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Abstract

In this paper, a classification task on dissimilarity representations is considered. A traditional way to discriminate

between objects represented by dissimilarities is the nearest neighbor method. It suffers, however, from a number of

limitations, i.e., high computational complexity, a potential loss of accuracy when a small set of prototypes is used and

sensitivity to noise. To overcome these shortcomings, we propose to use a normal density-based classifier constructed

on the same representation. We show that such a classifier, based on a weighted combination of dissimilarities, can

significantly improve the nearest neighbor rule with respect to the recognition accuracy and computational ef-

fort. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The challenge of automatic pattern recognition
is to develop computer methods which learn to
distinguish among a number of classes repre-
sented by examples. First, an appropriate repre-
sentation of objects should be found. Then, a
decision rule can be constructed, which discrimi-
nates between different categories and which is able
to generalize well (achieve a high accuracy when
novel examples appear). One of the possible rep-
resentations is based on similarity or dissimilarity
relations between objects. When properly defined,

it might be advantageous for solving class identifi-
cation problems. Such a recommendation is sup-
ported by the fact that (dis)similarities can be
considered as a connection between perception and
higher-level knowledge, being a crucial factor in
the process of human recognition and categoriza-
tion (Goldstone, 1999; Edelman, 1999; Wharton
et al., 1992).

In contrast to this observation, objects are
conventionally represented by characteristic fea-
tures (Duda et al., 2001). In some cases, however,
a feasible feature-based description of objects
might be difficult to obtain or inefficient for
learning purposes, e.g., when experts cannot define
features in a straightforward way, when data
are high dimensional, or when features consist
of both continuous and categorical variables.
Then, the use of dissimilarities, built directly on

Pattern Recognition Letters 23 (2002) 943–956

www.elsevier.com/locate/patrec

*Corresponding author. Tel.: +31-15-278-1845; fax: +31-15-

278-6740.

E-mail address: ela@ph.tn.tudelft.nl (E. Pezkalska).

0167-8655/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8655 (02 )00024-7



measurements, e.g., based on template matching,
is an appealing alternative. Also, in some appli-
cations, e.g., 2D shape recognition (Edelman,
1999), the use of dissimilarities makes the problem
more viable.

The nearest neighbor method (NN) (Cover
and Hart, 1967) is traditionally applied to dis-
similarity representations. Although this decision
rule is based on local neighborhoods, i.e., one or
a few neighbors, it is still computationally ex-
pensive, since dissimilarities to all training ex-
amples have to be found. Another drawback is
that it potentially decreases its performance
when the training set is small. To overcome such
limitations and improve the recognition accu-
racy, we propose to replace this method by a
more global decision rule. Such a classifier is
constructed from a training set represented by
the dissimilarities to a set of prototypes, called the
representation set. If this set is small, it has the
advantage that only a small set of dissimilarities
has to be computed for its evaluation, while it
may still profit from the accuracy offered by a
large training set.

Throughout this paper, all our investigations
are devoted to dissimilarity representations, as-
suming that no other representations (e.g., fea-
tures) are available for the researcher. The goal
of this work is to propose a novel, advantageous
approach to learn only from dissimilarity (dis-
tance) representations, dealing with classification
problems in particular. Our experiments will
demonstrate that the tradeoff between the rec-
ognition accuracy and the computational effort
is significantly improved by using a normal
density-based classifier built on dissimilarities
instead of the NN rule. This paper is organized
as follows. In Section 2, a more detailed de-
scription of dissimilarity representations and the
decision rules considered are given. Section 3
describes the datasets used and the experiments
conducted. The results are discussed in Section 4
and the conclusions are summarized in Section
5. The essential idea of this paper has been
published in Electronic Letters (Pezkalska, 2001).
Some earlier elements of the presented research
can be found in (Duin et al., 1999; Pezkalska and
Duin, 2000).

2. Learning from dissimilarities

To construct a classifier on dissimilarities, the
training set T of size n (having n objects) and the
representation set R (Duin, 2000) of size r will be
used. R is a set of prototypes covering all classes
present. R is chosen to be a subset of T (R � T ),
although, in general, R and T might be disjunct. In
the learning process, a classifier is built on the
n� r distance matrix DðT ;RÞ, relating all training
objects to all prototypes. The information on a set
S of s new objects is provided in terms of their
distances to R, i.e., as an s� r matrix DðS;RÞ.

