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Abstract. Regularities in the world are human defined. Patterns in the observed
phenomena are there because we define and recognize them as such. Automatic
pattern recognition tries to bridge the gap between human judgment and mea-
surements made by artificial sensors. This is done in two steps: representation
and generalization.
Traditional representations of real world objects to be recognized, like features
and pixels, either neglect possibly significant aspects of the objects, or neglect
their dependencies. We therefor reconsider human recognition and observe that it
is based on our direct experience of similarity or dissimilarity of objects. Using
these concepts, a pattern recognition system can be defined in a natural way by
a pairwise comparison of objects. This results in the dissimilarity representation
for pattern recognition.
An analysis of dissimilarity measures optimized for performance shows that they
tend to be non-Euclidean. The Euclidean vector spaces, traditionally used in pat-
tern recognition and machine learning may thereby be suboptimal. The causes
and consequences of the use of non-Euclidean representations will be discussed.
It is conjectured that human judgment of object differencesresult in these non-
Euclidean representations as object structure is taken into account.

1 Introduction

Pattern recognition is an intrinsic human ability. Even small children are able to do this
surprisingly well. Already at a very young age they can recognize subtle patterns in
the objects that surround them. During our whole life pattern recognition stays with
us and it constitutes implicitly a base for our judgement andbehavior. Scientists make
explicitly use of this human ability in their professional life.

Science usually starts with a categorization of the phenomena. The differences be-
tween the various pattern classes are, at least initially, defined by the human observer
based on his personal interest, e.g. following from the utility. Later they may explicitly
be related to observable properties.

The research area of automatic pattern recognition studiesthe design of systems
that are able to simulate this human ability. In some applications it is aimed to simulate
an expert, e.g. a medical doctor, performing a recognition task. The design is based on
an analysis of recognized examples and is guided by knowledge made explicit by the
expert for the observations he makes and possibly for the procedures he follows.



In order to learn from examples it is necessary to represent them such that they can
easily be compared. A statistical analysis of a set of examples (the training set) should
be possible in order to pave the ground for an appropriate assignment of the pattern
class to new examples. So we distinguish in this process two important steps:

Representation. In this first stage real world objects, observed by sensors, are repre-
sented such that the comparison with other objects is enabled. All available knowl-
edge about the objects, their properties and the pattern classes to be distinguished
should be used here.

Generalization. Using the representation, sets of objects (classes) or discriminant func-
tions between them are modeled from their statistics. This is based on statistical
estimators and machine learning procedures. The goal is to create the models in
such a way that the assignment of class membership of new, incoming objects is
facilitated (classification).

In the first of these two steps the emphasis is on the use of existing knowledge. In
the second step ’new’ knowledge is generated from observations (learning from exam-
ples). Occasionally however it happens as well that the representation is optimized by
observations and that additional knowledge is used during statistical modelling.

It is the purpose of this paper to discuss conditions and problems in obtaining good
representations. It will be shown that proper representations, in agreement with human
observations and judgements, may be in conflict with the demands for the next step, the
generalization. In some problems (and perhaps in many) sucha proper representation
is non-Euclidean, but the present set of generalization tools is based on the assumption
of an Euclidean space. Examples will be discussed as well as possibilities to solve this
problem.

2 The Representation Problem

The purpose of the representation is that it should enable use to compare sets or classes
of objects in a numerical way. It should be possible to build models for such a class or
to construct decision functions between classes. The dominant, favorite way in pattern
recognition is the vector space. Objects are represented aspoints in such a space and
operations on sets of points (classes of objects) result in functions that describe domains
for the classes or separation functions between them.

The multi-dimensional vector space representation enables the application of many
tools as developed in linear algebra, multi-variate statistics and machine learning. A
point of concern however is whether it pays respect to the objects and their relations.
If we want to learn from the representation of a set of objectsthat is given to us as
examples for the recognition (classification) of new objects then a demand is that a
small variation in one of the example objects should result in small variation in its
representation. If this is not the case, if the representation jumps in space, how can
we expect that we learn from the set of examples in terms of theconstruction of class
domains or separation boundaries?

