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Abstract

The use of Receiver Operator Characteristic (ROC) analysis for the sake of model selection and threshold optimisation has become a
standard practice for the design of two-class pattern recognition systems. Advantages include decision boundary adaptation to imbalanced
misallocation costs, the ability to fix some classification errors, and performance evaluation in imprecise, ill-defined conditions where costs,
or prior probabilities may vary. Extending this to the multiclass case has recently become a topic of interest. The primary challenge involved
is the computational complexity, that increases to the power of the number of classes, rendering many problems intractable. In this paper the
multiclass ROC is formalised, and the computational complexities exposed. A pairwise approach is proposed that approximates the multi-
dimensional operating characteristic by discounting some interactions, resulting in an algorithm that is tractable, and extensible to large
numbers of classes. Two additional multiclass optimisation techniques are also proposed that provide a benchmark for the pairwise algo-
rithm. Experiments compare the various approaches in a variety of practical situations, demonstrating the efficacy of the pairwise approach.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In pattern recognition, the goal is to choose/optimise
representations and classifiers that provide acceptable dis-
criminability between the various classes. Typically one
output exists per class, with a new incoming object being
assigned to the highest output. The outputs can be
weighted' in order to vary the trade-offs that exist between
classes. These weights are called the operating weights®.

* Corresponding author. Tel.: +31 (0) 15 27 88433; fax: +31 (0) 15 27
81843.

E-mail addresses: t.c.w.landgrebe@ewi.tudelft.nl (T.C.W. Landgrebe),
r.p.w.duin@ewi.tudelft.nl (R.P.W. Duin).

! Even non-probabilistic classifiers, e.g. support vector classifiers can be
weighted in this manner — outputs in this case are distances to support
vectors, which are analogous to probabilities (Li and Sethi, 2006).

2 Conceptually similar to the two-class concept of “thresholds”. In the
multiclass case, weighting of the output allows for a generalisation of the
ROC, with the final discrimination decision based on the highest weighted
output.
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Once a suitable classifier model has been found, the next
step is typically to optimise these operating weights to suit
the given problem. For example in the equal/minimum-
error rate situation (Duda et al., 2001), e.g. face detection
(Pham et al., 2002), errors should be the same for all clas-
ses. In detection problems it is often the case that some
errors should be fixed, and the others minimised (see, e.g.
Edwards et al., 2004; Landgrebe et al., 2005). In cost-sensi-
tive problems, different classification outcomes have associ-
ated costs/penalties (Bishop, 1995), and so the optimisation
problem is to find a set of operating weights that result in
the lowest overall loss/risk. Other optimisation scenarios
exist, such as the necessity to choose and optimise the best
classifier when class priors/costs are unknown (see Provost
and Fawcett, 2001; Adams and Hand, 1999), or varying
(Landgrebe et al., 2006). At this point we emphasise that
of interest in this case is the optimisation of classifier oper-
ating weights, and not on internal parameters of the model.
Any internal adjustment of the model e.g. varying the
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thresholds in a one-vs-all multiclass scheme, results in a
new model, and a new operating characteristic.

Receiver Operator Characteristic (ROC) analysis (Metz,
1978; Fawcett, 2005) was developed for the two-class case,
allowing the classifier threshold to be studied for all possi-
ble combinations of the two respective classification errors
involved, namely the false positive rate, and the false neg-
ative rate (with each combination known as the operating
point). As such, this tool has become standard in the afore-
mentioned optimisation scenarios, but applying it to the
multiclass case is more challenging, and poorly understood.
Recently some work has begun in this area, such as an
extension to the three-class case in (Mossman, 1999), a
study of the feasibility of the extension in (Srinivasan,
1999), and investigating some formalisations in (Ferri
et al., 2003; Edwards et al., 2004). For the imprecise case
in which priors/costs are unknown, the work in (Hand
and Till, 2001) presents an approximate method for evalu-
ating classifiers in these conditions, extending the well-
known Area Under the ROC (AUC) measure (Bradley,
1997), resulting in the approximate VUS (Volume Under
the ROC Surface).

However, even though several works have investigated
multi-class operating characteristics, no known methods
exist that result in the practical construction of a multiclass
ROC that extends to problems involving large numbers of
classes, which is necessary in order to perform the optimi-
sations and analyses as discussed earlier. This is attributed
primarily to the computational complexity of the analysis.
Recently two approaches emerged that are useful for multi-
class cost-sensitive optimisation, capable of using input
costs and priors to optimise operating weights. The first
is a hill-climbing approach as presented in (Lachiche
et al., 2003) that can easily be adapted to the cost-sensitive
case, and the second is an evolutionary approach (Everson
et al., 2005), attempting to find a global solution to the
minimisation problem. The problem with the former
approach is that it is very susceptible to local minima, deal-
ing with interactions between classes sub-optimally. The
algorithm optimises the classifier operating weights succes-
sively, which is not ideal for arbitrary interactions, but nev-
ertheless improves performance in many cases. The latter
approach has only been demonstrated in problems with
low numbers of classes. The approach involves sampling
of operating points, which becomes less tractable as the
number of classes increases, due to an exponential compu-
tational complexity (shown later).

