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Abstract.

Feature based approaches to pattern recognition suffer from the fact that feature
representations of different classes of objects may overlap. Thisisthe conse-
guence of reducing the description of an object to afeature vector. Asaresult an
error free recognition system is even asymptotically (for infinite training sizes)
impossible. In this paper it is argued that this limitation does not hold for dissim-
ilarity based representations. Suggestions are made how this may be exploited in
practice.

1 Introduction

Template matching is a simple and early approach to pattern recognition. Objects are
classified on the basis of distancesto prototypes. Often, just asingle prototype per class
is selected. This approach, however, does not take into account the distribution of the
object variations. Therefore, it puts high demands on the possibilities to normalize ob-
jects such that an accurate matching can be realized.

Feature-based classifiers are more advanced. In this case, objects are described
by carefully selected properties (measurements) which are combined in feature vectors.
Such features build afeature space. A classifier can betrained in this space, using a set
of examplesreflecting the variationsin the classes to be distinguished. Usually, the fea-
tures are areduced description of the objects. Some information islost and, as a conse-
quence, essentially different objects may be represented by the same point in thefeature
space. If this happensfor objects of different classes, these classes overlap. Thereisno
way to distinguish such objects in the feature space and, thereby, any recognition
scheme based on such a feature representation has a non-zero classification error.

A different, not yet very intensively studied approach isto use distances between
objects, like in template matching, but now making use of the variations in distances
between the objectsin the training set. So, objects are not represented by features, but
by distances or dissimilarities directly measured on the raw data. The loss of informa-
tion by the reduction to features, that was just mentioned, may hereby be avoided.

It isthe purpose of this paper to clarify the consequences for the class overlap of
such a dissimilarity representation. We will argue that under some circumstances this
overlap can be entirely avoided, resulting in azero-error classification. Let usfirst intro-
duce the dissimilarity representation further.

The starting point of this approach is a given set of dissimilarities between a
training set of objects of known class memberships (their 1abels) and a sel ected set of
prototypes. These prototypes may be selected by some expert, or may be the result of
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an automatic selection procedure [7], [8]. Classification is usually done by the nearest
neighbor rule (or in this context by the nearest prototype rule). Sometimes more
advanced schemes are used, see for instance [14], [15], [16].

An intriguing point in relation with the nearest neighbor rule isthat it is usually
not trained. Just the distancesto the prototypes are used for classifying new objects. The
set of distances between the training set and the prototypes themselvesis information
that is sometimes used in the selection of prototypes, but is often completely neglected
by using this classification rule. Recently, we have shown that these distances may be
used by the so called dissimilarity-based classifiers[2], [3], [17]. They may not only
demand | ess prototypes and, thereby, the computation of less distances, but, at the same
time, perform significantly better than the nearest neighbor rule. In section 2, an over-
view of the various approaches to build classifiers from a given dissimilarity represen-
tation is presented.

As mentioned above, under some conditions, the class overlap related to the use
of feature spaces can be avoided by the use of dissimilarities. The question to be dis-
cussed in section 3 iswhether we can build classifiers that exploit thisin practice. In
other words, whether we can construct classifiers that have asymptotically (for increas-
ing training set sizes) a zero classification error. In section 4, afew exampleswill be
given and in the last section conclusions are summarized.

2 Classification approachesto dissimilarity descriptions

Herewewill present asummary of the various approachesthat can be used for building

classifiersfrom adissimilarity matrix of thetraining data. This section isbased on, and

makes use of some of, our previous papers, [1]-[5].

To construct aclassifier on dissimilarities, the training set T of size n (having n
objects) and the representation set R [5] of sizer will be used. Risa set of prototypes
covering all classes present. Ris chosen here to be a subset of T (RO T), although, in
general, Rand T might be digunct. In the learning process, a classifier is built on the
n x r distance matrix D(T, R), relating all training objectsto al prototypes. The infor-
mation on a set Sof s new objectsis provided in terms of their distancesto R, i.e. asan
sx r matrix D(S R).

The following three different approaches to classification based on distances are
distinguished:

1. The nearest neighbor rule, finding the smallest distancesin D(S R).

2. Dissimilarity representations, directly using the distances of D(T, R) to build an r-di-
mensional space. In this space, the n training objects, represented by their distances
to the objects of R, are used for training a classifier.