This demand, the continuity of the variation in the representation as a result of a
variation in the object, is directly related to what is called in the early literature on
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pattern recognition ascompactness: classes of similar objects cover a finite domain
in the representation space. We reformulate the demand as: similar real world objects
should be similar in the representation.

Are similar representations thereby also related to similar objects? Not necessar-
ily. If two-dimensional objects like hand-written characters are represented by area and
perimeter then the representation is compact: small changes in the shape of a character
will result in small changes in area and perimeter. Objects with entirely different shapes
however may have the same area and perimeter and thereby the same representation.
An additional demand for representations, usually not fulfilled, is that similar represen-
tations should refer to similar objects. If this is the case,the representation is atrue
representation.

If the representation is not true entirely different objectmay be found close to each
other in the representation. They may even belong to different classes. This is the cause
of class overlap. Given the representation classes may not be fully separated anymore.
In spite of the fact that an expert observes essential differences and assigns them to dif-
ferent classes, they may be represented on the space place inthe representation space.
This can only be solved by statistics: this area in the space should be assigned to the pat-
tern class that is most probable. Consequently, it is neededto use statistics as probability
densities have to be measured.

We like to emphasize that the need of using statistics in pattern recognition is caused
by class overlap resulting from a non-true representation.If the representation would
have been a true representation then class differences observed by a human expert would
have been reflected in the representation and objects of different classes would not
have been represented on the same place. The intrinsic amount of class overlap, in
pattern recognition called the Bayes error, is the result ofthe representation. A different
representation will yield a different Bayes error. A true representation will result in a
zero Bayes error.1

3 Feature Representation

The feature representation has for a long time been the only vector representation used
in pattern recognition. It is still dominant and the vector spaces resulting from other
representations are still often called ’feature spaces’, neglecting their different origin.

Features are object properties that contribute in distinguishing classes. They are
defined or suggested by the experts that are also able to determine the true class mem-
bership (class label) of objects. For many problems it appears to be difficult to define
exactly what the feature are. For instance, doctors cannot always exactly defined what
should be measured in a lung X-ray or in a ECG signal for the recognition of some dis-
ease. Also in daily life it is for humans not easy to describe explicitly how to recognize
a particular person.

If an expert has a good knowledge about the physical background of a pattern class
he may well be able to define a small set of powerful features that can be used to

1 In this reasoning we neglect here the fact that some objects are ambiguous and can belong to
more than a single class, e.g. the digit ’0’ and the letter ’O’in some fonts. We also assumed
that the class labels are generated without any noise.
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construct a well performing recognition system. If he is hesitative however he may
supply long lists of possible measurements that might be used as features. Obtaining
many features is the result of a lack of knowledge. This should be compensated by
many, well labeled examples to be used by the pattern recognition analyst to train a
classification system and possibly to determine a small set of good features.

In application areas where many feature have been proposed,e.g. in OCR, optical
character recognition, this is the result of a lack of knowledge. We don’t know, in the
sense that we cannot make it explicit, how we recognize characters. Such applications
become only successful if large amounts of data become available to compensate this
lack of knowledge.

4 Pixel Representation

If good features cannot be found for objects like images, time signals and spectra, an
obvious alternative is to take everything: just to sample the object. For images these are
the pixels and we will use that word for the resulting representation: the pixel represen-
tation. It has the advantage that it still contains everything, seemingly no information is
lost (see below for a discussion), but it is not specific. Manypixels may be needed to
generate a good result.

In the above mentioned OCR application area, a break-through was established
when pixel representations became possible due to the availability of large datasets
and big and fast computers to handle them. OCR systems are usually based on a com-
bination of many approaches, including pixel based ones.