2.1. Nearest neighbor method

A straightforward approach to dissimilarity
representations leads to the nearest neighbor rule
(Cover and Hart, 1967; Fukunaga, 1990) or more
generally to instance-based learning (Aha et al.,
1991). Such classifiers make use of distance infor-
mation in a rank-based way. The NN rule, in its
simplest form, i.e., 1-NN rule, assigns a new object
to the class of its nearest neighbor from the rep-
resentation set R by finding minima in the rows of
DðS;RÞ. The k-NN decision rule is based on ma-
jority voting: an unknown object becomes a
member of the class the most frequently occurring
among the k-NN.

2.2. Normal density-based linear/quadratic classifi-
ers

The novelty of our approach relies on inter-
preting distances as a representation of a dissimi-
larity space. In particular, DðT ;RÞ is treated as a
description of a space where each dimension cor-
responds to the distance to a prototype. In general,
Dðx;RÞ defines a vector consisting of r distances
found between the object x and all the objects in
the representation set R, i.e., if R ¼ fp1; . . . ; prg,
then Dðx;RÞ ¼ ½Dðx; p1Þ; . . . ;Dðx; prÞ	T. Therefore,
Dð
;RÞ is seen as a mapping onto an r-dimensional
dissimilarity space. In this convention, neither x
nor R refers to points in a feature space, instead
they refer to the objects themselves. The advantage
of such a representation is that any traditional
classifier operating on feature spaces can be used.
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Moreover, it can be optimized by using training
sets larger than the given representation set. This
does not complicate the decision rule, but does
increase its accuracy.

The choice of Bayesian classifiers (Fukunaga,
1990) assuming normal distributions, is a natural
consequence of the central limit theorem (CLT)
applied to dissimilarities. It is supported by the
observation that most of the commonly-used dis-
similarity measures, e.g., Euclidean distance or
Hamming distance, are based on sums of differ-
ences between measurements. The CLT states that
the sum of random variables tends to be normally
distributed in the limit, provided that none of the
variances of the sum’s components dominates.
Therefore, summation-based distances (built from
many components) tend to be approximately
normally distributed, which suggests that Bayesian
classifiers, i.e., the (R)LNC/(R)QNC, (Regular-
ized) Linear/Quadratic Normal density-based
Classifier (Ripley, 1996), should perform well in
dissimilarity spaces. For a 2-class problem, the
LNC based on the representation set R is given by

f ðDðx;RÞÞ ¼ Dðx;RÞ
�

� 1

2
ðmð1Þ þmð2ÞÞ

�T
C�1

�ðmð1Þ �mð2ÞÞ þ 2 log
Pð1Þ
Pð2Þ

ð1Þ

and the QNC is given by

f ðDðx;RÞÞ

¼
X2

i¼1

ð�1ÞiðDðx;RÞ �mðiÞÞTC�1
ðiÞ ðDðx;RÞ �mðiÞÞ

þ 2 log
Pð1Þ
Pð2Þ

þ log
jCð2Þj
jCð1Þj

; ð2Þ

where C is the sample covariance matrix, Cð1Þ and
Cð2Þ are the estimated class covariance matrices,
and mð1Þ and mð2Þ are the mean vectors, all found in
the dissimilarity space DðT ;RÞ. Pð1Þ and Pð2Þ are the
prior probabilities. When C becomes singular, its
inverse cannot be computed, therefore the regu-
larized version is used (Ripley, 1996), resulting in
the RLNC. When the regularization is used in case
of the QNC, the resulting classifier becomes the
RQNC.

2.3. Nearest neighbor versus normal density-based
classifiers

The NN rule can learn complex boundaries and
generalizes well for large training sets. Asympto-
tically, its recognition error is bounded from above
by twice the Bayes error (the smallest error possi-
ble) (Cover and Hart, 1967). In practice, however,
it is often difficult to get a sufficiently large set R to
reach such an accuracy. Another drawback of the
NN method is that the classification results may be
affected by the presence of noisy prototypes.
Therefore, other discrimination functions, such as
the RLNC/RQNC, might be more advantageous
on dissimilarity representations (Pezkalska and
Duin, 2000; Duin et al., 1999), especially when the
number of prototypes is small. They may perform
much better since they become less local in their
decisions by operating on larger training sets. By
using weighted combinations of dissimilarities,
they suppress the influence of noisy prototypes as
well.

