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The interaction between classification and reject performance
for distance-based reject-option classifiers
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Abstract

Consider the class of problems in which a target class is well-defined, and an outlier class is ill-defined. In these cases new outlier classes
can appear, or the class-conditional distribution of the outlier class itself may be poorly sampled. A strategy to deal with this problem
involves a two-stage classifier, in which one stage is designed to perform discrimination between known classes, and the other stage
encloses known data to protect against changing conditions. The two stages are, however, interrelated, implying that optimising one
may compromise the other. In this paper the relation between the two stages is studied within an ROC analysis framework. We show
how the operating characteristics can be used for both model selection, and in aiding in the choice of the reject threshold. An analytic
study on a controlled experiment is performed, followed by some experiments on real-world datasets with the distance-based reject-
option classifier.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In pattern recognition, a typical assumption made dur-
ing the design phase is that the various classes involved
in a particular problem can be sampled reliably. However,
in some problems, new classes or clusters may appear in the
production phase that were not present during the design/
training. In other problems, some classes may be sampled
poorly, leading to inaccurate class models. Examples of
applications that are affected by this are for instance:

• Diagnostic problems in which the objective of the classi-
fier is to identify abnormal operation from normal oper-
ation (Dubuisson and Masson, 1993). It is often the case
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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that a representative training set can be gathered for one
of the classes, but due to the nature of the problem, the
other class cannot be sampled in a representative man-
ner. For example, in machine fault diagnosis (Ypma
et al., 1999) a destructive test for all possible abnormal
states may not be feasible or very expensive.

• Recognition systems that involve a rejection and classi-
fication stage, for example, road sign classification. Here
a classifier needs not only to discriminate between exam-
ples of road sign classes, but must also reject non-sign
class examples (Paclı́k, 2004). Gathering a representative
set of non-signs may not be possible. Similarly face
detection (Pham et al., 2002), where a classifier must
deal with well-defined face classes, and an ill-defined
non-face class, and handwritten digit recognition (Liu
et al., 2002), where non-digit examples are a serious
issue.

For simplicity we consider the problem as one in which
there is a well-defined target class, and a poorly defined
outlier class. The primary objective is to maintain a high
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1 Rather than assuming that unseen classes can occur anywhere in
feature space, it may be better to consider the nature of each problem,
incorporating prior knowledge with respect to natural bounds in this
space. To keep the discussion general, for now we assume a uniform,
maximum entropy distribution.
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classification performance between known classes, and
simultaneously to protect the classes of interest from
new/unseen classes (or changes in expected conditions,
reflected in the change of distribution of these classes).
We refer to the latter performance measure as rejection per-
formance. Classification performance is defined between a
well-defined target class xt, and some partial knowledge
existing for the outlier class xo. Rejection performance is
defined between xt and a new (unseen) cluster/class from
the outlier class xr that is not defined precisely in training.

Several strategies have been proposed. The first strategy
to cope with this situation was proposed in (Dubuisson and
Masson, 1993), called the distance-based reject-option.
Here a reject-rule was proposed to reject distant objects
(with respect to the target class) post-classification. This
evaluation differs considerably from the second strategy,
the ambiguity reject-option (defined in (Dubuisson and
Masson, 1993)) as proposed in (Chow, 1970). In ambiguity
reject, a threshold is included to reject objects occurring in
the overlap region between two known classes. It is assumed
that all classes have been sampled in a representative man-
ner. This is in contrast to this study, in which it is assumed
that classes are poorly sampled or not sampled at all.

Classifiers with the reject-rule differ from conventional
classifiers in that two thresholds are used to specify the tar-
get area, namely a classification threshold h, and a rejection
threshold td (we define the target area to be the region in
the feature space in which all examples are labelled target).
A limitation of the distance-reject criterion is that the
threshold itself has no direct relationship with the distribu-
tion of the known classes, as discussed in (Muzzolini et al.,
1978). Thus a modified reject-rule was proposed in (Muz-
zolini et al., 1978), involving computing the probability
of a new object belonging to any of the known classes,
based on covariance estimates. The threshold can then be
based on a degree of model-fit to the known classes.

