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Abstract. Proximity is the basic quality which identifies and characte-
rizes groups of objects in various domains and contexts. When objects
are compared to a set of chosen prototype examples, proximity can be
used as a natural ingredient to build a numerical representation. Pattern
classes may be learned from such proximity representations by the tra-
ditional nearest neighbor rule, as well as by other alternative strategies.
These encode the proximity information in suitable representation vec-
tor spaces in which statistical classifiers can be trained. Such recognition
techniques can be successful, provided that the measure is informative,
independently whether it is metric or Euclidean, or not.

1 Introduction

In our attempts to model the physical world and its phenomena we usually rep-
resent objects as points with masses in a Euclidean space. While it is convenient
to use, we should be aware of the imposed simplification in our thinking. If we
treat objects as bodies in the space, the actual distance, i.e. the shortest distance
between them is non-metric. For instance, a zero distance occurs between two
touching objects, even if they are very different; two mugs on a table touch the
table and have, thereby, zero distances to it, while they can be far away from
each other. In daily life we often deal asymmetric proximity measures, which re-
sult from different judgements used to view one object in the context of another.
A practical example are asymmetric distances between places in a city, where
asymmetry is caused by one-way road connections. Thanks to the well-developed
theory and methods of vector spaces, the Euclidean distance has widely been ac-
cepted as (one of) the most suitable measures to rely on in building our models
and explaining the world. The reason is that a Euclidean space is simultane-
ously an inner product, normed and metric space. While this offers an arsenal
of powerful approaches, we should not forget that a vectorial representation is a
reduction of complex phenomena.

Statistical learning is one of the primary approaches to pattern recognition.
It assumes that knowledge can be represented in a set of discriminative features.
Hence, objects are represented as vectors in a feature space, which is usually
Euclidean. The proximity between objects is modeled as the Euclidean distance
between their vector representations. Learning relies on inferring a functional re-
lation between some input and output data in this space, given a set of examples.
This is done to assure its high predictive ability.



On the other hand, knowledge is usually qualitative in nature. Moreover,
many problems deal with structural data descriptions which are non-vectorial by
origin. The most basic quality to be used in learning is therefore the observation
of how much the objects have in common or how much they differ. As a result, a
suitable proximity measure can be designed in a given context in order to identify
patterns and model clusters. Such a measure becomes powerful, if it is derived
by focussing on differences occurring in the structure of objects. Consequently,
objects can be represented by a vector of proximity values to some chosen proto-
types. Since expert knowledge can be used in the definition of the measure, such
proximity representations enable the natural integration of qualitative knowl-
edge with numerical methodology. They combine the strengths of structural and
statistical approaches: a structural measure builds a numerical representation,
which is used in statistical learning. Note that kernel methods are mathemati-
cally elegant approaches [1] which lie within the proximity-based paradigm. They
rely on a relatively narrow class of (conditionally) positive semidefinite kernels
and are specific types of similarity representations.

Many natural proximity measures used to compare contours, sequences, spec-
tra or images are non-metric or do not possess the Euclidean behavior. Non-
metric examples are pairwise structural alignments of proteins that focus on
local similarity [2,3], variants of the Hausdorff distance [4], the normalized edit
distance [5], the Mahalanobis distance between populations [6] or the Kullback-
Leibler divergence [7]. The violation of metric axioms is often not an artifact of
poor choice of primitives, features or algorithms, but inherent to the problem of
a proper comparison of objects that incorporates the necessary invariance and
is robust against noise or occlusion [8].

Although proximity measures are widely used for matching and object com-
parison [5,4,8,9], classification often relies on assigning a new object to the class
of its nearest neighbor. Alternative generalization frameworks, however, exist for
general proximity measures. They represent proximity information in suitable
representation vector spaces [10,11,3,6] or deal with indefinite kernels [12,13,6].

In this paper we present a brief description of proximity-based statistical
learning approaches. Since many measures defined in practice are non-Euclidean
or non-metric, we emphasize the necessity of developing novel learning strategies
that make use of informative aspects of the measure and not necessarily of its
metric properties. Our claim is that metric or Euclidean requirements are not
essential if the measure is discriminative.

2 Learning from proximity data

Assume a representation set R = {p1, p2, . . . , pn} of prototype examples and
a proximity measure d, which should incorporate the necessary invariance. With-
out loss of generality, let d denote dissimilarity. An object x is then represented
as a vector of dissimilarities computed between x and the prototypes from R,
i.e. d(x,R)=[d(x, p1), d(x, p2), . . . , d(x, pn)]T. Given a set T = {t1, t2, . . . , tN} of
N objects, our proximity representation becomes an N × n dissimilarity matrix
D(T,R), where D(ti, R) is now a row vector. If R ⊂ T , then R is usually selected



out of T in a way to guarantee a good tradeoff between the recognition accuracy
and the computational complexity.