3. Embedding, i.e. constructing a new space O in which the Euclidean distances be-
tween the training objects correspond aswell as possible to the given dissimilarities
D(R, R).

2.1 Nearest neighbor method

A straightforward approach to dissimilarity representations leads to the k-Near-
est-Neighbor (k-NN) rule[9],[11]. Such classifiers make use of distance informationin
arank-basedway. The NN rule, initssimplest form, i.e. 1-NN rule, assignsanew object
to the class of its nearest neighbor from the representation set R by finding minimain
the rows of D(S, R). The k-NN decision ruleis based on mgjority voting: an unknown
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object becomes a member of the class the most frequently occurring among the k near-
est neighbors. The 1-NN rule does not make any use of the availableinformation in the
dissimilarity matrix D(T,R), it directly operates on D(SR). One may expect, therefore,
that improvements are possible. On the other hand, the asymptotic error of thisrulefor
r - o0 is2e*(1-e*), inwhich €* isthe Bayes error. So, for non-overlapping classes (* =
0), the error of the 1-NN ruleis also zero. This may be, however, unfeasible, since it
may demand the storage and handling of an infinite training set.

2.2 Linear/quadratic dissimilarity classifiers

This approach relies on interpreting distances as arepresentation of adissimilar-
ity space. In particular, D(T, R) istreated as a description of a space where each dimen-
sion corresponds to the distance to a prototype. The prototypes constitute, thereby, anr-
dimensional dissimilarity space. In general, D(X, R) defines avector consisting of r dis-
tances found between the object x and all the objectsin the representation set R, i.e. if
R={py, .-, b}, then D(X, R) = [D(X, py), .-, D(X, p;)]. Therefore, D(+, R) isseen asa
mapping on an r-dimensional dissimilarity space. In this convention, neither x nor R
refersto pointsin afeature space, instead they refer to the objects themselves. The
advantage of such arepresentation isthat any traditional classifier operating on feature
spaces can be used. Moreover, it can be optimized by using training sets larger than the
given representation set. This does not complicate the decision rule, but does increase
its accuracy.

The choice of Bayesian classifiers[11] assuming normal distributions, is a natu-
ral consequence of the central limit theorem applied to dissimilarities. It issupported by
the observation that most of the commonly-used dissimilarity measures, e.g. Euclidean
distance or Hamming distance, are based on sums of differences between measure-
ments. The central limit theorem states that the sum of random variablestendsto be nor-
mally distributed in the limit, provided that none of the variances of the sum’s
components dominates. Therefore, summation-based distances (built from many com-
ponents) tend to be approximately normally distributed, which suggests that Bayesian
classifiers, and also Fisher’s linear discriminant [11],[12], should perform well in dis-
similarity spaces. A problem arises for representation set sizes that are almost equal to
the size of the training set. In these cases it is needed to estimate the normal densities
from D(T,R) by using robust estimators, e.g. based on regularization [12].

2.3 Linear embedding of dissimilarities

Thereisanumber of waysto embed dissimilarity datain afeature space. Since, we are
interested in afaithful configuration, a (non-)linear embedding is performed such that
thedistancesare preserved aswell aspossible. Since nonlinear projectionsrequire more
computational effort and, moreover, the way of projecting new points to the existing
configuration is not straightforward (or not defined), linear mappings are preferable.

2.3.1 Embedding of Euclidean distances

Let the representation set R={py, po, - . . , P} refer tor objects. Given an Euclidean
distance matrix D M "™ between those objects, a distance preserving mapping on an
Euclidean space can be found. Such a projection is known in the literature as classical
scaling or metric multidimensional scaling [20]. In other words, the dimensionality

k < r and the configuration D [T <k can be found such that the (squared) Euclidean dis-
tances are preserved. Note that having determined one configuration, another one can
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be found by arotation or atranslation. To remove the last degree of freedom, without
loss of generality, the mapping will be constructed such that the origin coincides with
the centroid (i.e. the mean vector) of the configuration X.

