
Pattern Recognition Letters 25 (2004) 1085–1095

www.elsevier.com/locate/patrec
Almost autonomous training of mixtures
of principal component analyzers

Mohamed E.M. Musa a,*, Dick de Ridder b, Robert P.W. Duin b, Volkan Atalay c

a Department of Computer Engineering, Cankaya University, €O�gretmenler Caddesi No. 14, Balgat, Ankara, Turkey
b Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031,

2600 GA Delft, The Netherlands
c Department of Computer Engineering, Middle East Technical University, TR-06531 Ankara, Turkey

Received 18 March 2003; received in revised form 21 January 2004

Available online 23 April 2004

Abstract

In recent years, a number of mixtures of local PCA models have been proposed. Most of these models require the

user to set the number of submodels (local models) in the mixture and the dimensionality of the submodels (i.e., number

of PC’s) as well. To make the model free of these parameters, we propose a greedy expectation-maximization algorithm

to find a suboptimal number of submodels. For a given retained variance ratio, the proposed algorithm estimates for

each submodel the dimensionality that retains this given variability ratio. We test the proposed method on two different

classification problems: handwritten digit recognition and 2-class ionosphere data classification. The results show that

the proposed method has a good performance.

� 2004 Elsevier B.V. All rights reserved.

Keywords: PCA mixture model; EM algorithm; Regularization
1. Introduction

When the training data have different struc-

tures in different parts of the input space, fitting

one global linear model can poorly represent the

whole data. On the other hand, current global

nonlinear models can be slow and inaccurate

especially for high dimensional data (Kambhatla,
1995). A combination of local linear models
* Corresponding author.

E-mail address: memmusa@cankaya.edu.tr (M.E.M.

Musa).

0167-8655/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.patrec.2004.03.019
(submodels) can quickly learn the structure of the

data in local regions which consequently, offer

faster and more accurate model fitting. Parti-

tioning the training data set into smaller subsets

may lead to the curse of dimensionality problem,

as a training sample subset may not be suffi-

ciently large for estimating the required set of

parameters for a submodel. On the other hand,
increasing the size of the training data set is not

possible in many situations. Interestingly, in high

dimensional spaces the data is often highly cor-

related. Therefore, by decorrelation methods we

can reduce the data dimension and hence the

number of parameters.
ed.

mail to: memmusa@cankaya.edu.tr

1086 M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095
Among these new local model methods that

entail dimensionality reduction is the mixture of

principal component analyzers (MPCA). A major

enhancement in the history of this model was the

introduction of the expectation-maximization

(EM) training (Ghahramani et al., 1996; Hinton
et al., 1997). All algorithms proposed before this

enhancement have two separate processes; parti-

tioning the data space by hard clustering methods,

followed by fitting a PCA for each cluster. An-

other major enhancement proposed by Moghad-

dam (1997) and by Tipping and Bishop (1999) is

the probabilistic principal component analysis

(PPCA). By giving a probabilistic definition for
PCA, the usage of the mixture model and soft

clustering to define the mixture of PPCA

(MPPCA) is straight forward. However, the

MPPCA model still suffers from the following

problems:

(1) There is no standard method to specify the

optimal number of submodels.
(2) There is no standard method for the EM algo-

rithm initialization, nor a standard method to

help the algorithm to escape local maxima.

(3) There is no standard method to specify the

optimal dimensionality for each submodel.

Previously, we have proposed and tested two

algorithms for the first two problems mentioned
above (Musa et al., 2001). In order to make

training more autonomous, we propose here a

method for solving the third problem and test the

model performance on two classification tasks.

The paper is organized as follows. Section 2 ex-

plains the probabilistic PCA. Section 3 describes

our training method. Section 4 presents and dis-

cusses experimental results. We end the paper with
some concluding remarks in Section 5.
2. Probabilistic principal component analyzer

Tipping and Bishop (1999) described a prob-

abilistic formulation of PCA by considering it as a

latent variable problem, in which a d-dimensional
observed data vector y can be described in terms of
an m-dimensional latent vector x:
y ¼ Axþ lþ w ð1Þ
where A is a d � m matrix, l 2 Rd is the data mean

and w 2 Rd is independent Gaussian noise with a
diagonal covariance matrix r2I . The probability of
an observed data vector y is:

pðyÞ ¼ ð2pÞ�d=2jC j�1=2

� exp
�
� 1
2
ðy� lÞTC�1ðy� lÞ

�
ð2Þ

where C is the model covariance matrix given by:

C ¼ AAT þ r2I ð3Þ
Moreover, Tipping and Bishop (1999) have shown

that the maximum likelihood estimate for the noise

variance r2 is given by:

r2 ¼ 1

d � m

Xd

k¼mþ1
kk; ð4Þ

where fkkgdmþ1 are the d � m smallest eigenvalues.
Using a Gaussian prior (zero mean, unit stan-

dard deviation) over the latent variables x, an EM
algorithm can be developed to find the parameters

l, r2 and A. Furthermore, the algorithm can be
quite naturally extended to find mixtures of such

models, by estimating the set of parameters (li;Ai

and ri) for each submodel i and by re-estimating
pðyjiÞ and the prior probabilities for each sub-
model, pðiÞ, at each step of the EM algorithm.

2.1. Submodel dimensionality versus variability

In conventional PCA techniques, there are two

approaches for specifying principal submodel

dimensionality: (1) to be specified by the user

beforehand and (2) the user can specify a retained

variance value a, and the system calculates the
dimensionality that retains this variability ratio by
finding the first m eigenvectors that satisfy the
following inequality:

Pm
i¼1 kiPd
i¼1 ki

> a ð5Þ

where fkigd1 are the eigenvalues sorted in

descending order.

Almost all the early PCA mixture models de-
scribed in the literature use the first approach. The

M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095 1087
early proposals were geometrically based models

and this could be the main reason behind the

choice of the first approach. As Moghaddam

(1997) and Tipping and Bishop (1999) extensions

have shifted the model to be a probabilistically

based model, we think that the choice in this issue
should also be shifted to the second approach.

Therefore, in our training scheme, we choose a

value for a and adjust all submodel dimensionali-
ties to retain this given variability ratio. Moreover,

as one of our primary goals is to make training

autonomous, the adoption of this retained vari-

ance approach will be of much help in this direc-

tion. Choosing one constant that allows different
local dimensionalities with similar local variabili-

ties is more advantageous over choosing same

local dimensionality in all submodels that pro-

duces different local variabilities (Meinicke and

Ritter, 2001). The simplest way to find a autono-
mously is by validation methods. This may be

computationally intensive. However, exploitation

of other speeding up methods, such as using some
prior information to limit the choices, is possible.
3. Algorithms

As discussed in Section 1, in training an

MPPCA model the user faces a number of choices:

the number of submodels to look for, the number
of dimensions per submodel to use and the way in

which the EM algorithm is initialized, to avoid

local minima. In this section, we describe some

algorithms which alleviate these choices. First, in

Section 3.1 a greedy algorithm is discussed, which

can be used to determine a suboptimal number of

variable dimensionality submodels. Next, Section

3.2 describes an EM initialization method which
helps in preventing local minima. These algorithms

lead to an almost parameter-free VD-MPPCA (VD

for variable dimensionality) training method. The

only parameter left is the amount of variance to

retain.

3.1. Greedy EM for MPPCA training

Finding the optimal number of components in a

mixture is a very difficult problem, which is not
completely solved yet (McLachlan and Peel, 2000).

However, recent theoretical developments (Cadez

and Smyth, 2000; Li and Barron, 1999) have shown

that the log-likelihood of finite mixture models is

approximately concave as a function of k (number
of submodels). Accordingly, we developed and
tested a greedy EM forMPPCA training controlled

by likelihood changes (Musa et al., 2001). In

addition to the encouraging result of our previous

experiments (Musa et al., 2001). Verbeek et al.

(2003) have also investigated the problem of

learning mixtures of Gaussians using a greedy EM

algorithm. Their experimental results showed that

their greedy EM outperforms standard EM. In our
method, we adopt a simple yet effective and

appealing strategy for finding a suboptimal number

of submodels. We set a goal of building a mixture

model that adequately represents almost all the

training data points. To fulfil this goal, our greedy

scheme increases the number of submodels in the

mixture iteratively. To allow more data points to be

well represented by the model, new submodels are
generated from fractions of the training data

points, which have the lowest probability in the

current mixture. We use the membership (i.e., the

posterior probability) to the current submodels as

a criterion for this representation.