Since training can be done off-line, here we are
only concerned with the computational effort
needed for an evaluation of a novel object. Given r
prototypes in the representation set, the complex-
ity of the RLNC is OðrÞ (products and sums),
while the RQNC is Oðr2Þ. The 1-NN rule requires
OðrÞ comparisons while of the k-NN rule needs at
least OðrÞ and at most Oðr logðrÞÞ comparisons.
Thereby, the k-NN rule might seem to be prefer-
able. However, our point in this paper is that the
k-NN method requires more prototypes than the
RLNC/RQNC to reach the same accuracy (see
Section 4). Since the cost of computing dissimi-
larities is very high (dissimilarities are beneficial
for data described by a large amount of measure-
ments, i.e., images, signals, spectra), we consider
the number of prototypes being crucial for judg-
ing the computational complexity. Therefore, we
claim that the RLNC can improve the k-NN
rule with respect to the recognition accuracy
and computational effort. The same holds for
RQNC if the representation set is not very large,
depending on the effort needed for computing
dissimilarities.

The difference between the two approaches
can be briefly summarized as follows: the k-NN
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rule (as used here) operates directly on the indi-
vidual dissimilarities, while the RLNC/RQNC
is defined for the representation spaces DðT ;
RÞ, treating dissimilarities as input features (see
Fig. 1).

3. Datasets and the experimental set-up

A number of experiments is conducted to
compare the results of the k-NN rule and the
RLNC/RQNC built on dissimilarities. They are

designed to observe and analyze the behavior of
these classifiers in relation to different sizes of the
representation and training sets. Smaller repre-
sentation sets are of interest, because of lower
complexity for representation and evaluation of
new objects. This is important for the storage
purposes, as well as for the computational aspect.
Our concern is then how much can be gained by
using a smaller representation set and a larger
training set.

Three datasets, described in Table 1, are stud-
ied: two versions of the NIST digit sets (Wilson

Fig. 1. The k-NN rule and the RLNC/RQNC on a dissimilarity representation.

Table 1

Datasets used in experiments

Pixel-based digit Contour digit Chromosome band

Dimensionality 16 � 16 normalized 64 � 64 resampled 20–100

# Classes 10 10 24

# Objects per class 200 200 60

# Objects of a design set L 1000 1000 720

# Objects of a testing set S 1000 1000 720

Dissimilarity measure Euclidean Modified Hausdorff DNA-difference
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and Garris, 1992), 10 classes each, and the small
part of the chromosome band profiles (Houtepen,
1994; Houtepen and Duin, 1994; Houtepen and
Vossepoel, 1994), consisting of 24 classes. We used
the following summation-based dissimilarity mea-
sures. The Euclidean distance on a blurred version
of the digit dataset, the modified-Hausdorff dis-
tance (Dubuisson and Jain, 1994) on a contour
representation of the same set and a DNA differ-
ence measure on the chromosome banding pro-
files. Since, for digits and chromosome bands, no
natural features arise from the application, con-
structing dissimilarities is an interesting possibility
to deal with such recognition problems. The
modified-Hausdorff distance measures the differ-
ence between two sets (here two contours) A ¼
fa1; . . . ; agg and B ¼ fb1; . . . ; bhg and is defined as
maxðhðA;BÞ; hðB;AÞÞ, where hðA;BÞ ¼ ð1=gÞ�P

a2A minb2B ka� bk. All chromosome band pro-
files, given in 20–100 samples per profile, are first
normalized by scaling the integrated density to a
constant value relating to the DNA-content. Then,
for each profile, the intensity values correspond-
ing to the fixed percentages of the DNA-content
create a vector. The Euclidean distance between
such vectors describes the dissimilarity measure
used, called here as the DNA-difference (see
Fig. 2).

The experiments are performed 25 times for
randomly chosen training and testing sets for each
dataset under investigation. In a single experiment,

each dataset is randomly split into two equal-sized
sets: the design set L and the testing set S. L serves
for obtaining both the representation set R and the
training set T. After R is chosen, a number of
training sets of different sizes is then considered.
First, T is set to be equal to R and then it is
gradually enlarged by adding random objects until
it becomes L.

3.1. Selection of the representation set

There exists a number of ways to select the
representation set R from the design set L. Here,
we do not study the best possible set R for the
given problem. Instead, we focus on illustrating
the usefulness of our approach. Therefore, only
three criteria are considered, referred to as: ran-
dom, most-dissimilar (MD) and condensed near-
est neighbor (CNN). The first two methods work
on each class separately. The random method is
based on a random selection of objects. The MD
criterion selects objects which differ the most from
each other. It starts from a randomly chosen ob-
ject and then keeps adding new ones which are the
most dissimilar to all objects already chosen.
Summarizing, in a single experiment, initially, a
subset of the design set L is used for representa-
tion. Then, it is increased gradually by adding new
objects according to the given criterion, until it is
equivalent to the complete set L. In this way a
number of representation sets of different sizes can
be studied.