In this paper the multiclass ROC approach is forma-
lised, and computational complexity investigated as a func-
tion of both the number of classes, and the resolution of
the operating characteristic. This shows that computing
the multiclass ROC is feasible for low numbers of classes
(C), but rapidly becomes intractable as C increases. A
new multiclass ROC approach is proposed, in which
ROC curves are generated between each type of classifica-
tion error, characterising the interaction between each pair,
but ignoring other interactions. In the cost-sensitive sce-

nario, these characteristics are interrogated to obtain the
most optimal operating weight pairs to suit the priors
and costs. This involves exhaustively searching pair combi-
nations in order to select the most appropriate weight
pairs, followed by a normalisation procedure that “cali-
brates” weights against each other. The number of weight
pairs is reduced for large C problems by excluding weight
pairs exhibiting little/no interaction to reduce computation
required. Even though this algorithm is not optimal, it will
be shown that it is both computationally tractable, and per-
forms well over many real problems. In addition to the
pairwise multiclass ROC method, this paper also presents
two simple approaches to the cost-sensitive optimisation
problem, consisting of a naive approach that ignores inter-
actions between operating weights, and a greedy-search
approach that accounts for interactions (to an extent).
These methods provide a benchmark with which to com-
pare the pairwise approach. As a further benchmark, the
algorithm in (Lachiche et al., 2003) is also included.

The paper is structured as follows: a notational overview
and formalism is presented in Section 2, followed by a
formalisation of multiclass ROC construction and an anal-
ysis of computational requirements in Section 3. The naive
and greedy multiclass cost-sensitive optimisation algo-
rithms are presented in Section 4, followed by the proposed
all-pairs approach in Section 5. A variety of experiments
are discussed in Section 6, demonstrating the various algo-
rithms in cost-sensitive scenarios. Conclusions are given in
Section 7.

2. Notation and formalisation

Consider a C-class problem, with each class denoted
w1, W, . . ., ¢, and new observations characterised by vec-
tor x, with dimensionality d. The class conditional proba-
bility of w; is denoted p(x|w;), with prior probability
p(w;). Class assignment is based on the highest posterior
output, denoted p(w,|x), for the ith class, formalised as

argmax"_ p(w;|x) (1)
The posterior is computed via Bayes formula:
p(x|w;)p(w;)
x|wi)p(wr) +p(x|w2)p(wr) + -+ p(x|oc)p(wc)
2)
A multiclass classifier is evaluated by inspection of a Cx C
dimensional confusion rate matrix ¢ as defined in Table 1.
Each element is referenced as ;. In order to compute each
confusion &;; (the fraction of w; classified as w; weighted by
priors), the following integration is performed:

¢ = plo) / p(xlo)(x)dx (3)

The indicator function /{x) specifies the relevant domain:
Vk,k # j
(4)

p(wi|x) :p(

1(x) = { L if ploylx) > pox|x)
/ 0 otherwise
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Table 1 Table 2

Defining the multi-class confusion rate matrix & Defining the multi-class cost-matrix s

True Estimated w1 (o) .. wc
(O] (O)) wce [} S1,1 S1,2 S1,c
= = () 821 S22 e 82,

wy S1,1 12 SKe : : ? .

W2 &t & s ée

. . . Oc Sc.1 Scp2 ce Sc,c

wc e len cee exe

Eq. (3) allows any confusion matrix output to be com-
puted, generalised for both diagonal elements (perfor-
mances), and off-diagonal elements (errors). In the
practical case where distributions are unknown, and only
representative examples per class are available, a confusion
matrix ¢m is constructed, generated via application of a
representative independent test set. These e¢m outputs are
normalised by the absolute number of objects N; per class

w;, N=[Ny, N», ..., No|', resulting in the confusion rate
matrix, where each element &;; = ;"’f

Each posterior output p(wlx) can be weighted by the
scalar ¢;, ¢; = 0, in order to control trade-offs between
the various classification errors (note that all classifier out-
puts are scaled between [0, 1], irrespective of the classifier
type). The classifier weight vector @ =[¢1, ¢, ..., ¢c]is
thus the mechanism for manipulating a classifier’s decision
boundary. Note that there are C — 1 degrees of freedom,
and thus in the two-class case, @ =[¢;, (1 — ¢1)], since
there is only one degree of freedom. Similarly, where
C>2, one of the weights is generally set to an arbitrary
positive value, e.g. for a five-class problem @ =[1, ¢,
¢d3, ¢4, Ps]. Class assignment can thus be modified as

argmax_, ¢;p(c|x) (5)

In the cost-sensitive case, the optimisation goal is to mini-
mise the various classification errors, using a framework in
which the importance of each error is weighted via a clas-
sification cost, and the respective prior probability. The
cost-sensitive situation is typically evaluated by considering

Conditional densities
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the overall system loss, L, given a matrix of costs s (see
Table 2), and prior probabilities. Now the loss can be de-
fined (in this paper the profits (diagonals) are set to zero):

L= Zp(a)i) (Z éi,jsiui) - Zp(wi)éi,isi,i (6)

i=Lit)

In the left of Fig. 1, a four-class example is shown for two
different operating points, consisting of Gaussian-distrib-
uted classes i, w», ..., w4, With means occurring at
= =3, 1o =0, u3 = 3, yuy = 6, respectively, with unit var-
iance. The left plot shows an operating point involving
equal priors and @ =[1.0, 1.0, 1.0, 1.0], and the right plot
shows another operating point ¢ =[1.0, 0.3, 1.0, 1.0], in
which &, decreases at the expense of &, ;.