Algorithm 1 outlines our new greedy VD-

MPPCA training algorithm. In step 2, the algo-

rithm calculates a global principal submodel from
the given training data set D by direct eigenvector
method. The input value a is used to select the first
m eigenvectors that retain a ratio a of the global
variability. Step 6 collects the points that have

high membership to the current submodels, [Ni;
i ¼ 1; . . . ; k � 1. For each submodel i, Ni contains

the jDj=ðk � 1Þ points which have the highest
posterior probability for this submodel. Step 7
calculates F as the complement of the set [Ni in

the training data set D, i.e., F contains the points
that have the lowest membership to the current

k � 1 submodels. Using the given F data points,
Algorithm 2 finds a new PPCA submodel and

calculates its parameters. In step 9, the old sub-

models and the new one are fitted softly by the

EM. Note that starting the greedy process by one
submodel is not a requirement. For instance, if we

are sure the number of submodels should be

1088 M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095
greater than some constant kmin, we can stop step 9
in the first kmin iterations to generate kmin hard
clusters without fitting them by the EM algorithm.

Step 10 is responsible for deciding whether there

is still significant change in likelihood or not. One

way to do this is by specifying a threshold level. If
the relative change in likelihood falls below this

threshold, the loop terminates. Our investigation

showed that this threshold value is not critical and

even a high value such as 0.2 can produce accept-

able classification results. In our experiments, we

set this value to 0.1. An important caveat to be

mentioned here is that the modeler should avoid

too small threshold values, as for these the loop
sometimes fails to terminate. However, the modeler

can use a small value and add a control for the

maximum number of submodels to terminate the

loop when the threshold control fails.

Submodels change their shapes during EM

iterations, i.e., their local variabilities. For this

reason, after locating all submodels and terminate

the greedy iteration, we re-calculate submodels’
dimensionalities (step 11) and re-run the EM

algorithm (step 12) to ensure soft fitting. With the

addition of new submodels, normally old sub-

models lose some of their points and hence become

more local. Therefore, the process of re-estimating

submodels’ dimensionalities in step 11 normally

reduces them.

This algorithm has also a divide and conquer
flavor. The algorithm contains two main parts.

The first part is the greedy loop part (steps 4–10).

The main goal of the greedy loop is finding the

optimal number of submodels. The second part

(steps 11 and 12) concerns finding the right local

dimensionality for each submodel. It looks more

logical to move the second part inside the greedy

loop, i.e., to re-fit the dimensionality in each
greedy step, as this will allow the dimensionality

refitting to play its role in likelihood evaluation.

However, bearing in mind that we are looking for

approximate values for the parameters k (number
of submodels) and m (local dimensionality), the
given algorithm is simple, fast and efficient in

finding these approximate values. In addition, our

investigation of the training data shows no sig-
nificant gain from re-fitting the dimensionality

inside the greedy loop.
Algorithm 1 (Greedy Training Algorithm).
1: input D (training data set) and a (ratio of
variance to retain)

2: estimate one VD-PPCA submodel’s para-

meters (l1;A1 and r1), with a dimensionality
that retains a of the variability in D

3: k 1
4: repeat

5: k k þ 1
6: 8i;Ni ¼ fx : x among the jDj=ðk � 1Þ

points that have highest probabilities for

submodel i}
7: F ¼ D n ð[NiÞ
8: send the parameters F ; fligk�11 , a to

Algorithm 2 to estimate a new submodel’s

parameters (lk;Ak and rk)

9: fit the k submodels using the EM algorithm
10: until likelihood ðkÞ ffi likelihoodðk � 1Þ
11: re-fit all submodel dimensionalities to retain

a of their variability
12: fit the model using the EM algorithm
3.2. Greedy hard clustering