In (Landgrebe et al., 2004) we presented a third reject
strategy, involving combinations of one-class (Tax, 2001)
and supervised classifiers. This scheme allowed different
models to be specifically designed for the purposes of clas-
sification or rejection. It was argued that a model optimised
for the sake of classification may differ from that optimised
for rejection, and that combining both optimised models
can improve the overall combined classification/rejection
performance. Experiments showed that this strategy out-
performs the other reject-rules in some situations. It was
also observed that a relation between the classification
and rejection performance exists, and that optimising either
performance is at the detriment of the other.

Each of the strategies has a classification and rejection
threshold. In both (Dubuisson andMasson, 1993;Muzzolini
et al., 1978), it has been shown how the distance-reject-
rule can be applied in practise, involving distance- or class-
conditional probability-thresholding of new incoming
objects. In the case of the ambiguity reject-option, the classi-
fiers can be evaluated and optimised since it is assumed that
all classes have been sampled, as shown in (Chow, 1970) for
known costs, and applied to imprecise environments in
(Ferri and Hernandez-Orallo, 2004; Tortorella, 2004) to
name a few. However, in the case of the distance-based
reject-option, a challenging problem posed is that the dis-
tribution of the unseen class is by definition absent, and thus
standard cost-sensitive evaluations and optimisations
become ill-defined, lacking a closed Bayesian formalism.

In (Landgrebe et al., 2004), the ill-defined class problem
was tackled by deriving strategies that can be used to study
the way in which classification and rejection performance
interact, based on the assumption that a new unseen class
could occur anywhere in feature space. The rationale is that
a minimal target area provides, in general, the most robust
solution to an unseen class that could occur anywhere
in feature space.1 The methodology involved the artificial
generation of the unseen class by assuming a uniformly
distributed unseen class. Based on this methodology, it
was observed that similar to the ambiguity-reject case,
there is interaction between classification and rejection
performance.

This paper is concerned with evaluating and optimising
classifiers taking into account this interaction between clas-
sification and rejection. For this, receiver operating charac-
teristic (ROC) curves will be used. ROC analysis (Metz,
1978), is a tool typically used in the evaluation of two-class
classifiers in imprecise environments, plotting detection
rate (true-positive rate) against the false positive rate. We
extend this analysis to the unseen class problem by includ-
ing an additional dimension that is related to the general
robustness of the classifier to an unseen class. A similar
3-dimensional ROC analysis has been applied elsewhere,
such as in (Ferri and Hernandez-Orallo, 2004; Mossman,
1999; Dreisetl et al., 2000), but in these cases this did not
involve the ill-defined class problem. Our approach
attempts to minimise the volume of the classes of interest
in the feature space for robustness against unseen classes.
It allows models to be compared (in a relative sense, since
an absolute measure cannot be obtained) and provides
insight into the choice of a reject threshold, that does not
impact too much on classification performance.

In Section 2, an example is studied analytically to inves-
tigate the nature of the relation between classification and
rejection rates, and the extended ROC analysis is pre-
sented. In Section 3, a criterion is proposed for the compar-
ison of the extended ROC’s. This criterion is applied to a
synthetic 2-dimensional example with three different mod-
els. Finally, we discuss how to optimise an operating point
(i.e. choose a classification and rejection threshold). Section
4 consists of a number of experiments to demonstrate the
methodology in some realistic scenarios. Conclusions are
given in Section 5.
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2. The relation between classification and rejection

performance

First we will develop our notation and illustrate the inter-
action between the classification and rejection performance
by showing an example. In Fig. 1, a synthetic example is
presented in which xt and xo are two Gaussian-distributed
classes distributed across domain x. Additionally we
assume that a class xr is uniformly distributed across x.
The class-conditional densities for xt, xo and xr are
denoted p(xjxt), p(xjxo), and p(xjxr), respectively, with pri-
ors p(xt), p(xo), and p(xr), which are assumed equal here.
The unconditional density p(x) can then be written as in
Eq. (1). Note that in training we only have access to xt

and xo, and in testing xr will also appear.
For the total probability distribution of x therefore

holds:

pðxÞ ¼ pðxtÞpðxjxtÞ þ pðxoÞpðxjxoÞ þ pðxrÞpðxjxrÞ ð1Þ
For this 1-dimensional data, a classifier is defined which
only consists of a single threshold, denoted h. The position
of h determines the classification performance, and can be
specified given a desired true-positive rate (TPr) or false-po-
sitive rate (FPr). As h varies, so do the respective TPr and
FPr, resulting in the ROC between xt and xo. In a typical
discrimination problem (ignoring the reject threshold), we
can define the true-positive rate (TPr) and false positive
rate (FPr) in terms of h as in Eq. (2).