3. Multiclass ROC
3.1. Implementation

Referring to Fig. 1, the plots show only two operating
points, corresponding to two different operating weight
settings. In fact, any combination of weightings results
in a different operating point. The challenge in multiclass
optimisation is in understanding the relation between a
weight modification and the corresponding alteration of
the confusion matrix, which depicts the consequences of
the new operating point. Multiclass operating weight
(analogous to threshold) optimisation is thus the process
by which the optimal set of weights @* is found to suit
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Fig. 1. Probability density functions for the four-class example with known distributions. Two operating points are shown, with the left plot involving

equal output weighting, and the right with a higher ¢, and lower ¢;.
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the problem at hand. Note that there may be multiple
optimal solutions for C> 2. Multiclass ROC analysis
involves the generation of a hypersurface consisting of
all possible combinations of @, allowing these various pos-
sible confusion matrices to be characterised. The dimen-
sionality of the hypersurface is C>— C (diagonal
elements are superfluous), which can be constructed by
adapting Eq. (3). In this case, each output between class
i and j is weighted by ¢; as follows:

£(®) = dple,) / p(xlo)T (x])dx (7)

The indicator function /(x|®) is as in 4, except each poster-
ior is multiplied by the corresponding class weight:

1 if ¢p(w)lx) > ¢paw|x)
Vk, k=1,2,...C,k#j (8)
0 otherwise

1(x]®) =

Since the classifier has (C — 1) degrees of freedom, the
ROC is constructed by generating a (C — 1) dimensional
grid of all possible operating weights @, with resolution
r. This results in a set of confusion rate matrices, corre-
sponding to each weight combination, denoted &(®). Dif-
ferent elements of the confusion matrices as a function of
@ are the dimensions of the ROC. An important consider-
ation for practical implementation is the choice of the res-
olution r and scale @ of each weight. The resolution must
be fine enough, and the scale adequately chosen to ensure
the operating characteristic is well sampled. Experiments
in this paper consider a logarithmic scale, sampled 80
times, with 107° < @ < 10°.

The full multiclass ROC has been computed for the ana-
lytic example (see Fig. 1), of which 3 of the 12 (4 x4 — 4)
ROC dimensions are plotted in Fig. 2, illustrating the
respective interactions. The full ROC in this case results
in 80*~' = 512 x 10° operating points.

ROC plot

r

?'gi

X% !! !!“'
3%

i 2 M

KRR

K

Fig. 2. Illustrating the ROC dimensions &, 5, & 1, and &; 5 for the example.

100 Computational complexity vs ROC resolution

10

Calculations required

Fig. 3. The relationship between computational complexity, ROC reso-
lution, and C.

3.2. Computational considerations

In the two-class case, ROC construction involves gener-
ating a one-dimensional grid of weights (since there are
C — 1 weights, there is only 1 DOF in this case), with r
steps across the output range. In the multiclass case
(C>2), computing the ROC involves the generation of a
C — 1 dimensional grid with r steps, resulting in ¥~ ! oper-
ating points. This increase to the power of the number of
classes minus 1 (O(r~')) explodes the computational com-
plexity with increasing C, becoming infeasible to compute
for all but low C problems. To illustrate the severity of this
problem, Fig. 3 plots the number of calculations (and num-
ber of memory slots for storage of the hypersurface) as a
function of the ROC resolution r, for a number of C-val-
ues. It is clear that for high C, computational complexity
becomes prohibitive. Use of a lower r does reduce the com-
putation required, but this is at the expense of poorer sam-
pling, which could lead to a poorly sampled ROC surface”.
To illustrate, consider the following real problems:

o Satellite (obtained from ELENA (2004)), which consists
of six classes of multi-spectral remote sensing data. An
ROC resolution of 80 requires 80° ' =3.28 x10°
calculations.

o Letter (obtained from Murphy et al. (1992)) consists of
26 different classes of hand-written digits, requiring
8020~ = 3.78 x 10%’ calculations for r = 80, which is
clearly prohibitive.

Thus, even though it is theoretically possible to con-
struct any multiclass ROC, only problems with low C are

3 Different classifier models, e.g. a support vector classifier or a Bayes
linear classifier, typically result in outputs (e.g. posteriors) with different
scales, and thus choosing a scale suitable to the classifier used could
improve the computational situation by allowing for a lower r.
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feasible to compute. This is the justification for seeking
approximate techniques for performing multiclass ROC
analysis.