An EM algorithm (soft clustering) initialized by
a hard clustering algorithm is the state of the art

for mixture model training. However, which hard

clustering method to use with which EM version is

still an open question. Intuitively, a suitable hard

clustering method for a greedy EM might also be a

greedy one. Dasgupta (1999) designed an algo-

rithm that works greedily to find Gaussian Mix-

ture means. Dasgupta’s algorithm maps the data
to a random subspace of size Oðlog kÞ dimensions,
where k is the number of Gaussians. In the re-
duced subspace the Gaussians become more

spherical and the number of training data points

with respect to the reduced subspace dimension-

ality is relatively high. Moreover, there is no

danger of collapsing Gaussians together, as long

as we project to a subspace of size Oðlog k) (see
Dasgupta, 1999 for a proof). Dasgupta’s algo-

rithm allocates the Gaussian centers one after the

other. A point with the smallest radius rx to en-
close a specific number of points, p, in the reduced
subspace, is considered a clue for a Gaussian

center. To find the other Gaussian centers using

M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095 1089
the same criterion, the high-density points of the

recently found Gaussian are removed.

Our greedy hard clustering algorithm (Algo-

rithm 2) consists of two main parts. The first part,

steps 2–5, is based on Dasgupta’s algorithm. The

role of this part is to find the point with the
smallest radius rx in the reduced data subspace. To
find a complete MPPCA submodel parameters

(i.e., li;Ai and ri), we run the nearest mean algo-

rithm in the original data space to find S0, the data
points nearest to the new mean, l�. The means

used by the nearest mean algorithm are the means

of the existing submodels, fligk1, together with the
newly found mean l�. From S0 we calculate the
initial estimate for the new MPPCA submodel

parameters.
Algorithm 2 (Initialization Algorithm: Greedy
Hard Clustering Algorithm).

Note that the parameter k is determined by
the current stage of Algorithm 1. Therefore the

dimensionality of the projection subspace in-

creases with k, and the number of points within
radius rx decreases with k.

1: input F (training data set), fligk1 (existing
submodel means) and a

2: project the whole data set F into a random
subspace of Oðlog kÞ dimensions, let
S ¼ projected data

3: set p jSj=k
4: 8x 2 S, let rx be the smallest radius such
that there are P p points within distance rx
from x

5: let l� be the point x with the lowest radius rx
6: run the nearest mean algorithm for l� and the
existing k means fligk1 in the original data
space to find the closest points to l�(S0)

7: from S0 estimate one MPPCA submodel
parameters, with a submodel dimensionality

that retains a of the variability in S0
4. Experiments

This section presents the results of our experi-

ments on two classification problems.
We have designed four experiments:

iii(I) Training an MPPCA model with a fixed

number of submodels of fixed dimensional-

ity, using randomly initialized standard EM.

i(II) Training an MPPCAmodel with a fixed num-
ber of submodels of fixed dimensionality,

using standard EM initialized by Algorithm 2.

(III) Training an MPPCA model with a variable

number of submodels of fixed dimensional-

ity, using greedy EM.

(IV) Training a VD-MPPCA model with a vari-

able number of submodels of variable dimen-

sionality, using greedy EM.

Experiments II–IV are initialized by Algorithm

2. For the purpose of comparison, in experiment

IV we set a to the average retained variance ratio
found by the models generated by experiment III.

All the experiments are repeated five times with

differently drawn train and test sets. Experiment I

is repeated three times for each pair of sets. During
the training phase, only patterns of one class are

presented to the model generator program, i.e.,

each class model is built separately. In Algorithm 2

we set the reduced subspace to the k-dimensional
principal subspace.

4.1. Handwritten digit recognition

The data set used in this set of experiments was

extracted from the well-known NIST handwritten

digit database (Wilson, 1992). The original data set

consisted of 128 · 128 pixel binary images. In pre-
processing, these images were normalised for po-

sition, size, slant and stroke width, resulting in

16 · 16 pixel grey-value images (de Ridder et al.,
1996). Furthermore, for the experiments described
in this paper PCA was used on the entire data set

to reduce the number of dimensions from 256 to

64. The resulting data set was used to construct

training and testing sets. The data set has been

classified before using a number of methods (de

Ridder, 2001; Wilson, 1992). Table 1 gives an

overview of the results obtained thus far on a

training set of 1000 samples per class. 1000 pat-
terns (images) per class (digit) have been used for

training and 1000 patterns (images) per class

Table 1

Results for various classifiers on the NIST data set

Type Classifier Error (%)