TPrðhÞ ¼
Z 1

�1
pðxtÞpðxjxtÞIðxjhÞdx

FPrðhÞ ¼
Z 1

�1
pðxoÞpðxjxoÞIðxjhÞdx

ð2Þ

The indicator function I(xjh) specifies the relevant domain,
as defined in Eq. (3).
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Fig. 1. A synthetic example, illustrating the class-conditional densities
for xt, xo, and xr, with a distance-based reject-option classifier. The
classification boundary is specified by h, and the rejection boundary by td,
td = 0.15.
IðxjhÞ ¼
1 if pðxtÞpðxjxtÞ � pðxoÞpðxjxoÞ > h

0 otherwise

�
ð3Þ

In a typical discrimination problem, the evaluation crite-
rion used is the mean classification error between xt and
xo and the ability to reject new unseen classes xr is often
not considered. In ill-defined classification problems, the
performance with respect to both the known outliers xo

and the unknown outliers xr is important (Landgrebe
et al., 2004). The FPr(h) can therefore be decomposed into
two parts:

FPo
r ðhÞ ¼

Z 1

�1
pðxjxoÞIðxjhÞdx

FPr
rðhÞ ¼

Z 1

�1
pðxjxrÞIðxjhÞdx

ð4Þ

Standard classifiers will ignore FPr
r and only focus on mini-

mising FPo
r . For these situations the distance-based rejec-

tion-option classifier (Dubuisson and Masson, 1993), or
the combined sequential one-class and multi-class classifier
(Landgrebe et al., 2004) should be used. A reject-option
classifier is demonstrated in Fig. 1.

It can be seen that the class-conditional density p(xjxt) is
thresholded such that any object x assigned to xt will only
be accepted if p(xjxt) > td. Thus for the distance-based
reject-option classifier, TPr (Eq. (2)), FPo

r and FPr
r (Eq.

(4)), can be written for the general multivariate case as:

TPrðh; tdÞ ¼
Z 1

�1
pðxtÞpðxjxtÞIðxjtd; hÞdx

FPo
r ðh; tdÞ ¼

Z 1

�1
pðxoÞpðxjxoÞIðxjtd; hÞdx

FPr
rðh; tdÞ ¼

Z 1

�1
pðxrÞpðxjxrÞIðxjtd; hÞdx

ð5Þ

where I(xjtd,h) is the indicator function:

Iðxjtd; hÞ ¼
1 if pðxjxtÞ > td and

pðxtÞpðxjxtÞ � pðxoÞpðxjxoÞ > h

0 otherwise

8><
>: ð6Þ

Eq. (5) can be used to study the complete operating char-
acteristic of a classifier. Note that in a real situation, it is
unlikely that the class-conditional densities are known. A
typical classifier evaluation in these situations involves
computing the ROC curve on an independent test set.

We define the complete operating characteristic by all
combinations of h and td. The operating characteristic of
the example in Fig. 1 is illustrated in Fig. 2. This is similar
to standard ROC analysis, in which the TPr is traded off
against the FPr. Here the FPr is decomposed into FPo

r

and FPr
r, resulting in a 3D ROC plot with a 2D ROC

surface.
In Fig. 2, the operating characteristics are shown for a

number of rejection thresholds (td), and across all classifi-
cation thresholds (h). The left-column plots depict the
class-conditional density distributions, with the respective
td shown in relation to the actual xr distribution. In the
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Fig. 2. Fixed td, and varying h.
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centre column plots, the ROC curve is presented for all
TPr, FP

o
r , and FPr

r. By projecting this on the ðTPr;FP
o
r Þ-

plane, the traditional ROC curve is retrieved. The plots
in the right column simplify the 3-dimensional surface,
plotting the classification performance in terms of mean
classification performance for each h and td, against FP

r
r.

The mean classification performance is defined as

pmeanðh; tdÞ ¼ 1� ð1� TPrðh; tdÞÞ þ FPo
r ðh; tdÞ

2
ð7Þ

It can be observed that as td is increased, the FPr
r progres-

sively decreases: the amount of unseen data that is classi-
fied as target decreases, and consequently the rejection
performance increases. In the top row (td = 0) there is no
rejection protection, the classification performance is max-
imal but the rejection performance is very poor (high FPr

r).
As soon as some td is enforced, the FP

r
r decreases radically,

indicating a lower probability of accepting a randomly dis-
tributed example from xr. Even a very loose boundary in
the tails of the xt distribution significantly decreases the
volume of the decision space. As td is increased, the rejec-
tion performance increases at some sacrifice of classifica-
tion performance. This effect is most apparent when td is
quite high, due to the fact that more target examples from
the tails of the distribution are excluded.