4. Naive and greedy cost-sensitive optimisation algorithms

In the cost-sensitive case, obtaining a set of operating
weights to suit new costs s and priors p can be viewed as
an optimisation problem (Everson et al., 2005). In this Sec-
tion two simple algorithms are presented that are suitable
for this task. We stress that these approaches simply result
in a single set of weights, and not an operating characteris-
tic, and are thus unable to fulfil several functions that are
made possible by ROC analysis. However, they are still
useful and relatively straightforward in the cost-sensitive
scenario, allowing for an adaptation of an unoptimised
classifier (the ‘““default” classifier). These algorithms also
provide a basis for comparison with respect to the pairwise
ROC approach.

The objective of both algorithms is to obtain the most
appropriate weight vector @*, achieved by searching for a
solution that reduces an initial system loss (using Eq. (6))
by varying individual classifier weights. These approaches
cannot guarantee a global minimum, but should always
improve on an initial “default” classifier that was trained
to a typically equal-error operating point (and accounting
for class priors). This initial classifier results in a baseline
confusion rate matrix used to obtain the initial loss for a
given set of conditions (equivalent to operating weights
set to unity).

4.1. Naive multiclass cost-sensitive optimisation

The Naive algorithm attempts to optimise operating
weights to given cost s and prior probability p conditions
by varying each operating weight successively and indepen-
dently, and inspecting overall system loss (Eq. (6)). This
approach ignores interaction between different weights,
and simply “optimises’ each one in turn.

The following steps are taken: a threshold vector © is
computed, 107> < @ < 10%, with resolution r, using a loga-
rithmic scale. In the first step the first weight ¢, is opti-
mised, resulting in ¢j. This is obtained by varying ¢,
according to @, while other weights are fixed, and comput-
ing the loss. The minimum loss for this weight is denoted
L*(¢1|¢; =1 Vi,i#1), which is then used to obtain ¢, com-
puted using Eq. (6):

Ll = 1 Vi,i # 1) = min(L(¢, = 0)), ¢, = O(L))
)

This “optimises’ the first weight independently of the oth-
ers. The same procedure is then followed for all other
weights, resulting in an “optimal” weight value in each
case, ignoring all interactions:

L'(¢sly = 1 Viyi #2) = min(L($, = ©)), ¢ = O(L3)
L'(¢ld = 1 Vi.i #3) = min(L(gy = @), ¢ = O(L)
L'(¢ely = 1 Vii # k) = min(L(gy = ©)), ¢} = O(L})
L'($eldy = 1 Vi,i # C) = min(L(d = ©)).  ¢p = O(L;)
(10)

Even though the Naive algorithm is sub-optimal, it has a
computational complexity of O(rC) (where r is the resolu-
tion of @), extending linearly with C, and is thus scalable
to high C problems. The experiments (Section 6) show
that this approach is generally better than an un-opti-
mised approach, but is usually outperformed by other
more sophisticated algorithms that do account for
interactions.

4.2. Greedy multiclass cost-sensitive optimisation

The Greedy multiclass optimisation algorithm is quite
similar to the Naive approach, except that some degree of
interaction between weights is accounted for. This is
achieved by searching for a (local) optimal set of operating
weights by optimising weights with respect to each other in
a greedy manner. This involves randomly selecting a weight
to update, followed by optimisation relative to other
weights. Subsequently another operating weight is ran-
domly selected, and optimised while taking into account
previously optimised weights. This process is repeated until
all weights are accounted for. In an attempt to avoid local
minima, the algorithm is typically run a number of times
with different random initialisations. The algorithm is as
follows: a threshold vector @ is computed as in the Naive
case, and the weight vector @ is randomly ordered, result-
ing in @®, with the ith weight denoted qﬁf. The first weight
#% is optimised, resulting in ¢, by considering all possible
©, while other weights are fixed, and computing the loss
(Eq. (6)). The minimum loss for this weight is denoted
L (¢F|¢F = 1 Vi,i # 1), which is then used to obtain ¢},
computed using Eq. (6):

Li(¢ile; = 1Vi,i > 1) = min(L(¢} = 0)), ¢" = O(L))
(11)

The Greedy algorithm then proceeds to optimise other
weights in the order as per ®*. The primary difference to
the Naive algorithm is that weights are now updated depen-
dent on previously updated weights, as follows:
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L' (3l = ¢, by =1 Vi,i > 2)
= min(L(¢3 = 0)),¢," = O(L;)
L3167 = 1, ¢y = 3, ¢ =1 ¥i,i > 3)
= min(L(¢§ = 0)), ¢3" = O(L3)

L (19 = ¢ Vj,j <k, =1Vi,i > k)
=min(L(¢; = 9)), ¢ = O(L;)

Li(¢cld] = ¢ Vj.j < C) = min(L(¢¢ = 0)), ¢¢” = O(L)
(12)

The Greedy algorithm has a computational complexity of
O(N,r C), where N, is the number of algorithm repetitions.
This algorithm is thus also extensible to large C. A similar
algorithm was also recently proposed in (Everson et al.,
2005), using a more sophisticated search approach.