There is a paradox related to this development. High resolution images yield high di-
mensional vector spaces resulting from the pixel representation. To build classification
systems for such spaces many examples (large training sets)are needed. For a given,
limited size of the training set, it may be better (yielding ahigher performance) to re-
duce the dimensionality by taking less pixels, e.g. by sub-sampling the images. This
is entirely different from the human recognition. It is certainly not true that the human
recognition is improved by the use of low-resolution images. This points to a possible
defect of this whole approach: the representation and/or the classification schemes used
in it are not appropriate.

What is definitely wrong with the pixel representation is that the pixel connectivity,
the relations between neighboring pixels in the image, is lost. From the representation
it cannot be retrieved anymore which axes that participate in constituting the space
correspond to neighboring pixels. We have cut the objects inpieces, have put them on
a heap and we try now to use this heap for recognizing the object. In other words, we
have lost ourselves in many minor details and the sight on theentire object is completely
gone. This has already been observed and discussed extensively by Goldfarb [1].

5 Structural Representations

An approach to pattern recognition that definitely respectsthat objects should be con-
sidered in their entirety and that it takes into account thatit is dangerous to break them
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down in unrelated sets of properties is structural pattern recognition. Unfortunately, this
approach does not produce a vector space, but represents objects by strings or graphs.

Generalization from sets of strings or graphs has been done for a long time by
template matching. E.g. a dissimilarity measure between graphs is defined and by the
resulting graph match procedure new objects are classified to the class of the object
with the most similar graph. Much work has been done on the improvement of the rep-
resentation as well as on the matching procedure. Classification itself relied for a long
time just on template matching, corresponding to the nearest neighbor rule in statistical
pattern recognition.

6 Dissimilarity Representation

Between the above representations clearly a gap can be observed. For vector spaces very
nice sets of tools are available to describe class domains orto construct classification
functions. The feature and pixel representations however that apply such vector spaces
suffer from the fact that they describe the objects just partially, resulting in strong class
overlap, or cut them entirely in pieces by which their structure is lost. The structural
representations respect object structure but fail to construct a good representation space
for which a broad collection of tools is available.

The dissimilarity representation [2] tries to bridge this gap. It takes the pairwise
dissimilarities as found in the matching procedures of structural pattern recognition and
uses them to construct a vector space in which every object isrepresented as a point.
Instead of template matching now classifiers in such vector spaces can be considered.
The two main approaches to construct a vector space from a given set dissimilarities,
the dissimilarity matrix, will be shortly treated. There are many references that describe
these in mathematical terms, e.g. [2],[3].

6.1 The Dissimilarity Space

In the first approach the dissimilarity matrix is consideredas a set of row vectors, one
for every object. They represent the objects in a vector space constructed by the dissim-
ilarities to the other objects. Usually, this vector space is treated as a Euclidean space.

If there arem objects given to construct the space, then each of them is given by
m dissimilarities (including the dissimilarity with itself, usually zero). The initial dis-
similarity space is thereby given as am-dimensional vector space withm objects in it.
This is a degenerate situation in which many classifiers yield bad results due to over-
training or the the curse of dimensionality [4]. Some classifiers like the SVM can still
produce good results in this situation, but for many it may bebetter either to fill the
space with more objects, or to reduce the dimensionality, e.g. by some procedure for
prototype selection or feature selection (which coincideshere). Even random selection
of objects works well as nearby objects are similar and a random selection produces
some sampling of total set.

The result is a vector space built by a so called representation set of objects and
which is filled by an appropriate training set. The standard tools of statistical pattern
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recognition can be used to construct classifiers. New objects are mapped into the space
by just measuring their dissimilarities to the representation set.