This synthetic example makes it evident that classifica-
tion and rejection are interrelated. In Section 3, these
extended ROC plots are used to derive a performance
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criteria to evaluate different models in these situations, and
provide insight into threshold selection.

3. Model selection and optimisation

Now a model selection criterion is formalised that
makes use of the full operating characteristics, extending
ROC analysis to this problem domain. This will be devel-
oped and demonstrated by a synthetic example using three
different classifier models.

3.1. Model selection

To select the optimal model, an evaluation criterion for
the 3D ROC should be defined. In (Mossman, 1999; Drei-
setl et al., 2000; Ferri and Hernandez-Orallo, 2004) the 3-
dimensional volume under the 2-dimensional surface is
related to the overall performance. This is an extension
of the AUC (area under the ROC curve) (Bradley, 1997).
In a similar manner, we derive an evaluation of the 3-
dimensional ROC in our analysis, providing a measure of
the classification–rejection performance for the classifier.
The ROC in this case plots the TPr achieved against FPo

r

and FPm
r (see the example in Fig. 2). Plotting 1 � TPr

against FPo
r and FPm

r , it is evident that the volume under
this ROC surface should be minimal in the ideal case,
implying generally that the classifier achieves low classifica-
tion error rates, and has high rejection performance (low
volume of target decision space). Formalising this perfor-
mance criterion, we derive the VUC (volume under the
ROC):

VUCðh; tdÞ ¼ 1�
Z Z

ð1�TPrðh; tdÞÞdFPo
r ðh; tdÞdFP

r
rðh; tdÞ

ð8Þ
The volume itself is subtracted from 1 to form a perfor-
mance measure (high scores are favourable). In some cases
it may be sensible to also integrate over a restricted range
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Fig. 3. Scatter-plot for the synthetic example. The left plot shows the data avail
unseen class exists that should be rejected. The right plot also shows the class
classifiers are labelled LDC, QDC and MOGC, respectively.
of FPo
r ðh; tdÞ (by restricting the range of h). This effectively

analyses a patch of the ROC surface. This is because an
AUC integrated over all classification decision thresholds
is not always ideal. This occurs in the case in which the
ROC surfaces of two different models intersect. In this case
model selection is operating-point dependent (Adams and
Hand, 1999), and thus the ROC should only be analysed
for a range of interest.

3.2. Evaluation on artificial data

In Fig. 3, a scatter-plot of the data is shown. The left
plot shows the data available in training (xt and xo only),
and the right plot shows an additional reject-class uni-
formly distributed, assumed to occur during testing. The
dataset consists of 1600 xt examples, 800 xo examples,
and 2400 xr examples. The experimental procedure
involves using 80% of the data for training, and 20% for
testing, with xr excluded from training. This is repeated
10 times, following a randomised hold-out procedure.
The right plot also depicts the decision boundary of three
different classifiers trained on the data, namely a Bayes lin-
ear classifier (LDC), a Bayes quadratic classifier (QDC),
and a mixture of Gaussians classifier (MOGC), with three
clusters per class. The decision boundary is plotted for a
single fixed classification and rejection threshold. From
the decision boundaries, it is clear that the MOGC fits
the data well, as opposed to the LDC and QDC models.
These weaker models are typical in real-high dimensional
problems where both data and computation time are lim-
ited, and thus a model choice may not be obvious.

In Fig. 4 the operating characteristics are shown for the
three classifiers. The top row shows the full operating char-
acteristics, and the bottom row depicts the mean classifica-
tion performance (see Eq. (7)) versus the FPr

r. These clearly
show that the classification–rejection characteristic varies
considerably across the different models. The MOGC is
able to achieve a higher mean classification performance
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able in training, and the right plot shows a testing scenario, in which a new
ifier decision boundaries for three classifiers, at a set operating point. The
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Fig. 4. Operating characteristics for the three classifiers. The left column consists of LDC results, followed by QDC results in the centre column, and
MOGC results in the right column. The top row depicts the full ROC, i.e. all possible operating points. The bottom row shows the mean classification
performance versus FPr

r, clearly showing the interplay between the two measures.