5. Pairwise multiclass ROC analysis

The pairwise ROC algorithm investigates interactions
between each pair of operating weights by analysing
ROC plots between each pair. Only the respective pair
operating weights are varied (with other weights held con-
stant), and the resultant confusion rate matrices stored.
For a given problem, the pairs that are most suitable are
then chosen to be used. This results in a much more effi-
cient algorithm than the full multiclass ROC, since only
individual pairings are considered. The algorithm is simpli-
fied further by discounting pairs which are approximately
separable based on the Area Under the ROC (AUC) crite-
rion. The limitation of this pairwise approach is that the
pairs discount interactions not included in the pair, leading
to sub-optimality, but we argue that accounting for the
most important interactions may result in a good approxi-
mation. In an attempt to cater for some degree of further
interaction, the algorithm is followed by a post-processing
step, using the Greedy algorithm in Section 4.

Given a C-class problem, the algorithm proceeds as fol-
lows: In the first step a vector of weight pair indices PI is
constructed, consisting of # pairs:

PI = [[¢lv¢2]? [¢1a 4)3]7 [¢lv¢4]v A [¢17¢C]7 [¢27¢3]»
[¢27¢4]""a[qszvd)c]a'--a[quflaquH (13)

The next step involves computing an ROC curve corre-
sponding to each pair [¢;, ¢;], j > i, denoted ROC(¢;, ¢)).
This is performed via Eq. (7), varying weights ¢, and ¢,
only, and weights ¢, =1, k=1,2,...,C, k # i,j. This
process results in % ROC plots that can be analysed or
interrogated to suit a given problem. In the full multiclass
case, the operating characteristic can be analysed directly,
but in this case, a secondary step is required to amalgamate
information from the most relevant ROC pairs.

Consider for example the cost-sensitive case given a cost
s and prior p. The task is to select the best ROC pairs to

suit the new situation, but there is an ambiguity in the pair-
wise case, since the same operating weight is optimised
(C —1) times e.g. ROC (¢,, ¢p3) and ROC (¢, ¢p4) both
result in an optimised ¢,. The pairwise algorithm selects
the pair best suited to the problem by considering all pos-
sible pairings. This is sub-optimal because interactions
between other classifier weights not in the pair are now
ignored, but in some problems certain interactions may
be more significant than others. In addition, some pairs
may involve more costly implications than others, in which
case these pairs should be favoured. Thus the philosophy of
the pairwise algorithm is to consider both the degree of
interaction, and the severity of an interclass error, resulting
in the most optimal pair selection for the given scenario.
This is practically achieved by considering all feasible com-
binations of pairs of results, and selecting the combination
with the lowest overall loss. The number of possible unique
combinations of pairings is denoted Npc, computed as fol-
lows (not to be confused with the total number of pairs):

Npc=(C-1)(C-3)(C-5)...1 (14)
For example, in the six-class case, the following PI results
(Npc= (6 — 1)(6 — 3)(6 — 5) =15 in this case):
PI = [[¢17 quL [¢1a ¢3]7 [¢17 ¢4L [¢1a ¢5]7 [¢17 (rbé])

[¢27 ¢3]’ [¢27 ¢4]7 [¢27 ¢5]v [¢27 ¢6]7 [¢37 ¢4]7

[¢31 4)5]7 [¢37 ¢6]7 [¢41 ¢5]7 [¢47 ¢6]7 [¢51 ¢6H (15)
Next, a matrix PI. is constructed from the PI pairs. Each

row consists of a different complete set of class pairs cover-
ing all classes. For example, in the six-class case, PI,. is

PI(1) PI(10) PI(15)
PI(1) PI(11) PI(14)
PI(1) PI(12) PI(13)
PI(2) PI(7) PI(15)
PI(2) PI(8) PI(14)
PI(2) PI(9) PI(13)
PI(3) PI(6) PI(15)
PI(3) PI(8) PI(12) (16)
PI(3) PI(9) PI(11)
PI(4) PI(6) PI(14)
PI(4) PI(7) PI(12)
PI(4) PI(9) PI(10)
PI(5) PI(6) PI(13)
PI(5) PI(7) PI(11)
| PI(5) PI(8) PI(10) |

In the odd case, one weight will not be included, since it
cannot be paired. This weight is assigned a finite positive
value (e.g. 1), and is excluded from the optimisation, cho-
sen based on lack of importance (e.g. low cost, or low de-
gree of interaction).

Now we have obtained a set of pairwise ROC curves
ROC(¢;, ¢)),i=1,2,..., C,j> i, and the PI. matrix, which
indicates how the ROC curves can be interrogated based on
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feasible pairings. We now focus on the cost-sensitive case to
illustrate how this ROC approximation can be used. Each
pair is optimised using the given s and p, resulting in pairs
of optimal weights. These values are stored in a matrix with
the same size as PI according to the PI pairing, denoted PI?.
In the next step, all the possible optimised weight pairings
are assembled according to PI., and re-ordered to corre-
spond with the operating weight ordering, denoted &,

At this stage an additional step is included to ““calibrate”
operating weight pairs with respect to other pairs. This is
necessary because the pairwise weight optimisation consid-
ers the loss associated with the two respective weights,
resulting in an optimal weighting between them, but the
overall weighting may differ in scale with other groups.
Thus it is important to adjust/“calibrate” the various
weight pairs with respect to each other. Importantly, the
relative values in a weight pair are held constant, but the
overall weighting is adjusted in a greedy fashion using an
approach similar to the Greedy algorithm, with a computa-
tional complexity of O(%(C>—C)). The “calibrated”

weight pairs are denoted &

Subsequent to the computation of ®"¢, the best weight
vector entry is chosen (each row in @ is one possible
operating weighting) by computing the overall system loss
according to Eq. (6) for each entry, and choosing the
weight vector resulting in the minimum loss, denoted @~.
A final optional post-processing step attempts to overcome
the assumption of pairwise interactions only by adjusting
@" according to the Greedy algorithm in Section 4, result-
ing in @**.