It should be realized that the Euclidean distances between objects in the dissimilar-
ity space are only in very special cases identical to the given dissimilarities. In general
they are different. However, it is expected that almost identical object have very similar
dissimilarities to all representation objects, so they will be very close in the dissimilarity
space and have thereby a small distance. Consequently the dissimilarity representation
is compact. If the dissimilarity measure that is used is appropriate then the reverse is
also true: different objects will have different dissimilarities to the representation ob-
jects under the condition that this set is sufficiently largeand well distributed over the
domain of objects. The dissimilarity representation has thereby the potential to be a true
representation.

6.2 Embedding the Dissimilarity Matrix

In the second approach, an attempt is made to embed the dissimilarity matrix in a Eu-
clidean vector space such that the distances between the objects in this space are equal to
the given dissimilarities. This can only be realized error free, of course, if the original set
of dissimilarities are Euclidean themselves. If this is notthe case, either an approximate
procedure has to be followed or the objects should be embedded into a non-Euclidean
vector space. This is a space in which the standard inner product definition and the re-
lated distance measure are changed (among others, resulting in indefinite kernels). It
appears that an exact embedding is possible for every symmetric dissimilarity matrix
with zeros on the diagonal. The resulting space is the so-called pseudo-Euclidean space.

The pseudo-Euclidean space consist of two orthogonal subspaces, a ’positive’ sub-
space and a ’negative’ subspace. Every object has a representation in both subspaces.
Both subspaces are normal Euclidean spaces. The squared distance between two ob-
jects represented in the pseudo-Euclidean space has to be determined by subtracting the
squared distances between their representations in the twosubspaces instead of adding
them is in a ordinary Euclidean space. The negative subspacecan be considered as a
correction of the given dissimilarities w.r.t. proper Euclidean distances.

Many of the dissimilarity measures used in the pattern recognition practice appear
to be indefinite: they cannot be understood as distances in a Euclidean vector space,
they are sometimes even not metric and they do not satisfy theMercer conditions that
are needed for optimizing the SVM classifier.

A small but growing number of classifiers can be trained in thepseudo-Euclidean
space [5], but a general toolbox is certainly not yet available. For this reason and others
Euclidean corrections are studied: ways to transform the given dissimilarity matrix or
the pseudo-Euclidean embedding in such a way that an Euclidean vector space is con-
structed that is as close as possible to the original. This iscertainly useful if the cause of
the non-Euclidean characteristic of the data is non-informative, i.e. that it is unrelated
to the class differences. Measurement noise and approximate optimizations in deter-
mining the dissimilarities may result in non-Euclidean relations between objects. Such
noise may be removed by Euclidean corrections. In case, however, the non-Euclidean
characteristics are informative Euclidean corrections will deteriorate the performance.
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Fig. 1. Illustration of the difference between Euclidean, metric,but non-Euclidean and non-metric
dissimilarities. If the distances between the four points A, B, C and D are given as in the left plot
then an exact 2-dimensional Euclidean embedding is possible. If the distances are as given as
in the middle plot, the triangle inequality is obeyed. So thegiven distances are metric. but no
isometric Euclidean embedding exist. The distances in the right plot are non-Euclidean as well as
non-metric.

In the present state-of-the-art the dissimilarity space has to be preferred over embed-
ding combined with corrections. It is from a computational point much more feasible
and it does not suffer from non-Euclidean problem. The dissimilarity space however,
treats dissimilarities as properties and neglects their distance character. For that reason
research into embedding approaches continuous from the perspective that may preserve
better the information contained in the dissimilarity measurements.

7 The non-Euclidean World of Human Pattern Recognition

In [6] we extensively studied the causes of the non-Euclidean characteristics of many
real world datasets. We will summarize some results here andthen discuss this topic
from a slightly shifted point of view in order to gather support for our main conjecture.

In fig. 1 the difference between non-metric and non-Euclidean distances is illus-
trated. Distances can be metric and still non-Euclidean. Non-metric relations constitute
a strong example of non-Euclidean relations, but if the distances are metric it is still
very well possible that the distances between more than three points do not fit in a Eu-
clidean space. In fact this is very common. In many applications the analyst defines
a distance measure that is metric while he demands that the direct distance between
objects is always smaller than any detour.2.