Bayes plug-in Nearest mean 15.88

Linear 9.84

Quadratic 4.70

Neural network LeNotre 4.87

LeNet 3.43

LeCun 2.32

1 Hidden layer at 256 units 2.44

1 Hidden layer at 512 units 1.99

Support vector classifier Polynomial, fifth degree 1.29

Radial basis, r ¼ 10 1.38

1090 M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095
(digit) have been used for testing. At first, in some
of the experiments the EM algorithm did not

converge. Therefore, the covariance matrix C was
regularized by adding a small constant value, 0.01,

to the parameter r2 in each iteration (see Eqs. (3)
and (4)).

4.1.1. Results and discussion

Table 2 summarizes the first testing results. The
error in this table is the average percentage of

misclassified patterns in the test set. The results of

this first set of experiments show that the perfor-

mance of all methods of initialization and model

fitting are nearly equal. This is curious. After

inspecting the performance for each class sepa-

rately, we noted that digit ‘‘1’’ has the worst per-
Table 2

Test results, as average error percentage and standard deviation, for

Exp. Initialization #Sub. #Dim

I Random Fixed Fixed

II Algorithm 2 Fixed Fixed

III Algorithm 2 Variable Fixed

IV Algorithm 2 Variable Varia

#Sub. and #Dim. are the average number of submodels and dimensio

C are regularized by adding 0.01 times the identity matrix.

Table 3

The average r2 and test error for each of the 10 digit classes in the fi

Class 0 1 2 3 4

Avg. r2 0.18 0.06 0.25 0.22 0.2

Error % 1.99 4.99 0.79 2.79 1.4

In these experiments, the estimated covariance matrices C are regular
formance (see Table 3). This is also curious. To
investigate what caused this, we inspected the

models found by each experiment. It became

obvious that for some models, problems in esti-

mating r2, the noise level, caused poor perfor-
mance (see r2 for digit ‘‘1’’ and ‘‘9’’ in Table 3).
The regularization value introduced to help the

EM algorithm to converge, 0.01, seems to be too

small.
The technique, adopted by PPCA, of approxi-

mating the average of the minor eigenvalues cor-

responding to the variance not explained by PCA,

as a noise parameter r2 gives insight into this
problem (see Eq. (4)). Eq. (3) shows that the

diagonal components of the model covariance

matrix C are dependent on r2 in the minor eigen-
the four experiments on NIST handwritten digit data set

. Error #Sub. #Dim.

2.66± 0.21 10 10

2.67± 0.13 10 10

2.60± 0.18 5.2 10

ble 2.60± 0.14 7.1 10

nality per class. In all models, the estimated covariance matrices

rst set of experiments

5 6 7 8 9

0 0.24 0.16 0.14 0.22 0.13

8 1.75 1.92 3.00 2.36 4.10

ized by adding 0.01 times the identity matrix.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Regularization values

er
ro

r
%

Standard EM
Fixed #Sub. Fixed #Dim.
Variable #Sub. Fixed #Dim.

Variable #Sub. Variable #Dim.

Fig. 2. Error (% of the test set classified incorrectly) as a

function of the regularization value, for experiments I–IV.

M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095 1091
vector directions. This structure makes the

covariance matrix very sensitive to the actual value

of r2. For very small values, C will become sin-
gular and the whole model becomes undefined.

However, even when the matrix is non-singular

and r2 is very small, the model will become prone
to overfitting. This can be seen by realizing that for

small r2, some elements of C�1 will become very
large. Now, normally the image elements which

are multiplied by the large values in C�1 (see Eq.
(2)) will be very small, as their variance is very low.

However, if in the data set an image occurs which

has some noise present in pixel positions which

normally have low variance, this noise will be
blown up. It will have a large effect on the estimate

of the probability of the image (Eq. (2)) and both

training (specifically, the E-step in the EM algo-

rithm) and recognition will suffer. This is the main

reason for the bad performance of digit ‘‘1’’. Table

3 shows the average r2 (over all submodels) and
the recognition error for each class for one of the

experiment I. The table shows that digit ‘‘1’’ has
the lowest value of r2. Fig. 1 shows some of digit
‘‘1’’ images which have been misclassified and one

can easily note that most of the images have a

generally reasonable shape, with some noise pres-
Fig. 1. Examples for the misclassified digit ‘‘1’’ images in the

first set of experiments. In these experiments the estimated

covariance matrices C are regularized by adding 0.01 times the

identity matrix.