Computationally, the pairwise algorithm increases in
complexity as follows: firstly (1 (C*> — C)) ROC pairs must
be computed, each of which have a complexity O(r), result-
ing in an O(4(C* — C)) calculation, which is tractable even
for large C. The next step is to compute all possible pair-
ings, resulting in Npc pairs according to Eq. (14), followed
by the “calibration” step, resulting in an O(”2<(C* — C)).
While problems with lower C are quite tractable (e.g.
Npc = 48 for C=7, and Npc = 105 for C=28), larger C
problems become less so (e.g. Npc = 10,395 for C=12).
A useful approach to reduce the computational complexity
for large C problems is to remove pairs that are considered
unimportant. Fewer pairs implies a smaller Np¢c, reducing
the complexity radically for high C problems. These pairs
are chosen based on the degree of interaction — little or
no interaction implies that these pairs will play an insignif-
icant role in the optimisation process. The AUC criterion is
applied here AUC(¢;, ;) = 1 — [(&;;)d¢;;, measuring the
degree of separability for each pair, with high AUC values
implying a low degree of interaction. A threshold 7, is used
to eliminate these pairs.

In summary, the pairwise algorithm proceeds as follows
(for the cost-sensitive case):

e Weight pair indices NI are computed according to Eq.
(13), resulting in % pairs.
e ROC curves are produced for each pair in NI.

e For large C problems, the AUC criterion is applied to
each ROC pair, eliminating pairs demonstrating little
interaction according to a chosen threshold #,.

o All possible pairwise combinations PI,. are calculated,
resulting in Npc possibilities (or fewer if pairs were
removed in the previous step).

e Given a new cost/prior situation, each ROC is opti-
mised, resulting in a set of optimised weight pairs.

e Optimised weight pairs are assembled and ordered to
create M, according to PI..

e Each weight pair is “calibrated” to normalise the overall
scaling of pair groups with each other, resulting in ®".

e Each candidate weight vector in ®** is used to compute
the overall loss according to Eq. (6), with best solution
chosen as @

e An optional Greedy optimisation (Section 4) is applied
to @, resulting in @**, attempting to overcome the lim-
itation of the pairwise assumption.

5.1. Pairwise optimisation example

An example of the cost-sensitive pairwise ROC analysis
approach is discussed, referring to the synthetic problem in
the left of Fig. 4 (called the PRTools8 dataset), generated
by the PRTools pattern recognition toolbox (Duin,
2000), consisting of eight classes, with balanced priors. In
this experiment, a Bayes quadratic discriminant has been
trained on 500 independent training examples, as depicted
in the left of Fig. 4, showing the resultant default decision
boundary on an independent test set with 500 examples. In
this equal-cost, equal-prior case, it can be seen that the
classifier attempts to maintain the equal-error state. A
cost-sensitive scenario is considered, in which balanced pri-
ors are present, but the following cost matrix s occurs:

0.000
0.044
0.063
0.090
0.023
0.114
0.002
0.030

0.003
0.000
0.136
0.273
0.013
0.091
0.059
0.047

0.113
0.101
0.000
0.235
0.049
0.054
0.057
0.089

0.115
0.140
0.102
0.000
0.048
0.081
0.037
0.068

0.169
0.007
0.061
0.078
0.000
0.029
0.000
0.102

0.133
0.189
0.045
0.016
0.048
0.000
0.006
0.060

0.113
0.183
0.092
0.113
0.049
0.016
0.000
0.087

0.101
0.084
0.159
0.002
0.009
0.090
0.041
0.000

The default classifier results in a loss of 0.9359 in this exam-
ple. The pairwise ROC algorithm attempts to reduce this
by finding a new set of operating weights, resulting in a loss
of 0.6250 (with no post-processing), which is an improve-
ment over the default case. The following operating
weights result:

@ = [0.1000,0.9000,0.7875, 0.2125,0.9250,
0.0750,0.7875,0.2125] (17)
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Fig. 4. Comparing decision boundaries for an eight-class problem in the balanced prior/cost case (left), and in the imbalanced case optimised using the

pairwise algorithm in the right plot.

These operating weights are applied to the trained classi-
fier, resulting in the decision boundary depicted in the right
plot. For comparative purposes, the Naive algorithm
resulted in a loss of 0.8081 which is better than the default
case, but worse than the pairwise algorithm and the Greedy
algorithm resulted in a loss of 0.6347, which is similar to
the pairwise algorithm result.