Table 1
Comparison of the three classifiers in the case study

VUC �rej �norej

LDC 0.846 ± 0.005 0.197 ± 0.009 0.353 ± 0.007
QDC 0.907 ± 0.003 0.116 ± 0.006 0.420 ± 0.004
MOGC 0.928 ± 0.005 0.087 ± 0.004 0.404 ± 0.003

VUC is computed for each classifier (high scores are favourable), serving
as the model selection criterion. The score �rej is the classification error
obtained on the independent tests with fixed thresholds for the classifiers
with reject-option, and �norej is the error on the same models without reject
protection.
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for a lower FPr
r than the LDC and QDC for most regions.

For example, for MOGC, it can be seen that the optimal
pmean is over 90.00% for a FPr

r of around 25.00% (based
on the assumed xr distribution). The LDC, however, only
achieves a pmean of around 80.00% for the same degree of
rejection performance. Even though the xr distribution is
unknown, it is apparent in this case that the MOGC
classifier can achieve higher rejection robustness than the
LDC for the given classification performance. A lower
FPr

r is indicative of a reduced target decision space, and
the model in question is thus less likely to accept a
randomly distributed example from xr.

In the lower plots, the top-right characteristics/curves
correspond to the case in which td = 0.0, with curves corre-
sponding to increasing td shown to the left of this. A gen-
eral observation that can be made is that for low values
of td, the classification performance decreases rapidly for
increasing td, and the FPr

r decreases (improving rejection
performance). This was expected, showing once again that
the classification and rejection performances should be
traded off, but also that for large td, both classification
and rejection performances decrease rapidly. It is also clear
that only some (typically low) values of td make practical
sense, since a large value leads to a very poor recovery of
xt examples.

In Table 1, the VUC is computed for the synthetic prob-
lem for each fold. This performance measure indicates that
the MOGC classifier is superior, significantly better than
the QDC and LDC model. This is an expected result, since
the decision boundary fits the class distribution well, pro-
viding both a high classification performance, and a lower
decision space volume for high rejection performance. The
QDC model is superior to the LDC model. Thus the VUC
measure proved to be a useful performance criterion, sensi-
tive to both classification and rejection capabilities of the
classifier. Note that in this example, computing the error
rate only (on known data) results in competitive perfor-
mance between QDC and MOGC, however the new
VUC criterion and the evaluation methodology showed
that MOGC is in fact the better choice since it is better
at rejection. Table 1 also shows the results of two other
experiments. The �rej measure shows the performance of
the three reject-option classifiers for a chosen set of thres-
holds (h = minimum error point, td = 0.05) based on 10
independent sets of data (drawn from the same distribu-
tion, with 1600 xt examples, 800 xo examples, and 3200
uniform xr examples), in which the classifiers were trained
on the original set. This performance measure is a simple
error rate measure that averages the xt and other errors:

�rej ¼ 1
3
ðð1� TPrÞ þ FPo

r þ FPr
rÞ ð9Þ
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These tests confirm the results of the VUC model selection
i.e. the MOGC is the most appropriate choice. In order to
demonstrate the advantage of using a reject-option, this
same test is repeated on the three same models without re-
ject-option, resulting in �norej. In each case it is clear that
performance is significantly worse compared to the classifi-
ers with reject-option. Interestingly, the MOGC classifier
without reject-option fared worse than the QDC model
since it optimised by surrounding the xo class, resulting
in a very large decision space i.e. poor rejection perfor-
mance.

3.3. Choosing an operating point

Based on the VUC measure, the most appropriate
model (on average) was selected. In the example, the
MOGC classifier was found to be superior, and this was
demonstrated further by computing error rates on indepen-
dent data at a specific operating point. Subsequent to the
model selection, the next step is to choose classification
and rejection thresholds best suited to the problem. In
the standard cost-sensitive approach (Provost and Fawcett,
2001), this would involve minimising the overall system
loss L, given costs and priors. Assume ct is the cost of mis-
classifying a xt example, co the cost of misclassifying a xo

example, and cr the cost of misclassifying an xr example
(ignoring to which class an error is assigned). The loss
can then be computed as:

L ¼ hpðxtÞctð1� TPrÞ þ ð1� hÞpðxoÞcoFPo
r þ tdpðxrÞFPr

r

ð10Þ

Minimising L involves computing L for all combinations of
h and td until the optimal thresholds are found (or geomet-
rically, intersecting an iso-performance surface on the ROC
surface). However in this problem, since the distribution of
xr is unknown, the concept of optimality becomes unde-
fined (true FPr

r values cannot be obtained). The synthetic
experiments have, however, shown how to analyse the im-
pact of a varying td on classification performance, and deci-
sion space volume. Thus a practical step that can be taken
in aiding optimisation is to attempt to choose a td such that
the xt decision space is minimised, without sacrificing too
much classification performance. Given this premise, we
propose that the classification threshold should be opti-
mised first. This is because we have sampled these classes
properly, allowing for a cost-sensitive design. Once h has
been chosen, a td should be selected that encloses xt. The
operating characteristics can also be helpful in inspecting
the sensitivity over a range of td, where a less sensitive
choice is to be preferred.
2 Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
mfeat/.
3.4. Summary

In summary, the following steps are involved in generat-
ing the full operating characteristics, given a model D, a
target class xt, and an outlier class xo:
• Assume a distribution for xr, for example uniformly
distributed around xt, and generate data accordingly.

• Train D using xt and xo.
• Define a range of classification and rejection thresholds
h and td. For each threshold, compute the respective
TPr, FP

o
r , and FPr

r, using independent sets of xt and
xo, and the xr data.

The performance criterion VUC can then be used to per-
form model selection, and the thresholds can be chosen
using the operating characteristics.

4. Experiments

In this section a number of real-world examples are
conducted, demonstrating practical application of the
proposed ROC analysis methodology. Model selection
criteria are compared for a number of competing models,
and the performance of a classifier with reject-option is
compared to the same model, without reject-option. In
each case, an independent test set is applied, in which the
xr class is unseen in training, simulating the effect that an
unseen class may have on each classifier. These validation
tests are performed to demonstrate the applicability of
the VUC measure in these ill-defined classification
problems.

The following datasets have been used for these experi-
ments, in which the objective is to detect target examples as
well as possible, without accepting too many examples
from xo or xr:

(1) Phoneme: This dataset is sourced from the ELENA
project (ELENA, 2004), in which the task is to distin-
guish between oral and nasal sounds, based on five
coefficients (representing harmonics) of cochlear
spectra. In this problem, the ‘‘nasal’’ class is chosen
as xt. A k-means clustering is performed on the
‘‘oral’’ class, requesting three clusters. The first two
clusters are regarded as xo (used in training), and
the third cluster is treated as xr (not used in training).

(2) Mfeat: This is a dataset consisting of examples of 10
handwritten digits, originating from Dutch utility
maps.2 In this dataset, Fourier components have been
extracted from the original images, resulting in a 76-
dimensional representation of each digit. Two hun-
dred examples of each digit are available. In these
experiments, digits 2 and 6 are used as the target

class, digits 4, 5, 6 and 8 as xo, and digits 1, 2 and
9 as xr (not used in training).

(3) Satellite: This dataset consists of 6435 multi-spectral
values of a satellite image (Murphy and Aha, 1992),
with 36 dimensions (four spectral bands in a nine
pixel neighbourhood). Six classes have been identified



Table 2
Summary of experimental results on the Phoneme, Mfeat, and Satellite

datasets, comparing models for the VUC performance criterion (high
scores are favourable), and comparing the mean absolute percentage
difference in classification of error rates between a classifier with and
without reject-option on independent test sets

Experiment VUC Percentage gain

Phoneme

QDC td = 0.01 0.742 ± 0.011 21.67 ± 0.40
PCA-3D QDC td = 0.01 0.553 ± 0.009 �0.19 ± 0.05
MOGC 1 4 td = 0.01 0.667 ± 0.036 19.80 ± 5.60
MOGC 1 3 td = 0.01 0.678 ± 0.022 19.26 ± 6.21
MOGC 1 2 td = 0.01 0.708 ± 0.021 22.10 ± 4.03

Mfeat

Fisher NMC td = 0.70 0.341 ± 0.027 �1.81 ± 0.72
Fisher LDC td = 0.05 0.503 ± 0.034 28.49 ± 1.20
Fisher QDC td = 0.05 0.504 ± 0.032 29.22 ± 1.01
Fisher MOGC 2 3 td = 0.05 0.504 ± 0.027 29.95 ± 0.73