To define X, the relation between Euclidean distances and inner products are
used. First, it can be proven that

D@ = p1"+10"-2B )

where D@ js amatrix of square Euclidean distances, B is the matrix of inner products
of theunderlying configuration X, i.e. B= XX" and bisavector of the diagonal elements
of B. B can also be expressed as:

B = —230?y )

where Jisthe centering matrix J = | —lllT 00" ™" andl isthe identity matrix. J
projects the data such that the final configr]urar[ion has zero mean. B is positive definite
sinceit isa Gram matrix [21]. Then, the factorization of B by its eigendecomposition
can be found as:

xX" = B = QAQ" ®)

where A isadiagonal matrix of thefirst non-negative eigenval ues, ranked in descending
order, followed by the zero values, and Q is an orthogonal matrix of the corresponding
eigenvectors[20]. For k< r non-zero eigenval ues, ak-dimensional representation X can

be then found as:
1 1

2 rxk , 2 k x k

X = QAr, Q0D ™A 0D ) (4)
where Qy isamatrix of thefirst k |eading eigenvectorsand /\i containsthe squareroots
of the corresponding eigenvalues. Note that X, determined in this procedure, is unique
up to rotation (the centroid is now fixed), since for any orthogonal matrix T,

XXT = (XT)(XT)". Note also that X is an uncorrelated representation, i.e. given w.r.t. the
principal axes.
2.3.2 Linear embedding of non-metric dissimilarity data

Non-metric distances may arise when shapes or objects inimages are compared
e.g. by template matching [13],[14]. For projection purposes, the symmetry condition
is necessary, but for any symmetric distance matrix, an Euclidean space is not ‘large
enough’ for a distance-preserving linear mapping onto the specified dimensionality. It
is, however, always possible [18] for a pseudo-Euclidean space.

A pseudo-Euclidean space 0 (P9 of the signature (p,q) [18] isareal linear vector
space of dimension p+q, composed of two Euclidean subspaces, 0P and 09, such that
09 = gP g OY%and theinner product [.Lis positive definite on 0P and negative def-
inite on 09, The inner product w.r.t. the orthonormal basisis defined as

p p+q
X,y = z XY — Z Xy, = xTMy (5)
i=1 j=p+1
with



24

I 0

M= | PXP (6)
0 -l
where | isthe identity matrix. Using the notion of inner product,
2 2 T
d"(xy) = [x=y|" = =y, x=yd= (x=y) M(x-y) ()

can be positive, negative or zero. Note that an Euclidean space 0P, is a pseudo-Euclid-
ean space 0O,

Thematrix B = —%J D(Z)J is positive definiteif and only if the distance matrix
D @ "™"isEuclidean [20]. Therefore, for anon-Euclidean D, B is not positive definite,
i.e. B has negative eigenvalues. As aresult, X cannot be constructed from B, since it
relies on the sguare roots of eigenvalues. However, it is possible to use a pseudo-Euclid-
€an space.

To embed the data, the same reasoning asfor an Euclidean spaceis applied here.
The essentia difference refers to the notion of an inner product and a distance. Now,
B = —%J D(Z)J , istill the matrix of inner products, but it is expressed as

B = XMX" )

where M isamatrix of the inner product operation in a pseudo-Euclidean space. Fol-
lowing [19], we can write (compare to equation (3)):

xMx' = B = QAQ' = Q/\EB' ?j/\éQT ©

whereM isgiven by () and p + g=k. A isnow based on p positive and q negative eigen-
values, which are presented in the following order: first, positive eigenvalues with de-

creasing values, then negative ones with decreasing magnitude and final IR/, zero values.
Therefore, X can be now represented in a pseudo-Euclidean space 0K=0P9 (see[189]),

asfollows:
1

X = QA (10)

2.3.3 Projection of new points

Having found a configuration X in a pseudo-Euclidean spacethat preservesall pair wise
distances D(R,R), new objects can be can added to this space via the linear projection.

Given the distance matrix D 0 0°™", expressing dissimilarities between snovel ob-
jects and all objects of the representation set R, a configuration X, is to be determined

in a pseudo-Euclidean space 1X=0(P9). First, thematrix B, 0" of inner products
relating all new objects to all objects from R should be found, which becomes:

B, = <(0P3-up?y) 1)

where J isthe centering matrix and U = illT 00", Since B, can be expressed as:
T _
XMX" = By (12)

with M = 1 0 0% if OkisEuclidean, or M defined by (6) if 0¥is pseudo-Euclidean,
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therefore, Xq |sfound as the mean-square error solution toX ;M X" B

X, = BX(X'X)™M . Knowingthat X' X = |A| and X = X |salterna-
t|vely pr@entedas
1
-1 -
Xg = BXIATM or Xg = BQ A M (13)

2.3.4 Reduction of dimensionality

Originaly, the (pseudo-)Euclidean configuration X is found such that the distances are
preserved exactly and the dimensionality of X is determined by the number of non-zero
eigenvalues of B. However, there might be many relatively small non-zero eigenvalues
ascompared to the large ones. Knowing that dissimilarities are noisy measurements, the
small eigenvalues correspond to non-significant directions of X. In such aframework,
neglecting small eigenvalues stands for reducing noise contribution or for finding arep-
resentation with the intrinsic dimension.