6. Experiments

A number of experiments are undertaken over a variety
of datasets in order to assess the applicability and efficacy
of the pairwise multiclass ROC approach, as well as the
Naive and Greedy approaches in the cost-sensitive scenario.
The hill-climbing algorithm from Lachiche et al. (2003) is
also compared, called Lachiche. Two sets of experiments
are performed, consisting of synthetic and real datasets.
The synthetic experiments analyse performance of the var-
ious algorithms in synthetic scenarios suited to the pairwise
algorithm, and also investigate the impact of a growing
number of classes. The real experiments compare perfor-
mance in realistic scenarios. A trained classifier which is
unoptimised (the “default” classifier) is used as the basis
for the comparison. The various problems are studied over
many different misallocation cost scenarios in order to
assess the strengths, weaknesses, and generality of the var-
ious algorithms over many situations.

6.1. Methodology

Each dataset is analysed, and an appropriate classifier
trained (independently), and tested on an independent test
set. The chosen classifiers are not necessarily optimal, since
the objective is to demonstrate how a classifier can be tuned
to a new operating point, rather than how to design a
classifier.

The experimental methodology involves the generation
of 50 different random cost-matrices (sampled uniformly,
and zero diagonal elements), with priors held constant,

and comparing the results of the various multiclass
cost-sensitive optimisation algorithms. Each different cost-
matrix is a new scenario, weighting both inter- and intra-
class errors in a variety of different combinations, with the
experimental objective of obtaining a diverse set of scenar-
ios with which to fairly compare different algorithms. The
results of the various algorithms are benchmarked against
the default unoptimised classifier, with the loss measure
used to evaluate performance (Eq. (6)). For each new set
of costs, the following algorithms are compared:

o Default algorithm, in which no optimisation occurs, and
the overall loss is simply computed given the default
confusion matrix.

o Naive algorithm, as described in Section 4.

o Greedy algorithm, as described in Section 4, with N, = 3.

o Lachiche algorithm, implemented according to Lachiche
et al. (2003).

e Pairs algorithm, which is the multiclass pairwise algo-
rithm as described in Section 5.

e PairsG algorithm, which is the same as the Pairs algo-
rithm, but the post-processing Greedy optimisation step
is included, using the first stage to initialise the search,
attempting to overcome the pairwise limitation.

Even though loss (or cost) is a useful measure to observe
relative differences between algorithms, it is dependent on
the number of classes, and the priors, and scales according
to the costs. This makes it difficult to assess the absolute
benefit of an optimisation, and how well the classifier is
performing for a given set of costs and priors. In (McDon-
ald, 2006), the L measure is rescaled using s and p into the
Mean Subjective Utility Score (MSU), that overcomes
these issues, resulting in a performance measure (higher
scores imply improvement) that scales between 0 and 1:

C C
MSU=Y"{ Y 5i,js;j> (18)

i=1 \j=Li#j
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This measure can now be used to gauge the percentage
improvement that an optimisation may have, instead of
using an arbitrary scale. For example, in Section 5.1, the
Default classifier resulted in a loss of 0.9359, and the pair-
wise optimisation reduced this to 0.6250. The degree of
improvement is not known, but the MSU scores in this case
are 0.8016 and 0.8675, respectively, implying that the pair-
wise approach has improved performance by 6.59%. Thus
the MSU score is chosen to compare results since we can
immediately assess the impact an optimisation has on
performance.

In summary, for each experiment, 50 different cost-sen-
sitive scenarios are considered for the various approaches,
each of which results in a new operating weight vector. This
is used to weight the classifier outputs, resulting in a new
confusion matrix based on the independent test set. Each
approach is compared to the default unoptimised classifier,
with the MSU measure showing the percentage improve-
ment. The experiments consider the overall improvement
the various approaches give over the various scenarios.
Note that if an optimisation results in a performance worse
than the default case, the improvement in performance is
considered to be zero.

(19)

6.2. Dataset descriptions

The various algorithms are evaluated by considering a
wide variety of problems. In Table 3, the experimental data-
sets are summarised in terms of training/test sizes, numbers
of classes, and dimensionality. Also included are the num-
ber of pairs involved in each case, followed by the AUC
threshold ¢, used (if any), which reduces the numbers of
pairs used, shown in the ‘Pairs2’ column. The table then
shows which classifier has been chosen in each case, as well
as the mean classification error on the default classifier
e =mean(}., jczli,«nj,iyéj) based on the test set. The
classifier ‘qdc’ is a Bayes quadratic classifier, ‘mogc’ is a