The k-NN rule can directly be applied to pairwise proximity data. Although it
has good asymptotic properties for metric distances, its performance deteriorates
for small training (representation) sets. Alternative learning strategies represent
proximity information in suitable representation vector spaces, in which tradi-
tional statistical algorithms can be defined. So, they can become more beneficial.
Two simple approaches are a linear isometric embedding into a pseudo-Euclidean
space and the use of dissimilarity spaces.

Pseudo-Euclidean linear embedding. Given a symmetric dissimilarity ma-
trix D(R, R), a vectorial representation X can be found such that the distances
are preserved. This is done in a pseudo-Euclidean space E = R(p,q), which is a
(p+q)-dimensional non-degenerate indefinite inner product space such that the
inner product 〈·, ·〉E is positive definite on Rp and negative definite on Rq [14].
Then, 〈x,y〉E = xTJpqy, where Jpq = diag (Ip×p;−Iq×q) and I is the identity
matrix. Consequently, d2

E(x,y) == 〈x−y,x−y〉E = d2
Rp(x,y)−d2

Rq (x,y), hence
d2
E is a difference of square Euclidean distances found in Rp and Rq. Since E is

a linear space, many properties related to inner products can be extended from
the Euclidean case [14,6].

The (indefinite) Gram matrix G of X can be expressed by the
square distances D?2 = (d2

ij) as G = − 1
2JD?2J , where J =I− 1

r11T

[14,10,6]. Hence, X can be determined by the eigendecomposion of
G=QΛQT =Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT , where |Λ| is a diagonal matrix of
first decreasing p′ positive eigenvalues, then decreasing magnitudes of q′ negative
eigenvalues, followed by zeros. Q is a matrix of the corresponding eigenvectors. X
is uncorrelated and represented in Rk, k=p′+q′, as X =Qk|Λk|1/2 [14,10]. Since
only some eigenvalues are significant (in magnitude), the remaining ones can be
disregarded as non-informative. The reduced representation Xr = Qm |Λm|1/2,
m = p+q < k, is determined by the largest p positive and the smallest q nega-
tive eigenvalues. New objects D(Ttest, R) are orthogonally projected onto Rm;
see [14,10,6] for details. Classifiers based on inner products can appropriately
be defined in E . A linear classifier f(x) = vTJpqx + v0 is e.g. constructed by
addressing it as f(x) =wT x + v0, where w =Jpqv in the associated Euclidean
space R(p+q) [14,10,6].

Proximity spaces. Here, the dissimilarity matrix D(X,R) is interpreted as
a data-dependent mapping D(·, R): X → Rn from some initial representation X
to a vector space defined by the set R. This is the dissimilarity space, in which
each dimension D(·, pi) corresponds to a dissimilarity to a prototype pi ∈ R.
The property that dissimilarities should be small for similar objects (belonging
to the same class) and large for distinct objects, gives them a discriminative
power. Hence, D(·, pi) can be interpreted as ’features’ and traditional statistical
classifiers can be defined [3,6]. Although the classifiers are trained on D(·, R), the
weights are still optimized on the complete set T . Thereby, they can outperform
the k-NN rule as they become more global in their decisions.



Normal density based classifiers perform well in dissimilarity spaces [10,3,6].
For a two-class problem, a quadratic normal density based classifier (NQC) is
given by f(D(x,R)) =

∑2
i=1

(−1)i

2 (D(x,R)−mi)TS−1
i (D(x,R)−mi) + log p1

p2
+

1
2 log |S1|

|S2| , where m1/2 are the mean vectors and S1/2 are the estimated class
covariance matrices computed in the dissimilarity space D(X, R). p1/2 are the
class prior probabilities. If S1/2 are replaced by the average covariance matrix,
then a linear classifier is obtained. If the covariance matrices become singular,
they need to be regularized. Here, we choose the following regularization Sκ

i =
(1−κ)Si + κpi diag(Si), κ∈ [0, 1], which leads to the regularized NQC (RNQC).