Table 4

Test results for the four experiments using a regularization value of 0

Exp. Initialization #Sub. #Dim

I Random Fixed Fixed

II Algorithm 2 Fixed Fixed

III Algorithm 2 Variable Fixed

IV Algorithm 2 Variable Varia
ent. This gives the insight that r2 can be used as a
clue for deciding on the optimal number of PCs for

the PPCA model in general and most importantly
that regularizing r2, e.g. by adding a larger regu-
larization constant, could improve performance.

To verify this, we re-ran all the experiments

seven times using different regularization values. In

the first run, each iteration of the EM algorithm,

r2 was calculated by averaging the minor eigen-
values, as in normal PPCA, and adding a fixed

regularization constant of 0.05. We then iteratively
increased the regularization constant by 0.05 and

repeated all experiments. The results of these

experiments, shown in Fig. 2, show that an opti-

mal regularization value is expected to be around

0.2. Detailed results for the experiments run with a

regularization value of 0.2 are shown in Table 4.

The experiments also show that, using Algorithm 2

as an initialization of the EM algorithm improves
results. However, the most interesting result is

the fact that experiment IV models perform as

good as experiments I and II models, with a
.20

. Error #Sub. #Dim.

1.91±0.24 10 10

1.74±0.18 10 10

2.09±0.35 4.5 10

ble 1.85±0.12 7.2 10

1092 M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095
smaller number of submodels. Experiment IV

found 7.2 submodels for each class on average,

where the models with fixed number of submodels

(i.e., experiments I and II) used 10 for each class. It

also worth noting that experiment III found even

less submodels, 4.5, for each class on average, at
only a small increase in test error.

In the previous set of experiments, for experi-

ment IV we set a to the average retained variance
ratio found by experiment III. This setting force

experiment IV to generate submodels with average

dimensionality 10. To have insight into the relation

between the retained variance ratio (a), submodel
dimensionality and classification performance, we
re-ran experiment IV for 15 different a values. Fig.
3 shows the errors and average dimensionality for

all classes for different a values. Fig. 3 reflects the
important aspect that there exists a suboptimal a
value (asub), at approximately 0.77. For a values
0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

er
ro

r
%

testing data error %
training data error %

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Returned Variance Value

D
im

en
si

o
n

al
it

y

(a)

(b)

Fig. 3. (a) Error (% of test and training set classified incorrectly

in the 15 experiments) as a function of the retained variance

ratio i.e., a. (b) Average submodel dimensionality as a function
of a.

Table 5

This table summarize the suboptimal asub value result, 0.77

Class 0 1 2 3 4

#Sub. 11 5 10 8 8

#Dim. 9 4 10 12 9

Error % 1.0 1.4 1.4 2.5 1.8

The first row shows the average number of submodels for each class.

each class. The third row shows the error for each class. The last col
less than asub, the classification performance is
proportional to the submodel dimensionality.

What is of real interest, is that the performance is

approximately the same for a values greater than
asub for both training and testing data. In fact there
is a very slight improvement that can hardly justify
the increase in dimensionality reflected in Fig. 3(b).

Table 5 shows the detailed results for asub. Classes
1, 4 and 7 have the least number of submodels: 5, 8

and 8 respectively. On the other hand, classes 0, 6

and 8 have the maximum number of submodels, 11

submodels for each. This is striking, as the latter

have more curvature in their shapes and their input

space is more nonlinear structure, while the former
are semi-straight lines, i.e., less nonlinearity. It

shows that the algorithm is not ad hoc in model

selection.

4.2. Ionosphere data set

This data set was obtained from the UCI

repository (donated by V. Sigillito from the ap-
plied Physics Laboratory in Johns Hopkins Uni-

versity, Blake and Merz (1998)). The data set

consists of two classes of signals, ‘‘good’’ and

‘‘bad’’. Each signal instance has 34 attributes. In

accordance with previous experiments, of which

results are reported in Table 6, we have used 200

instances for training, 100 for each class. The

testing set consists of 123 ‘‘good’’ and 24 ‘‘bad’’
instances. The previous results show that ‘‘good’’

signal recognition is much better than the ‘‘bad’’

one.