In such acase, distances will be preserved approximately. One has, however, a
control over the dimensionality of the reduced vector representation. Basically, the
dimensionality reduction can be achieved by the orthogonal projection, governed b
Principal Component Analysis (PCA). The particular construction of X = Qk‘/\k‘z
and the fact that X is an uncorrelated vector representation, i.e. Cov(X) = ZA, ,
stand for X being given in the form of the orthogonal PCA projection. It meansthat the
reduction of dimensionality is performed in asimple way by neglecting directions cor-
responding to eigenvalues small in magnitude. The reduced representation (being an
orthogonal projection) isthen determined by the p’ significant positive eigenvalues and
q sgmﬂcant (in magnitude) negative eigenvalues. Therefore, X' [ OrxkK k<k,is
foundas X' = Q. \/\k \z wherek' = p’ + g and A, isadiagonal matrix of firdt,
decreasing positive eigenval ues and then increasing negative eigenvalues, and Q. isthe
matrix of corresponding eigenvectors.

2.3.5 Classifiersin the reduced embedded space
For a pseudo-Euclidean configuration, alinear classifier f(x) = i x[H v = vIMx + Vo
can be constructed by addressing it as in the Euclidean case, i.e f(x) = QvX[g,q + Vo =

WX + v, wherew = Mv (see [18],[4]).

2.4 Example of dissimilarity based classifiers.

The following exampleillustrates the use and benefits of dissimilarity-based classifiers
over the direct use of the 1-NN rule. We used two datasets, one real, based on digit rec-
ognition, obtained from Jain and Zongker [15], and one based on artificially generated
polygons.

For the 10-class digit recognition problem we used a 2000x2000 dissimilarity
matrix computed by Zongker [15] using deformable templates. The polygon dataset is
similar to the one described in section 4. It hastwo classes and is given by a2000x2000
matrix of Hausdorff distances [13] computed for the polygon corners. In both cases,
training sets T of 1500 objects were used and atest set Sof 500 objects. For growing
representation sets R 0 T, the following classifiers are built on D(R,R) and tested on
D(SR):

1. Theregularized Bayeslinear discriminant assuming normal densities(RLDC) onthe
dissimilarity representation D(R,R), see section 2.2.
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Fig. 1 Dissimilarity based classifiers com- Fig. 2 Dissimilarity based classifiers com-
pared with the nearest neighbor rule for a pared with the nearest neighbor rule for a
two-class digit classification problem. two-class polygon classification problem.

2. A linear programming optimizer (LP) for D(R,R). Since this matrix is square, there
are as many points as dimensions, so there exists a perfect, error-free solution for R,
[10].

3. Theregularized Bayeslinear discriminant assuming normal densities (RLDC) on an
embedded space of fixed dimensionality, see section 2.3. For the digit data this di-
mensionality was set to 100, for the polygon data we used 45.

The results are shown in figure 1and figure 2. For comparison, the test results of the 1-

NN and 3-NN classifiers are shown aswell. (The 3-NN seemsto be best over for the k-

NN rule over arange of k=1, ..., 15). These pictures make clear that the dissimilarity

based classifiers may perform very well. The increasing error for RLDC in the digit

classification problemisdueto bad (i.e. constant) regularization aswe did not optimize
that in this experiment.

3 The asymptotic separ ability of classes
If for the dissimilarities holdsthat they can only be zero if and only if the corresponding
objects are identical, then class overlap is avoided if objects are allowed to belong to
one classonly. As stated in section 2.1, thisimplies that the 1-NN rule will constitute a
zero-error classifier. It may demand, however avery large training set. As the dissimi-
larity-based classifiers (section 2.2) and the embedding classifiers (section 2.3) appear
to be much more efficient in the requirement of storing atraining set (the representation
sets needed to be stored by them are much smaller than the training sets needed by the
1-NN rule), the question arises whether these classifiers may also have an asymptotic

ZEro error.