Satellite

Fisher NMC td = 0.70 0.374 ± 0.0188 �1.58 ± 0.25
Fisher LDC td = 0.10 0.612 ± 0.009 10.27 ± 0.26
PCA-4D LDC td = 0.10 0.489 ± 0.015 12.10 ± 0.34

The standard deviations are also shown over the 10-fold experiments.
PCA is a principal component analysis representation, followed by the
number of retained components, and Fisher is a Fisher-projection to 1-
dimension. NMC is a nearest mean classifier, LDC is a Bayes linear
classifier, QDC is a Bayes quadratic classifier, and MOGC is a mixture of
Gaussians classifier followed by the numbers of mixtures used per class.
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to characterise the topography, labelling the dataset
accordingly. In the experiments, the fifth class is con-
sidered xt, classes 1, 4, and 6 are considered known
xo classes, and classes 2 and 3 are unseen in training
(xr).

The following procedure is used in each experiment
(similar to the case study presented in Section 3):

• An independent test set (xt examples only) is extracted
from the original data x (containing examples from xt

and xo), resulting in xval1, with the remainder called
xtr. In the experiments, 50% of the target examples are
extracted.

• Various clusters/subclasses of the xo class in x are
extracted, resulting in xval2, with x0

tr remaining. It is
important to note that xval2 now contains data that will
not be used to train the classifier, but will be applied
only in the validation test. Since these extracted classes
may have a very different distribution to that of x0

tr, a
classifier with reject-option is expected to result in better
performance.

• xval1 and xval2 are combined into a single validation set,
xval.

• The VUC for each model is estimated following a 10-
fold randomised hold-out procedure, utilising the x0

tr

dataset, and an assumed uniform distribution of xr.
Since in these ill-defined problems, the xr class is absent
(by definition), we assume that examples of this class can
occur randomly in feature space (a worst-case scenario).
Thus an additional class is generated artificially such
that these new data surround the xt class uniformly.
For efficiency reasons in high-dimensional problems,
the data are generated in a hyper-sphere rather than a
hyper-cube (Tax and Duin, 2001). Additionally the data
are generated in a subspace of the target class, within a
PCA (principal component analysis) subspace, retaining
99.9% of variance. This effectively results in the genera-
tion of new objects (the new examples can be reprojected
into the original space using the inverse of the PCA
mapping). The original data are scaled to unit variance,
and the artificial data are then generated within this
space with a radius of 1.1 of the covariance of xt.

• Following the VUC estimation, the classifier is trained
using the full x0

tr data. The classification threshold is
optimised to the equal error point, and an appropriate
reject threshold is chosen for each dataset according to
the operating characteristics (obtained in the previous
step). The same data are then used to train a second clas-
sifier, using the same model, but without reject-option.
The validation set xval is then applied to each classifier,
and the respective error rates of each classifier are
computed, denoted �rej for the reject-option classifier,
and �norej for the classifier without reject-option. The
mean percentage difference in classification error
rates between a classifier with and without reject-option
is then computed (100mean(�rej � �norej)). It is expected
that the reject-option classifier should result in improved
performance if the independent xval2 data distribution
varies considerably from the trained distribution.

Thus the objectives of the experiments are to validate
the usage of the performance criterion in these realistic sce-
narios, and show cases in which a good model choice, and
reasonable choice of thresholds results in a performance
improvement. Note that real data are only used in the val-
idation step, resulting in a realistic set of experiments.

In Table 2, the experimental results are presented. Three
groups of results are shown, corresponding to the Pho-