In this set of experiments we eliminated exper-

iments I and II. We fixed the dimensionality to 5

and the number of submodels to 5 in experiments

III. As before, for experiment IV, We set a to the
variance retained by experiment III. we repeated
the experiments 8 times for the same regularization
5 6 7 8 9 Avg.

9 11 8 11 10 9

11 8 7 10 8 9

1.9 0.9 1.5 2.3 2.4 1.68± 0.17

The second row shows the average submodel dimensionality for

umn shows the average for all classes.

Table 6

Results for various classifiers on the ionosphere data set

Classifier Error %

Linear perceptron 9.3

Nonlinear perceptron 8.0

Backpropagation ANN 4

Nearest neighbor 7.9

Quinlan’s C4 6

IB3 (Aha and Kibler IJCAI-1989) 3.3

M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095 1093
values set used in previous test. We ran the same
second experiment to see the performance of the

model for different a values.

4.2.1. Results and discussion

Figs. 4 and 5 summarize the results for the given

set of experiments graphically. Since the model has

its best average performance when the regulariza-

tion value is 0.1, Table 7 gives a detailed result at
this regularization value. The figures show that

the performance in the 2 experiments is nearly the

same except for the small regularization values, the
0 0.1 0.2 0.3 0.4

0

5

10

15

20

 Regularization values
 "good" class

er
ro

r
%

Fixed #Sub. Fixed #Dim.
Variable #Sub. Variable #Dim

0 0.1 0.2 0.3 0.4
5

10

15

20

25

 Regularization values
 Weighted average error

er
ro

r
%

Fig. 4. Error (% of the test set classified incorrect
performance of experiment IV is better. In exper-

iment IV the model chooses to model class ‘‘good’’

with an average of 3 submodels of 3 dimensions

each. As these values are optimal for modelling the

‘‘good’’ class it helps the model to be less vulner-

able to noise than in experiment III where the
number of submodels and dimensionality are

higher.

The ‘‘bad’’ class is not as well structured as

the ‘‘good’’ class. The model reflects this fact by

choosing 6 submodels of 8 dimensions each on

average. Estimating 6 submodels with average

dimensionality 8 using only 100 patterns in the

training data set may produce a model
that suffers from the curse of dimensionality

problem.

Fig. 5 shows the performance is almost the

same, when a has a value which is greater than or
equal to 0.65. In fact this is needed solely for the

‘‘bad’’ class, as a lower value suffices for class

‘‘good’’.
0 0.1 0.2 0.3 0.4

10

20

30

40

50

 Regularization values
 "bad" class

er
ro

r
%

0 0.1 0.2 0.3 0.4

5

10

15

20

 Regularization values
 Average error

er
ro

r
%

ly) as a function of the regularization value.

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Retained Variance

er
ro

r
%

class "good" error %
class "bad" error %
weighted average error %
average error %

0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

Retained Variance

d
im

en
si

o
n

al
it

y

class "good" average dimensionality
class "bad" average dimensionality

(a) (b)

%

Fig. 5. (a) Error (% of test set classified incorrectly) as a function of the retained variance ratio i.e., a, (b) average submodel
dimensionality as a function of a.

Table 7

Test results, as average error in % and standard deviation, for the two experiments on the ionosphere data set

Exp. #Sub. #Dim. Error % #Sub. #Dim.

‘‘good’’ ‘‘bad’’ ‘‘good’’ ‘‘bad’’

III Fixed Fixed 3.3± 1.1 5 5 5 5

IV Variable Variable 3.4± 1.4 3 6 3 8

#Sub. and #Dim. are the average number of submodels and dimensionality per class. For all models, the estimated covariance matrices

C are regularized by a value of 0.1.

1094 M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095
5. Conclusion

We designed a greedy EM algorithm for train-
ing a mixture of probabilistic principal component

analyzers. According to a given retained variance

ratio, a, the algorithm determines for each sub-
model the dimensionality that retains a ratio a of
the local variability.