The CNN criterion is based on the condensed
nearest neighbor method (Hart, 1968; Devijver
and Kittler, 1982) developed to reduce the com-
putational effort of the 1-NN rule. The CNN
method finds a subset of the training set so that
the 1-NN rule gives a zero error when tested on
the remaining objects. Here, the representation
set R becomes the condensed set found on the
design set L. In contrast to the other selections,
the size of R is fixed in a single experiment and
determined by the method itself. However, since
the training sets differ in all experiments, the
number of prototypes may vary. Therefore, the
size of R is averaged over all runs when reported in
Tables 2–4.

Fig. 2. The DNA-difference distance. First, chromosome band

profiles are scaled such that the integrated density is constant.

Then, a number of fixed percentages of the DNA-content (e.g.,

15%) is considered and the corresponding intensity values

(marked by circles) create vectors, for which Euclidean distance

is computed. The dashed lines indicate the correspondence be-

tween intensity values of two profiles.
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3.2. Regularization of the normal density-based
classifiers

The RLNC/RQNC (Ripley, 1996), assuming
normal distributions with equal or different class

covariance matrices, respectively, is built for dif-
ferent training sets. The regularized versions are
used to prevent the estimated covariance matrices
from being singular (when, e.g., n, the size of
T, approaches r, the size of R, for the RLNC).

Table 3

Averaged generalization error (with its standard deviation) of the k-NN rule and the RLNC/RQNC for the contour digit dataset and

three selection methods of R

rc k-NN RLNC RQNC

Random

10 24.4 (0.4) 21.3 (0.3) 11.1 (0.2) 34.9 (0.8) 8.0 (0.2)

20 17.1 (0.2) 15.6 (0.3) 9.8 (0.2) 21.2 (0.5) 7.4 (0.2)

50 10.6 (0.2) 10.3 (0.2) 9.0 (0.2) 9.9 (0.2) 7.2 (0.2)

70 8.9 (0.1) 9.2 (0.2) 8.7 (0.2) 8.2 (0.2) 7.2 (0.2)

90 7.9 (0.2) 8.5 (0.2) 8.2 (0.2) 8.2 (0.2) 8.3 (0.2)

Most-dissimilar

10 40.0 (0.4) 26.8 (0.6) 11.3 (0.2) 29.0 (0.8) 7.5 (0.2)

20 31.4 (0.5) 20.0 (0.4) 9.8 (0.2) 16.4 (0.3) 7.0 (0.2)

50 16.4 (0.3) 10.5 (0.2) 8.9 (0.1) 9.1 (0.2) 7.0 (0.2)

70 10.8 (0.2) 8.5 (0.1) 8.9 (0.2) 8.2 (0.2) 7.0 (0.2)

90 8.2 (0.2) 8.2 (0.2) 8.3 (0.2) 8.2 (0.2) 8.3 (0.2)

rc 1-NN RLNC RQNC

CNN

24 12.8 (0.2) 12.6 (0.3) 9.5 (0.2) 12.3 (0.4) 6.8 (0.2)

The RLNC/RQNC errors presents the worst (left column) and the best (right column) results, depending on the training size, achieved

for the fixed rc.

Table 2

Averaged generalization error (with its standard deviation) of the k-NN rule and the RLNC/RQNC for the pixel-based digit dataset

and three selection methods of R

rc k-NN RLNC RQNC

Random

10 17.5 (0.4) 15.6 (0.3) 8.6 (0.1) 19.0 (0.5) 4.4 (0.1)

20 12.5 (0.3) 10.2 (0.1) 7.1 (0.1) 10.3 (0.2) 4.6 (0.1)

50 8.3 (0.2) 6.6 (0.2) 5.5 (0.1) 5.6 (0.2) 4.7 (0.1)

70 7.1 (0.2) 5.8 (0.1) 5.1 (0.1) 5.0 (0.1) 4.6 (0.1)

90 6.4 (0.1) 5.1 (0.1) 5.0 (0.1) 4.6 (0.1) 4.6 (0.1)

Most-dissimilar

10 34.2 (0.5) 21.3 (0.6) 7.9 (0.2) 24.3 (0.6) 4.7 (0.1)

20 25.9 (0.4) 12.1 (0.4) 6.2 (0.1) 12.3 (0.4) 5.3 (0.1)

50 12.4 (0.2) 6.0 (0.1) 5.1 (0.1) 5.3 (0.1) 4.5 (0.2)