The following discussion is based on a set of assumptions. They are often ful-
filled, or can easily be fulfilled:

1. Thereal, physical object classes are separable, i.e. thereisno physical object that is
amember of more than one class. For optical character recognition thisimplies for
instance that thereis still a difference between the characters ‘0’ (zero) and ‘O’ (the
letter ‘O’)
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2. Theraw measurements of the objects are made such that this separability is main-
tained. Oneway to inspect thisisto have the objects|abeled by human analystsfrom
the measurements (e.g. a video screen that displays the object image to be used for
further processing). It isfulfilled if the characters can till be labeled correctly after
scanning and display.

3. For adistance measure D(x,y) between objects x and y represented by their rawv mea-
surements (e.g. scanned images) holds that D(x,X) = 0 and D(x,y) > 6> 0 if xand y
belong to different classes. This assumption states that there is some ‘gap’ between
the classes of size 6: Objects of different classes have a distance of at least d.

4. The raw measurement of any object includes just continuous noise (e.g. changing
lighting conditions, small rotations or sensor deviations). This noiseis such that for
any two measurements x and y of the same physical object holds that D(x,y) < d.

5. Thedigitalization of the measurements and thereby the computer representation of
the objects is such that the minimum class gap o is preserved.

Since the digitized world isfinite, there is afinite probability that in the &-environment
of an object x there is another object y of the same class:

Prob(y|(D(x, y) <d,x0w,yOw))>e>0 19

Because of assumption number 3 there is no object in that neighborhood of another
class:

Prob(y|(D(x, y) <é, xOw,yOw)) =0 (15)

From this, it can be concluded that with probability one an infinitely growing training
set will contain an object y [ within a d-environment of a given test object x [d .
Therefore, D(x,y) issmaller than the distanceto al objectsz[d. Consequently, any ob-
ject x will be asymptotically correctly classified by the nearest neighbor rule.

Aslong aswe are able to correctly label the objects from the digitized measure-
ments and we have a distance measure between objects for which holds that D(x,y) = 0
for x =y, the nearest neighbor rule has this asymptotic property. However, thisis not a
feasible approach, since it implies the storage of an aimost infinitely growing set of
objects.

In the previous section, we showed that dissimilarity based classifiers may gen-
eralize better and may need smaller representation sets then the nearest neighbor rule.
Thiswill depend on how much ‘ space’ there is between the classes, i.e. the smallest dis-
tances between objects of different classes. If thesize of thisgap issufficient then aclas-
sifier defined by a subset of the datamight fit into it. It depends on t the definition of the
distance measure whether this can be achieved by alinear classifier.

The two classifiers discussed in the sections 2.2 and 2.3 depend on arepresenta-
tion set and atraining set. The necessary size of the representation set is determined by
the complexity of the problem, i.e. the nonlinearity. For smaller gaps between the
classes, larger training set sizes may be needed to position the classifiers more accu-
rately. In the next section we will experimentally investigate this further.
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Fig. 3 Objects misclassified by the nearest neighbor rule (top), their nearest neighbor ‘3’
and their nearest neighbor ‘8'.

4 Some experiments

The experiments in this section are based on two datasets, one artificial and one real.

Thereal world dataset consists of the digits ‘3’ and ‘8’ of the NIST character database

[22]. We computed the Hamming difference between 32x32 sampled versions of the

digits. Thefirst question that arisesis whether the dataset fulfills the assumptions for-

mulated in section 3. We checked all the nearest neighbor relations. In figure 3, the ob-
jects are shown that are misclassified by the nearest neighbor rule together with their
nearest neighbors in both classes. For some objects, it may be concluded that they are
badly segmented as they contain isolated dots. As a consequence, they do not fulfill as-
sumption 4 in section 3. Object representations based on segmentation errors are not ex-
pected to have close neighbors. In apractical situation, they may be removed from the
training set. New objects, having such defects, are thereby expected to be misclassified.

Infigure 4, the distances to the 350 ‘ ‘ ‘ ‘

nearest neighbors in the dataset are

shown for afraction of the data. Ina

very few cases the nearest neighbor
belongsto adifferent class. This causes

a classification error. Thetotal error for

this set, using the leave-one-out error

estimate, is 0.0185. The figure clearly oo

suggests that there is a gap between the

classes. In the following experiments, 150

we try to construct some classifiersin

this area. We use afixed training set of 100}

2x500 objects. The remaining 2x500

objects are used for testing. ‘ ‘ ‘ ‘ ‘

1. Dissimilarity-based classification by % P et
Fisher’s linear classifier using aran- Fig. 4 Scatter plot of distances to the nearest
domly selected representation set, neighbors of both classes.