Another useful strategy is the class of sparse linear programming machines
(LPMs), which construct hyperplanes in the corresponding dissimilarity spaces.
They are able to automatically determine a prototype set R (or if trained on
D(T,R), they may reduce R further on) which defines the final classifier. Two
variants are considered: the µ-LPM and the auc-LPM. The µ-LPM is a form
of the `1-SVM with µ ∈ [0, 1) being related to the expected classification error
[15,3]. The auc-LPM is defined to maximize the area under the ROC curve, as
recently proposed in [16]. The LPMs are trained on a complete representation
D(T, T ) and determine both R and the weights of the classifiers. Additionally,
the NLSQC (nonnegative least square classifier) is used [17]. It is a linear func-
tion which optimizes a square error and is, thereby, competitive to a quadratic
classifier. It has no additional parameters. The NLSQC may compete with other
LPMs applied to dissimilarity data, but its solution is not very sparse in terms
of R. So, the sets R found by the LPMs may be used to train the NLSQC on
D(T,R) to enhance its sparsity.

3 Clustering example

As an illustration of clustering we consider a subset of n = 70 fish contours1.
They are first aligned with the main axes and normalized to the same bounding
box. Then, they are re-sampled to 40 equidistant points. Assuming we know the
point-to-point correspondences between pairs of contours, Procrustes analysis is
applied to derive the distance [18]. In this process, one of the contours is kept
fixed, while the other is transformed by some optimal scaling, shift and rotation.
The measure of fit is based on the sum of Euclidean distances between the
corresponding points (the Frobenius norm between 40× 2 matrices representing
the contours). Since the fish contours can be arbitrary positioned, we consider
all cyclic correspondences and determine the one with the smallest mismatch.
Finally, such a distance is scaled to [0,1] when normalized by the Frobenius norm
of the first contour. This becomes our symmetric dissimilarity representation D.

To order to emphasize possible clusters, a new matrix D∗ is computed such
that d∗(i, j) = 2n d(i,j)P

k d(i,k)+
P

l d(l,j) . Finally, as we wish to look for grouping ten-

dencies, we define a similarity representation S∗ = d∗m11T−D∗, where d∗m is the
maximal element in D∗. Three clustering techniques are considered. These are

1 http://www.ee.surrey.ac.uk/Personal/F.Mokhtarian/



EM-clustering in an embedded space EM-clustering in a PCA-similarity space
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Fig. 1. Clustering results for Fish contours. Clusters are denoted by different marks:
’+’,’*’ and ’o’. In the top row, the plots show the 2D embedded space (left) and the
PCA-similarity (right) spaces with the projected fish contours. (The EM-clustering is
performed in higher-dimensional spaces). The axes are flipped such that the results can
be compared. In the bottom row, the 2D PCA-similarity space is used to represent the
clustering results for the average linkage (left) and complete linkage (right) . Partial
dendrograms are presented in the right corners of these plots, indicating the number
of objects in each sub-cluster on the horizontal axis.

the hierarchical clustering on D∗ and the EM-clustering applied in two repre-
sentation spaces: a pseudo-Euclidean embedded space and a PCA-transformed
similarity space (with 90% preserved variance), both determined from S∗. The
embedded space is found by assuming that the Gram matrix discussed in Sec. 2
is defined as G = 1

2JS∗J . Its dimensionality is automatically detected by the
number of significant eigenvalues. This procedure resembles spectral clustering
[19], except that the scaling is different and the dimensionality of our embedded
space may be higher.
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Fig. 2. Four-class ProDom data. Averaged (over 30 runs) classification error of vari-
ous dissimilarity-based classifiers as a function of the number of selected prototypes.
Standard deviations of the average errors are not shown to maintain the clarity. They
are less than 0.004. The LPM and the SVM achieve small errors, but they require 400
prototypes, and are not shown on the plot. Note also that the x-axis is logarithmic.

There are possibly two clusters in the data (as observed from the number
of ’standing-out’ eigenvalues of G), but they are not very apparent. As some
’outliers’ exist, we set the number of clusters to three. As there are weak group-
ing tendencies based on the object-to-objects distances, single linkage gives bad
results. Complete linkage is able to detect three clusters, as well as average link-
age, however, the clusters are weak. The EM-clustering in an embedded space
and in the PCA-similarity space give better results, as shown in Fig.1. As these
methods depend on initialization, they are run 30 times and the best results
are chosen according to the maximum of the goodness-of-clustering criterion,
JGOC =

P
i ni/(n−ni)

P
j njAij

2
P

i niAii
. ni is the cluster cardinality, Aij is the average

dissimilarity between the i-th and j-th clusters.

