can outperform the nearest neighbor rule, even 
for large training set sizes for which a good per-
formance of the NN-rule may be expected. Al-
though the classes are truly separable, we did 
not succeed in our attempts to construct a zero-
error solution. This result certainly depends on 
the distance measure that is used in relation to 
the classifier. The linear classifier is able to sep-
arate large training sets (of 1000 objects in to-
tal), even in about 300 dimensions, but this does 
not generalize for the test set. Our blame is that 
the Fisher discriminant in combination with the 
dissimilarity representation is global sensitive: 
remote objects, having large distances, influ-
ence their exact position. 

The challenge, we see for the future, is to 
construct more locally sensitive classifiers that 
still need just a fraction of the training set for 
representation. Further research is, therefore, 
needed to find out how distance measures may 
be constructed such that the potentially zero-
error result can be obtained in practice.
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