See section 2.2,

2. Dissimilarity-based classification by Fisher’'slinear classifier based on a systemati-
cally selected representation set, see section 2.2. Starting from afew objectsin the
set R, this selection is donein an iterative procedure. In each step, the classifier is
trained and the training object that is the closest to the decision boundary is added to
the representation set.

3. Embedding-based classification by Fisher's linear classifier defined by an interac-
tively growing representation set as above. For the construction of the embedded
space we used the eigenvectors corresponding to the largest eigenvalues, jointly ex-
plaining 70% of the variance.
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Fig. 7 Some examples of the two classes of polygons generated. Upper row, polygons with
5 corners, f on the unit circle. Bottom row, polygons with 7 corners, having a standard de-
viation of 0.4 from the unit circle.

In order to achieve a better generalization, D(T,R) was used for training all these classi-
fiersinstead of using only D(R/R) asin section 2.4. Infigure 5, the errors on thetraining
set and test set are shown as afunction of the size of the representation set. The test er-
rorsfor the 1-NN rule on the representation set are shown for comparison. This figure
shows that we can construct a zero-error classifier for the training set, but that it ap-
peared impossibleto get thisresult aso for thetest set. This might be caused by the fact
that thisreal world exampledid not fulfill our assumption number 4. Notetheinstability
of the results for the embedding procedure (bottom figure) in case of small sizes of the
representation set. It should also be noted that a systematic selection of objects for the
representation set is not better at all than arandom selection. Thisisin agreement with
previousresults[1], [3].

In an attempt to verify the statements in section 3 we constructed an artificial
dataset based on polygons. Two classes, of 2000 objects each, are generated, one class
with 5 corners on the unit circle and one with 7 corners, deviating from that circle by a
standard deviation of 0.4. In figure 5 some examples are shown. In order to guarantee
that these classes are really separable we made sure that the shortest edges of the 7-cor-
ner polygons are longer than 0.2. Thereby, they cannot degenerate to a 5-corner poly-
gon. This determines the gap we discussed in section 3.

The Hausdorff distances [13] between polygon corners have been computed to
build the dissimilarity representation. 500 objects per class are used for training and the
remaining 1500 objects per classfor testing. Inits entirety we fulfilled the assumptions
as discussed in section 3. The results in figure 6 show, however, that we did not reach
our goal to construct azero-error classifier for this problem. The error curves even ook
very similar to those of the digit recognition problemin figure 5, in spite of the fact that
the polygon problem isintuitively much simpler and has definitely no class overlap.

In order to investigate the dependency of the results for the distance measure we
computed for the same set of polygons the Modified Hausdorff distance. This distance
measure is not metric but has to be preferred for abetter class separability [13]. Instead
of an Euclidean space, now a pseudo-Euclidean space hasto be used for embedding, see
section 2.3. Theresults, shown in figure 8, are much better than for the original Haus-
dorff distance (figure 6). Note, however, the differencein scale. Also in this case the
error seemsto be asymptotically constant and wefail to find a zero-error for large sizes
of the representation set.
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5 Discussion and conclusions

The overlap of pattern classes may be avoided
by a dissimilarity based representation con-
structed from the raw dataif the assumptionsas
listed in section 3 are fulfilled. We showed that
linear classifiers built for such representations
can outperform the nearest neighbor rule, even
for large training set sizesfor which agood per-
formance of the NN-rule may be expected. Al-
though the classes are truly separable, we did
not succeed in our attempts to construct a zero-
error solution. This result certainly dependson
the distance measure that is used in relation to
the classifier. Thelinear classifier isableto sep-
arate large training sets (of 1000 objectsin to-
tal), eveninabout 300 dimensions, but thisdoes
not generalize for the test set. Our blameisthat
the Fisher discriminant in combination with the
dissimilarity representation is global sensitive:
remote objects, having large distances, influ-
ence their exact position.

Thechallenge, we seefor thefuture, isto
construct more locally sensitive classifiers that
still need just afraction of the training set for
representation. Further research is, therefore,
needed to find out how distance measures may
be constructed such that the potentially zero-
error result can be obtained in practice.
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