70 8.4 (0.2) 5.2 (0.1) 4.9 (0.1) 4.9 (0.1) 4.3 (0.1)

90 6.3 (0.1) 4.9 (0.1) 4.9 (0.1) 4.6 (0.1) 4.4 (0.1)

rc 1-NN RLNC RQNC

CNN

20 10.6 (0.2) 8.5 (0.2) 5.7 (0.1) 8.7 (0.4) 4.6 (0.1)

The RLNC/RQNC errors presents the worst (left column) and the best (right column) results, depending on the training size, achieved

for the fixed rc.
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Regularization takes care that the inverse opera-
tion is possible (necessary to build the classifiers)
by emphasizing the variances of the sample co-
variance matrix with respect to the off-diagonal
elements.

When T is about the size of R, the estimation of
the covariance matrices is poor and a relatively
large regularization should be used. In such cases,
different regularizations may significantly influence
the performance of the RLNC/RQNC. For suffi-
ciently large training sets, these matrices are well
defined and no regularization is needed. In our
experiments, the regularization parameters are
chosen to be fixed values. Since they are not op-
timized, the presented results are not the best
possible. For instance, C is regularized as Creg ¼
ð1� kÞC þ k diagðCÞ, where diagðCÞ is a diagonal
matrix consisting of the main diagonal of C and k
is at most 0:01 for training sets slightly larger than
representation sets and becomes zero for larger
training sets.

3.3. The algorithm

The algorithm in a single experiment with the
random or most-dissimilar selection of the repre-
sentation set is schematically presented below:

define the design set L

define the testing set S

define a vector r_R of the sizes for

the representation set R

for i¼1 to length(r_R) do

select the set R of size r_R(i) ac-

cording to a selection method

determine k for the k-NN method

error_k-NN(i)¼TEST (k-NN,

D(S,R))

for z¼i to length(r_R) do

choose the training set T of size

r_R(z) such that

T¼R+objects randomly selected

(per class) from L-R

TRAIN (RLNC/RQNC, D(T,R))

error_RLNC/RQNC(i,z)¼TEST

(RLNC/RQNC, D(S,R))

end

end

In case of the k-NN rule, we studied the
following fixed choices of k: 1, 3, 5, 7 or 9. Addi-
tionally, we tried to optimize k via the leave-one-
out procedure on the DðT ; T Þ. However, the k
determined was always found to be one of the fixed,
odd k mentioned above. For both digit sets, the
best k-NN test results are found for k ¼ 1 or 3,
while for the chromosome data, k equals 7 or 9. An
example of the behavior of the generalization error
as a function of k is given in Fig. 6. Due to the small
sample size of the training set, large neighborhood
sizes perform bad as they average out significant
details. In the experiments below we will report
only the best test results for the studied values of k.
In case of the RLNC/RQNC, the training stage is
used for determining the sample covariance ma-
trices and the mean vectors in the dissimilarity
space DðT ;RÞ, as presented in formulas (1) and (2).

Since for the CNN criterion the size of the set R
is determined by the procedure, the outer loop in
the above given scheme is superfluous. Another
difference relates to the choice of training sets.
Here, the classes are likely to be unequally present
in such a set R, therefore the training set is con-
structed from R by adding objects, but now ran-
domly selected from all the remaining examples in
L. The generalization errors for each selection

Table 4

Averaged generalization error (with its standard deviation) of

the k-NN rule and the RLNC for the chromosome band dataset

and three selection methods of R

rc k-NN RLNC

Random

10 30.4 (0.4) 25.3 (0.3) 21.0 (0.3)

15 27.1 (0.3) 23.3 (0.3) 20.8 (0.3)

20 25.6 (0.3) 21.7 (0.2) 20.7 (0.2)

25 24.6 (0.3) 21.0 (0.2) 20.5 (0.2)

Most dissimliar

10 47.9 (0.9) 28.0 (0.3) 20.4 (0.2)

15 36.0 (0.6) 22.8 (0.2) 20.1 (0.2)

20 28.8 (0.4) 20.8 (0.2) 20.2 (0.2)

25 25.2 (0.3) 20.3 (0.3) 20.2 (0.2)

rc 1-NN RLNC

CNN

15 30.9 (0.5) 22.2 (0.3) 20.5 (0.3)

The RLNC/RQNC errors presents the worst (left column) and

the best (right column) results, depending on the training size,

achieved for the fixed rc.
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method are averaged over the repeated experi-
ments and serve to create all figures presented in
this paper.