4 Classification examples

We will first present some indices characterizing proximity data. Assume K
classes, ω1, . . . , ωK such that |ωi| = ni and N =

∑
i ni. The class separability

is defined as Jsep = 1
JGOC

. The smaller the value, the better the separability.
Concerning the deviation from the Euclidean behavior, a symmetric D(T, T )
has a Euclidean behavior iff the Gram matrix G=− 1

2JD?2J is positive semide-
finite [10,6]. It means that all eigenvalues λi of G are nonnegative. Hence, the
magnitudes of negative eigenvalues manifest the amount of deviation from the
Euclidean behavior. This is presented in the indices JeigM = |λmin|/λmax, i.e. the
ratio of the absolute value of the smallest negative eigenvalue to the largest
positive one, and JeigS =

∑
λi<0 |λi|/

∑N
j=1 |λj |, i.e. the overall contribution of

negative eigenvalues. Concerning non-metric aspects, any symmetric D can be
made metric by adding a suitable constant γ to all off-diagonal elements of D.
In a first attempt, it can be overestimated by γ0 = maxp,q,t |dpq +dpt−dqt| [6].
Given that, a better estimation of γ ∈ (0, γ0) is found by an iterative bisection



method. Our index is, therefore, Jγ = γ ≥ 0. Another way to characterize the
non-metric behavior is by the number of disobeyed triangle inequalities Jineq.
ProDom data. A ProDom subset of 2604 protein domain sequences from the
ProDom set [20] is considered, together with the pairwise structural alignments
sij , as defined in [2]. It is a four-class problem: 878/404/271/1051 examples.
The dissimilarities are derived as dij =

√
sii + sjj − 2sij/

√
2604. The average

distance in the training data equals to 11.8 and the maximum distance is 18.5,
while JeigS = 0.0048 and JeigM = 0.009, Jineq≤6 and Jγ ≈ 0.173. Consequently,
the measure is nearly metric and nearly Euclidean.

Due to lack of space, we focus only on the dissimilarity space approach. In our
experiments, the data set is randomly divided into a training set T , |T | = 523
and a test set S. Then, a representation set R is chosen from T according to
some criteria. We choose to train the RQNC in a dissimilarity space D(T, R)
and test it on D(S, R). The regularization parameter κ is determined in a 5-fold
cross-validation. This is repeated 30 times and the results are averaged.

Except for random selection (Random, or random per class, RandomC),
many other selection procedures can be considered, e.g. by suitable adaptations
of clustering approaches, such as the k-centers (KCent) or mode-seek (Mode-
Seek) clustering. Briefly, they look for objects that are either local centers of
local modes in the dissimilarity data [3]. Concerning dissimilarity spaces, su-
pervised approaches include editing and condensing (EdCon) and the sparse
µ-LPM. Since there are four unbalanced classes, the sparsity of the µ-LPM may
not be large, so we also apply the k-centers (to pre-select the representation set)
followed by the LPM (KCent-LPM). We also run the indefinite support vector
machine (SVM) [12]. Additionally, a greedy forward feature selection method
is employed, with the separability criterion based on the Mahalanobis distance
(FSel-M) or the leave-one-out NN error (FSel-NN) [3].

Fig. 2 shows the average performance of the RNQC as a function of |R|. The
error curves are compared to some variants of the NN rule. The 1NN-final and
the kNN-final stand for the NN results obtained by using the entire training set
T , hence such errors are plotted as horizontal lines. They are our reference. kNN
is the k-NN rule directly applied to D(T, R), while the kNN-DS is the Euclidean
distance k-NN rule computed in D(T, R) dissimilarity spaces (this means that a
new Euclidean distance representation is derived from the vectors D(x,R)). In
both cases, R is randomly selected. EdiCon-1NN presents the 1-NN result for
the prototypes chosen by the editing and condensing criterion. The k-NN rule
optimizes k in a LOO procedure over T .

In general, the best results are found for the feature selection approach with
the separability criterion based on the Mahalanobis distance. In such a case,
the RNQC in a dissimilarity space improves over the k-NN defined on all 523
training objects. This is achieved already for R consisting of

∑
i d

√
|ωi|e ≈ 44

examples. Other selection methods need more prototypes.
Chicken data. The chicken pieces silhouettes set2 consists of 446 binary images
from chicken pieces: wing (117 examples), back (76), drumstick (96), thigh and

2 http://algoval.essex.ac.uk/data/sequence/chicken



Fig. 3. Example chicken pieces: wing, back, drumstick, thigh-and-back and breast.