We applied the model to classification prob-

lems. The results show that the retained variance is

a suitable guidance for the process of searching for
the optimal submodel dimensionality. While

increasing the number of submodels iteratively is

effective in searching for the optimal number of

submodels, it is also helpful in avoiding the

inherent problem of overfitting.

As the discussion reflects, there is an optimal

or suboptimal a that should be estimated

or hypothesized first. This suboptimal value
could be reached by validation methods. How-

ever, finding a direct method will speed up the
model. Moreover, some researchers suggested

solving this problem (i.e., dimensionality) by

Bayesian methods (Minka, 2000). In our future
work, we plan to compare our method for

dimensionality selection with the Bayesian based

method.

In the second problem, which is a two class

classification problem, one class has much higher

error rates. It seems that exploiting the natural

rejection capability of the density models may

leverage the performance in such cases. This is also
a subject of future work. Using maximum likeli-

hood as a sole control for the number of submodel

complexity may not be enough. Especially for

classification, this complexity control mechanism

may generate excess submodels. Therefore, as fu-

ture work, we plan to support our model by using

a penalized maximum likelihood or an informa-

tion theoretic measurement for the optimal num-
ber of submodels selection (McLachlan and Peel,

2000).

M.E.M. Musa et al. / Pattern Recognition Letters 25 (2004) 1085–1095 1095
References

Blake, C., Merz, C., 1998. UCI repository of machine learning

databases. Department of Information and Computer

Science, University of California.

Cadez, I., Smyth, P., 2000. On model selection and concavity

for finite mixture models. In: Proc. Int. Symp. on Informa-

tion Theory (ISIT).

Dasgupta, S., 1999. Learning mixtures of Gaussians. In:

Proc. IEEE Symp. on Foundation of Computer

Science.

de Ridder, D., Hoekstra, A., Duin, R., 1996. Feature extrac-

tion in shared weights neural networks. In: Proc. 2nd

Annual Conference of the Advanced School for Comput-

ing and Image Processing, Delft, Netherlands, pp. 289–

294.

de Ridder, D., 2001. Adaptive methods of image processing.

Doc. dissertation, Faculty of Applied Science, Delft Uni-

versity of Technology.

Ghahramani, Z., Hinton, G., 1996. The EM Algorithm for

mixtures of factor analyzers. Technical Report, CRG-TR-

96-1. University of Toronto.

Hinton, G., Dayan, P., Revow, M., 1997. Modeling the

manifolds of images of handwritten digits. IEEE Trans.

Neural Networks 10 (3), 65–74.
Kambhatla, N., 1995. Local models and Gaussian mixture

models for statistical data processing. Doc. dissertation,

Oregon Graduate Inst. of Science & Tech.

Li, J., Barron, A., 1999. Mixture density estimation. NIPS 1999.

McLachlan, G., Peel, D., 2000. Finite Mixtures Models. John

Wiley & Sons Inc.

Minka T., 2000. Automatic choice of dimensionality for PCA.

NIPS 2000.

Meinicke, P., Ritter, H., 2001. Resolution-based complexity

control for Gaussian mixture models. Neural Comp. 13 (2),

453–475.

Moghaddam, B., Pentland, A., 1997. Probabilistic visual

learning for object representation. PAMI 19 (7), 696–710.

Musa, M., Duin, R., de Ridder, D., 2001. An enhanced EM

algorithm for mixture of probabilistic principal component

analysis. ICANN 2001 Workshop on Kernel & Subspace

Methods for Computer Vision.

Tipping, M., Bishop, C., 1999. Mixtures of principal compo-

nent analyzers. Neural Comp. 11 (2), 443–482.

Verbeek, J., Vlassis, N., Krose, B., 2003. Efficient greedy

learning of Gaussian mixture models. Neural Comp. 15 (2),

469–485.

Wilson, C., Garris, M., 1992. Handprinted character database.

National Institute of Standards and Technology; Advanced

Systems Division.

	Almost autonomous training of mixtures of principal component analyzers
	Introduction
	Probabilistic principal component analyzer
	Submodel dimensionality versus variability

	Algorithms
	Greedy EM for MPPCA training
	Greedy hard clustering

	Experiments
	Handwritten digit recognition
	Results and discussion

	Ionosphere data set
	Results and discussion

	Conclusion
	References