4. Results

The generalization error rates of the k-NN rule
and the RLNC/RQNC for three datasets are pre-
sented in Figs. 3–5. The k-NN results, marked by
stars ‘�’, are presented on the rc ¼ nc line. The

results depend either on the random selection of
the representation set (left subplots) or on the MD
criterion (right subplots). Since, the k-NN results
are worse in case of the MD selection, the k-NN
results always refer to the random selection (also
in right subplots). The RLNC’s (RQNC’s) curves
are lines of constant classification error relating
the sizes of the representation and training sets.
Since all classes are equally sized (i.e., the priors
PðiÞ ¼ 1=c if c is the number of classes in formula
(1)) for both the representation set and the training

Fig. 3. Averaged generalization error of the RLNC/RQNC (top/bottom row) and the k-NN rule (indicated by stars) for the Euclidean

representation of the pixel-based digit dataset. The representation sets are chosen either according to the random or MD selection. The

k-NN’s errors are shown for the random selection: (a) The RLNC; random selection. (b) The RLNC; MD criterion. (c) The RQNC;

random selection. (d) The RQNC; MD criterion.
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set, for simplicity, we will use the notation of nc=rc
as the number of training/prototype examples per
class.

Tables 2–4 summarize the results obtained for
the datasets under study and three choices of the
representation set. Each table is dedicated to one
dataset, where for each selection method the av-
eraged generalization errors of both the k-NN rule
and the RLNC/RQNC are provided. For the
RLNC/RQNC and the fixed size of the represen-
tation set, the worst and best results are reported,
depending on the size of the training set. The CNN

selection provides only one R of a fixed size,
therefore only one row can be filled for this
method.

4.1. The k-NN rule versus the RLNC

When T and R are identical, the RLNC (with
error curves starting on the rc ¼ nc line in Figs. 3–
5), mostly yields a better performance than the
equivalent k-NN rule based on the same R (com-
pare also the k-NN results with the worst cases of
the RLNC in Tables 2–4).

Fig. 4. Averaged generalization error of the RLNC/RQNC (top/bottom row) and the k-NN rule (marked by stars) for the modified-

Hausdorff representation of the contour digit dataset. The representation sets are chosen either according to the random or MD

selection. The k-NN’s errors are shown for the random selection: (a) The RLNC; random selection. (b) The RLNC; MD criterion.

(c) The RQNC; random selection. (d) The RQNC; MD criterion.
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When the size of R is fixed (i.e., in the hori-
zontal directions of Figs. 3–5), the classifiers have
the same computational complexity for an evalu-
ation of new objects. However, larger training sets
reduce the error rate of the RLNC by a factor of 2
in comparison to the k-NN’s error (based on the
same R). For instance, in Fig. 3(a), we observe that
the classification error of 0:18 is achieved by the k-
NN rule based on rc ¼ 10 prototypes for which the
RLNC offers a higher accuracy if trained also with
nc ¼ 10 objects, reaching 0:09 when this size is
increased to 100. In Fig. 5(a) the k-NN error of
0:33 obtained for rc ¼ 8 prototypes is already im-
proved by the RLNC up to 0:22 when based on
nc ¼ 30 training objects.

In other words, for a chosen representation set
R (thus fixed computational complexity) the
RLNC’s error, with the increase of training size,
decreases significantly to the values that can only
be obtained by the k-NN method if it is based on a
much larger R. For instance, in Fig. 4(a), the
RLNC built on rc ¼ 10 prototypes (and the
training set of nc ¼ 100 objects) reaches an accu-
racy (an error of 0:12) for which the k-NN rule
needs 40 objects in its representation set. The
computational load with respect to the number of
computed dissimilarities of the RLNC for the

same classification accuracy is thereby reduced to
25%.

Following the RLNC’s curves of constant error,
it can be observed, that for larger training sets,
much smaller representations sets are needed for
the same performance. The RLNC may sometimes
demand only half the computational effort for
evaluation of new objects when compared to the k-
NN method. Also, for the fixed, possibly larger
training set (i.e., in the vertical directions of the
considered figures), the RLNC constructed on a
somewhat smaller representation set, might gain a
similar or higher accuracy than the k-NN rule, but
now based on DðT ; T Þ. This is observed, e.g., in
Fig. 3(a) for nc ¼ 40. The k-NN yields an error of
0:093 and the RLNC reaches a smaller error when
trained on DðT ;RÞ with R consisting of rc P 20.