10 15 20 25 30 35 40
0

1

2

3

4

5

6

L: SEGMENT LENGTHS

AVERAGE AND MAXIMUM DISTANCES

Main data
Asymmetric part

10 15 20 25 30 35 40
0.64

0.68

0.72

0.76

0.8

0.84

0.88

L: SEGMENT LENGTHS

CLASS SEPARABILITY: J
sep

Main data
Asymmetric part

10 15 20 25 30 35 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L: SEGMENT LENGTHS

NON−EUDLIDEAN: J
eigM

Main data
Asymmetric part

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L: SEGMENT LENGTHS

NON−EUDLIDEAN: J
eigS

Main data
Asymmetric part

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L: SEGMENT LENGTHS

NON−METRIC: Jγ

Main data
Asymmetric part

10 15 20 25 30 35 40
10

0

10
2

10
4

10
6

L: SEGMENT LENGTHS

NON−METRIC: J
ineq

Main data
Asymmetric part

Fig. 4. Indices characterizing dissimilarity data.
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Fig. 5. Chicken data. Average (over 50 runs) 2-fold cross-validation errors for four
values of L. Errors referring to the same classifier are connected by lines to enhance
the visibility. The standard deviations of the average errors are 0.002 on average and
the maximum of 0.003 for all classifiers.

back (61), and breast (96); see Fig. 3. The edges of the pieces are approximated
by straight line segments of a fixed length L, L = 10, 20, 30, 40. Since the pieces
are placed in arbitrary positions and mirror symmetry occurs, the initial string
representation is by a sequence of angles between the neighboring segments.
Then the edit distance is computed with fixed insertion and delation costs C = 45



(degrees) and a substation cost of the absolute difference between the angles; see
[17]. Since the distances are asymmetric, we make them symmetric by averaging,
i.e. Ds = ((dij +dji)/2). Additionally, we analyze the remaining asymmetric part
by considering the (symmetric) representation Da = (|(dij − dji)/2|).

The dissimilarity data are characterized by the indices described before, and
illustrated in Fig. 4. We can observe that the average dissimilarities decrease
with growing L. The smaller L, the larger maximal distances. None of the dis-
similarity data set has a Euclidean behavior. Concerning the main data (Ds), the
separability improves or remains constant, and the deviation from the Euclidean
and non-metric behavior increases, both with the increase of L. Concerning Da,
with the increase of L, the separability improves, and the deviation from the
Euclidean and non-metric behavior slightly decreases, but it is still huge.

In our study we perform 50 runs of 2-fold cross-validation on Ds and Da,
respectively, and average out the final results. In each cross-validation, all dis-
similarities are additionally scaled by

√
|T | to avoid too large values, and the

errors are weighted by prior probabilities. The following classifiers are used: the
1-NN and k-NN rules directly applied to the dissimilarity complete representa-
tion Da/s(T, T ) (k is optimized in LOO approach), edited-and-condensed nearest
neighbor (CNN), µ-LPM (µ = max{0.01, 1.3·NN-LOO-err}, auc-LPM (with the
trade-off parameter set to 20) [16], NSQLC and RNQC with κ = 0.05. The later
is used in both pseudo-Euclidean spaces and in dissimilarity spaces. Additionally,
the NSQLC is trained on the representation sets determined by µ-LPM and auc-
LPM, and denoted as NSQLC(µ) and NSQLC(auc). Remember that the LPMs
and the NSQLC determine R ⊂ T and that all multi-class linear classifiers are
derived in the one-against-all strategy. More results can be seen in [17].

The classification results for Ds and Da are shown in Fig. 5. We observe that
the performances of all classifiers trained on main data (Ds) improve with the
increasing value of L up to L = 30 and then decreases. The NLSQC performs
the best or the second best, after the RNQC in dissimilarity spaces if L ≥ 30.
In total, however, nearly all objects are used for the representation. The RNQC
needs all training objects. Concerning the remaining asymmetric contribution
(Da), the classifiers generally improve with growing L. The 1-NN and k-NN
rules perform the best. The auc-LPM and the variants of the NLSQC are the
next best. Although the results are not very good, they indicate that some some
discriminative power is still present in the remaining (hence usually neglected
from the analysis) asymmetric part of the dissimilarity measure. How to make
use of this information remains open for future research.

5 Conclusions

Proximity representations offer a natural way for integrating qualitative knowl-
edge with quantitative learning methodologies. Clustering techniques and sta-
tistical classifiers can be constructed in vector spaces that represent proximity



information. They are competitive to the nearest neighbor approaches, indepen-
dently whether the measure is Euclidean or metric.
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