neme, Mfeat and Satellite experiments, respectively. The
first column describes the classifier used, as well as the
respective feature extraction procedure, and the rejection
threshold used for the validation test. The second column
gives the VUC results for each model (with standard
deviation shown over 10 folds), in which high scores are
favourable. In the third column, the reject-option classifier
error rate is compared to the same classifier without reject-
option. The error rate percentage of the classifier without
reject-option is shown subtracted from the error rate per-
centage of the classifier with reject-option. A positive result
here indicates the percentage improvement (and a negative
value indicates the reject-option classifier has performed
worse). Note that the test set here consists of both an inde-
pendent test set from xt, and an unseen class/cluster, and
thus this measure gives an overall impression of the classi-
fication–rejection performance improvement.
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In the Phoneme results it can be seen that four of the five
models result in a large performance improvement in the
independent tests. The PCA-3DQDCmodel does not result
in improved performance, which is also supported by a
lower VUC. The QDC model performs much better, indi-
cating that dimensionality reduction is not appropriate here
(the original data only have five features). This argument is
also strengthened by the higher VUC measure. In the three
mixture-of-Gaussian tests, it seems apparent that a lower
number of mixtures results in better performance. The
Mfeat experiments consider four different models following
a Fisher dimensionality reduction. In the case of the NMC
(nearest mean classifier), it should be mentioned that small
values of td results in no rejection at all, and only very large
values result in rejection protection. However, at this point,
the impact on classification performance is severe, and thus
the model is unsuitable for this task. This is also suggested
by a lower VUC score. The three other models result in
comparable performance. In the Satellite experiments, the
NMC results in a similar situation to that seen in the Mfeat

case. Both the Fisher LDC, and the PCA-4D LDC models
result in a similar performance in the validation test. How-
ever it can be seen that the Fisher LDC has a significantly
larger VUC. This discrepancy may be due to the fact that
the VUC averages performance over all possible operating
points, and is thus not locally sensitive. In this case it may
make more sense to integrate over a smaller range (given
that some prior knowledge about the problem exists). In
these two cases, a more local VUC was performed, denoted
VUC2, in which the integration was applied over the
full range of h, and over a restricted td range, 0.0 <
td 6 0.2. These experiments resulted in VUC2(Fisher,
LDC) = 0.591 ± 0.0111, and VUC2(PCA4D,LDC) = 0.554 ±
0.012. It is clear that the performance measures are now
more similar, which is an expected result.3

On the whole, the experiments show that the derived
VUC measure is useful in identifying more appropriate
models. An important observation that can be made is that
a reject-option classifier does not always result in adequate/
beneficial protection against unseen classes. The ROC
analysis approach presented here helps to identify these
cases. Another point that should be raised is that an ade-
quate rejection threshold varies according to the problem
and model. The implication is that a reject-threshold set-
ting that does not consider the operating characteristics
may have little or a detrimental effect on performance. This
is an important consideration that is highlighted and dealt
with in this paper.

5. Conclusion

Classifiers designed to protect a well-defined target

class from ill-defined conditions, such as new unseen clas-
3 Note that since a limited range is used, this performance measure is not
bound between 0 and 1, but is instead bound by the volume over which the
integration is performed in the unit cube.
ses, are defined by two decision thresholds, namely a
classification and rejection threshold. The classification
threshold is designed to provide an optimal trade-off
between known classes, and the rejection threshold pro-
tects the target class against changes in conditions e.g.
new unseen classes.

In this paper, we discussed the fact that classification
and rejection performances are not independent, but that
there is an interplay between them. The consequence of
the interplay is that independently optimising classification
performance may be at the expense of rejection perfor-
mance, and the opposite also holds. Even though this inter-
action is expected, the fact that the unseen class is absent
makes it difficult to devise a model selection and optimisa-
tion strategy that results in a classifier with both good clas-
sification and rejection performance. This paper tackled
this problem by measuring how well the classifier protects
the target class from a uniformly distributed ill-defined
class, effectively resulting in a measure proportional to
the volume occupied by the target class decision space. This
measure aids in choosing and optimising a classifier that
reduces the risk of misclassifying an unseen class (without
too much loss of classification performance) since we can
now inspect both the classification performance, and vol-
ume of the decision space.

The investigation of this problem involved the extension
of classical 2-dimensional ROC analysis by including the
errors associated with the unseen class as an additional
dimension of the ROC. This results in a 3-dimensional
ROC surface, allowing the classification–rejection dynam-
ics to be investigated. This was demonstrated via a simple
analytic example, and subsequently used to devise a per-
formance measure involving integrating the volume of the
ROC plot, resulting in the volume under the ROC
(VUC), which is analogous to the area under the ROC
measure. Experiments were performed which showed the
effectiveness of this measure in selecting the most appropri-
ate model for the problem. Real experiments validated the
measure by including a test involving real unseen classes/
clusters, in which there was a consistency between good
VUC scores and classifier performance with respect to
the unseen data. The experiments made it clear that careful
attention should be paid in the choice of the reject thres-
hold, showing how the proposed ROC analysis can lead
to a solution involving minimal impact on classification
performance, but large impact on reducing the risk of
accepting unseen class examples.
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