Comparing the two selection criteria: random
and MD in Tables 2–4, it can be noticed that the
performance of the k-NN rule based on the MD
criterion is much worse than based on a random
selection. A possible interpretation is as follows.
When R is small, it only consists of the objects that
differ much from each other. It contains the most
remote examples, potentially also outliers, which
negatively affect the behavior of the k-NN method
(thus demonstrating its sensitivity to noise). When

Fig. 5. Averaged generalization error of the RLNC and the k-NN rule (indicated by stars) for the DNA-difference representation of

the chromosome band dataset. The representation sets are chosen either according to the random or MD selection. The k-NN’s errors

are shown for the random selection: (a) The RLNC; random selection. (b) The RLNC; MD criterion.
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R becomes larger, the objects become more similar
to each other and the performance is better,
however, still worse than reached in random se-
lection. By comparing the best and worst cases of
both selection methods in Tables 2–4, it can be
observed that the RLNC’s errors are often much
larger for the worst cases (identical T and R) of the
MD selection. The best cases seem to be more
alike. However, Figs. 3(b), 4(b) and 5(b) show that
the RLNC’s curves are very steep in the beginning
(starting from the diagonals) for the MD criterion.
Therefore, it is possible that when R is kept fixed, a
smaller training set is needed (when T is kept fixed,
a smaller representation set is required) for the
RLNC to keep the same performance as in case of
the random selection. For instance, for R consist-
ing of rc ¼ 15 prototypes, the RLNC’s error of
0:09 is reached with about nc ¼ 50 training objects
in Fig. 3(a) and nc ¼ 30 training examples in Fig.
3(b).

Since the best k-NN results for both digit da-
tasets are found mainly for k ¼ 1 or 3 (see Fig. 6),
the 1-NN rule based on the CNN criterion obtains
better results than the k-NN rule in case of the
other two selections (the CNN representation set is
optimized for this classifier). However, the RLNC
still outperforms the 1-NN rule. The RLNC for
the CNN selection might generalize better than in

the other two criteria for identical R and T
(compare the worst cases of the RLNC in Tables 2
and 3).

4.2. The RLNC versus the RQNC

In general, the RQNC performs better than the
RLNC for both digit datasets, whose results can
be studied in Tables 2 and 3, and Figs. 3(c), (d) and
4(c), (d). Since the RQNC is based on the class
covariance matrices in the dissimilarity space, a
larger number of samples is needed to obtain
reasonable estimates, which is not the case for the
chromosome band dataset. Therefore, no RQNC’s
results for this dataset are reported here.

The RQNC may reach a worse accuracy than
the RLNC for identical T and R. However, fol-
lowing the curves of the RQNC’s constant error,
both smaller representation and training sets are
needed for the same error when compared to the
RLNC. The RQNC’s curves are simply much
more steeper than those of the RLNC. Thereby,
the RQNC outperforms the RLNC for training
sets larger than the given R. The most significant
improvement can be observed for small R. For
instance, the training set of nc ¼ 100 examples al-
lows the RLNC to reach the the error of 0:049
when based on at least rc ¼ 70 prototypes see
Table 2), where the RQNC for a similar perfor-
mance requires only rc ¼ 5–30 prototypes (see Fig.
3(c)). When the largest training sizes are consid-
ered (the best results in Tables 2 and 3) for the
fixed set R, the error of the RQNC decreases,
yielding better results than the k-NN rule. Still,
when the smallest errors of the RLNC and RQNC
are compared, the RQNC generalizes better.

Also, for the fixed training set T, i.e., in the
vertical direction in Figs. 3(c), (d) and 4(c), (d), a
smaller representation set R, often allows the
RQNC (trained on DðT ;RÞ), to reach a better
performance than the k-NN rule based on the
DðT ; T Þ. This is especially observable for the MD
criterion. For instance, in Fig. 4(d), the RQNC,
trained on nc ¼ 40 objects and rc P 10 prototypes,
achieves a smaller error than 0:12, given by the k-
NN rule based on rc ¼ 40 prototypes.

Comparing the two selection methods: random
and MD, a similar pattern to the behavior of the

Fig. 6. The averaged performance of the k-NN rule as a

function of k for the training set T consisting of nc ¼ 100 ob-

jects for the Euclidean and modified-Hausdorff representations

and of nc ¼ 30 objects for the DNA-difference.
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RLNC can be observed; the MD criterion can
work better than the random selection (compare
subplots (c) and (d) in Figs. 3 and 4).