It is not always possible to avoid non-metric relations. Suppose we have to define
a dissimilarity measure between real world objects like (images of) cups. They may
be observed from different orientations, having differentsizes that should not result in
contributions to the dissimilarity as they are invariants for the class memberships. So in
a pairwise comparison transformations for all orientations and sizes are considered and
the smallest dissimilarity that is found is defined as the correct one, made insensitive

2 For local consistency we used in this example everywhere theword ’distance’ instead of dis-
similarity. On other place again ’dissimilarity’ will be used to emphasized that we are dis-
cussing distance-like relations that are possibly sloppy defined
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Fig. 2. Vector space with the invariant trajectories for three objectsO1, O2 andO3. If the chosen
dissimilarity measure is the minimal distance between these trajectories, triangle inequality can
easily be violated, i.e.d(O1, O2) + d(O1, O3) < d(O1, O3).

for the invariants. In other pairwise comparisons this process is repeated for other pairs
of cups. Observed in some high-dimensional parameter spacea situation as sketched in
fig. 2 may exist, showing that in case the transformations forremoving the invariants
are non-linear the triangle inequality may be violated.

Another example is given in fig. 3 which illustrates how an artificial dataset has
been generated that we used for studying non-Euclidean data. In a multi-dimensional
cube two sets of non-overlapping balls are positioned at random. The balls in the two
sets have different radii. Their values are assumed to be unknown For every ball all
distances to all other balls are measured from surface to surface. We asked ourselves
the question whether it is possible to distinguish the two sets, e.g. can we determine
whether an arbitrary ball belongs to the class of large ballsor to the class of small balls
if we just measure the distances as defined and if the labels ofall other balls are given.
This appears to be possible making use of the negative part ofthe pseudo-Euclidean
space. If this is not given it is impossible. The surprising result was that if the positive
part is neglected and just the negative part is given it is still possible, even much better.

This example makes clear how we may interpret the negative subspace of the pseudo-
Euclidean space. If all balls would have had zero radii then we just had a collection of
proper Euclidean distances. Because the balls have a size the given distances are some-
what shorter. A small value is missing and as a result the negative subspace is needed
as a compensation. To phrase it somewhat poetic: as the objects have an inner life that
cannot directly be observed, but that influences the measured dissimilarities, we end up
with non-Euclidean data.

Let us now return to recognition problems for which feature are difficult to define,
like characters and medical images. Euclidean distances can be defined for such objects,
e.g. by putting them on top of each other and adding the squared differences pixel by
pixel. Researchers trying to improve this create differentdissimilarity measures, e.g.
by a non-linear deformation of the pixel grid, see [7]. They thereby try to simulate the
human way of observing objects implicitly, as they aim to improve the performance of
the automatic recognition system such that it approximatesthe human recognition. This
is done by deviating from the Euclidean distance measure.
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Fig. 3. Illustration of an artificial experiment in which sets of balls with different radii are distin-
guished by the distances between their surfaces.

There are many examples in the literature of non-Euclidean dissimilarity measures
[2]. In particular in relation with shape recognition the dissimilarity approach using
such measures produces good results. This brings us to the following conjecture:

The way humans judge differences between real world objects is non-Euclidean.
This is caused by the fact that they include object structure next to object features.

The above mentioned ’inner life’ of objects is thereby identified as structure.

8 Discussion and Conclusion

For the recognition of real world objects measured by images, time signals and spectra,
simple features or samples may not be sufficient. They neglect the internal structure of
objects. Structural descriptions like graphs and strings lack the possibility of the use of
an appropriate vector space. The dissimilarity representation bridges this gap, but has
thereby to be able to deal with non-Euclidean dissimilarities. We conjecture that this
deviation from the Euclidean distance measure is caused by the inclusion of structure
in the human judgement of object differences which is lacking in the traditional feature
representations.
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