5. Discussion and conclusions

Our experiments confirm that the RLNC con-
structed on the dissimilarity representations
DðT ;RÞ nearly always outperforms the k-NN rule
based on the same R. This holds for the RQNC as
well, provided that each class is represented by a
sufficient number of objects. Since the computa-
tional complexity (here mainly indicated by the
number of prototypes, as explained in Section 2.3)
for evaluation of new objects is an important issue,
our study is done with such an emphasis. We have
found out that for the fixed representation set,
larger training sets improve the performance of the
RLNC/RQNC. Such results are compared to the
k-NN based on the same R (R � T ) and are found
often better. Also, for the fixed training set T,
smaller representation sets allow the RLNC/
RQNC, trained on DðT ;RÞ, to gain a high accu-
racy (especially in case of the MD criterion). When
R is only somewhat smaller than T, such results
can be better than those of the k-NN based on
DðT ; T Þ; see Fig. 7 as an exemplary illustration.
The plots are shown for the fixed training set T,
consisting of nc ¼ 50 objects per class for both

digit datasets and 30 examples for the chromo-
some band dataset.

The potentially good performance of the
RLNC can be understood as follows. It is in fact a
weighted linear combination of dissimilarities be-
tween an object x and the representation set
R ¼ fp1; . . . ; prg. It seems practical to allow a
number of representative examples of each cate-
gory to be involved in a discrimination process.
This is already offered by the k-NN rule, however
it provides an absolute answer (based on the ma-
jority vote). The k-NN method is still sensitive to
noise, so the k-NN found might not include the
best representatives of a class to which an object
should be assigned. The training process of the
RLNC, using a larger training set T, emphasizes
prototypes which play a crucial role during dis-
crimination, but it still allows other prototypes to
influence the decision. The importance of proto-
types is reflected in the weights. In such a way, a
more globally sensitive classifier is built, which
cannot be achieved by the k-NN rule.

The RQNC includes also a sum of the weighted
products between pairs of distances from an object
to the set R. By doing this, some interactions be-
tween the prototypes are emphasized. The RQNC
is based on the class covariance matrices in the
dissimilarity space, estimated separately for each
class. Those matrices may really differ from class
to class. Therefore, this decision rule might achieve

Fig. 7. Averaged generalization error (with its standard deviation) of the RLNC/RQNC based on the training set T consisting of

nc ¼ 50 objects for the distance representations of the pixel-based digit (left) and the contour digit (middle) datasets, and nc ¼ 30

objects for the chromosome band (right) dataset, compared with the k-NN result based on rc ¼ 50 prototypes. The representation sets

for the RLNC/RQNC are chosen according to the MD criterion.
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a higher accuracy than the RLNC, where all the
class covariance matrices are averaged. However, a
larger number of samples (with respect to the size
of R) is required to obtain reasonable estimates for
all covariance matrices, thereby a good generali-
zation ability of the RQNC. The better perfor-
mance of the RQNC can be clearly observed in
Figs. 3(c), (d) and 4(c), (d).

Our paper is an attempt to investigate new
possibilities for learning from dissimilarity repre-
sentations. In the traditional approach, the nearest
neighbor rule is mostly applied to classify an un-
known object. It has, however, a number of dis-
advantages, which are diminished by using
classifiers as proposed here. The essential novelty
is that such a decision rule is based on weighted
combination of dissimilarities computed to all
prototypes. Thereby, a more global classifier is
constructed and its sensitivity to noisy prototypes
is significantly reduced. Here, we use the normal
density-based classifiers, however, in general, other
linear or quadratic classifiers might be considered
as well. Our method allows also for making use of
additional objects, which although enlarge the
training set, do not increase the computational
complexity for evaluation of unknown examples.
As a result, a classifier that generalizes significantly
better than the k-NN rule can be constructed.

In particular, our experiments demonstrate
that the regularized normal density-based linear
classifier (RLNC) built on dissimilarities mostly
outperforms the k-NN rule based on the same
representation set. The quadratic classifier (RQNC)
performs even better, when the class covariance
matrices can be estimated in a reliable way. This is
observed in the bottom row of Figs. 3 and 4. Still,
an open question remains how the regulariza-
tion parameters should be chosen in an optimal
way. Here, as a rule of thumb, relatively large fixed
values are used for training sets only some-
what larger than the representation sets. In case
of small representation sets, no regularization is
needed.

In conclusion, our results encourage to explore
meaningful dissimilarity information in new, ad-
vantageous ways, of which our proposal is an ex-
ample. The use of other classifiers (e.g., the
support vector classifier (Vapnik, 1998)) and the

study of representation set selection is of interest
for further research.
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