Table 3

1755

Bayes mixture of Gaussians classifier followed by the num-
ber of mixtures, ‘pca’ is a principal components feature
extraction, followed by the number of components used,
and ‘fisherm’ is a Fisher projection on the original data.
The first two entries are the synthetic datasets, with the
remainder consisting of real datasets. The PRTools8, Let-
ter, and Satellite datasets have been introduced earlier.
The PRToolsl6 dataset is a second synthetic dataset based
on the PRTools8 dataset, with a repetition of the eight-clas-
ses in feature space, resulting in 16 classes (simply by adding
a value of 10 to both features). The CBands dataset consists
of chromosome band profiles (Houtepen, 1994). The Digits
dataset consists of examples of 10 hand-written digits, orig-
inating from Dutch utility maps (available from Murphy
et al., 1992). In this dataset, Fourier components have been
extracted from the original images, resulting in a 76-dimen-
sional representation of each digit. Comparing ¢, for the
Letter and Chands, it can be seen that the Chands appears
to contain more interactions, since more pairs result even
with a lower threshold, suggesting that there is a higher
“intrinsic complexity” than in the Letter case. Computa-
tionally, the pairwise algorithms for the PRTools16, Letter,
CBands, and Digits datasets used a reduced number of pairs
by eliminating the least interacting pairs. This reduced the
Npc in each case, radically reducing the computation
required, since this becomes the determining factor with
respect to computational complexity when C is large.

6.3. Results

In Table 4, the results of the various algorithms are sum-
marised over the 50 different cost-sensitive scenarios for
each dataset. Each result subtracts the MSU score of the
respective algorithm with the MSU result (%/100) of the
default unoptimised classifier. Higher results thus indicate
larger improvements by the respective algorithm. The table
attempts to result in an overall analysis of the use of each
algorithm, showing the minimum, median, maximum, best,
and mean performance over the 50 different conditions.

The PairsG and Greedy algorithms are the two most
promising approaches, which are compared directly via
Table 5. These results show the number of experiments
(out of 50) that the PairsG algorithm was superior.

In order to illustrate the experimental process in detail,
the full results of the Letter dataset are shown in Fig. 5,

Important dataset statistics, showing number of train/test objects, the number of classes, dimensions, number of pairwise ROC curves required, the

pairwise AUC threshold 7,
optimised classifier

followed by the actual number of pairs used (‘Pairs2’), the classifier model, and the mean classification error e of the un-

Dataset Train/test C d Pairs I Pairs2 Classifier € (%)
PRTools8 500/500 8 2 28 - 28 qdc 13.05
PRTools16 1000/1000 16 2 120 0.996 17 qdce 13.05
Letter 16,000/4000 26 16 325 0.980 22 fisherm qdc 12.50
Chands 6000/6000 24 30 276 0.975 34 pcalO mogc2 17.63
Digits 1000/1000 10 76 45 0.980 10 Ide 20.50
Satellite 4435/2000 6 17 15 - 15 fisherm mogc2 12.50
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Table 4
Comparing the various algorithms for each dataset, summarising results
over 50 different cost-sensitive scenarios

MSU results for each experiment
0.93 T :

% Default
< Greedy

Dataset Algorithm Min Median Best Mean
PRTools8 Naive 0.000 0.027 0.108 0.030
Greedy 0.021 0.054 0.147 0.058
Lachiche 0.000 0.000 0.071 0.002
Pairs 0.023 0.057 0.148 0.060
PairsG 0.023 0.058 0.148 0.061
PRTools16 Naive 0.000 0.022 0.094 0.022
Greedy 0.017 0.047 0.132 0.055
Lachiche 0.000 0.000 0.000 0.000
Pairs 0.019 0.050 0.135 0.057
PairsG 0.019 0.051 0.135 0.057
Letter Naive 0.003 0.015 0.026 0.015
Greedy 0.018 0.027 0.039 0.028
Lachiche 0.000 0.000 0.000 0.000
Pairs 0.014 0.024 0.036 0.024
PairsG 0.021 0.031 0.042 0.032
Chands Naive 0.000 0.017 0.045 0.019
Greedy 0.013 0.030 0.060 0.031
Lachiche 0.000 0.000 0.000 0.000
Pairs 0.009 0.025 0.054 0.026
PairsG 0.014 0.032 0.061 0.032
Digits Naive 0.005 0.056 0.184 0.064
Greedy 0.033 0.081 0.199 0.090
Lachiche 0.000 0.000 0.164 0.011
Pairs 0.034 0.082 0.199 0.094
PairsG 0.037 0.086 0.201 0.098
Satellite Naive 0.000 0.009 0.084 0.007
Greedy 0.000 0.025 0.120 0.035
Lachiche 0.000 0.000 0.082 0.005
Pairs 0.000 0.033 0.135 0.040
PairsG 0.000 0.034 0.134 0.041

L Naive ||
0.92 <vl v_ PairsG

Each value represents the difference between the algorithm MSU perfor-
mance and the default classifier performance, showing the minimum
(Min), median (Median), maximum (Best), and mean (Mean) performance
across the 50 runs. Larger differences are favourable. The best performers
per statistic are highlighted in bold.

Table 5

Comparing the Pairwise algorithm with post-processing, with the Greedy
algorithm, indicating the percentage of experiments in which the PairsG
algorithm was superior

Dataset PairsG > Greedy (%)
PRTools8 80
PRTools16 96
Letter 98
Chands 70
Digits 88
Satellite 74

comparing the various MSU results for 50 different cost-
sensitive scenarios. It can be seen that the default unopti-
mised classifier is consistently inferior. The Naive algorithm
is consistently better than the default classifier, but is infe-
rior to the Greedy and PairsG algorithms. The PairsG algo-
rithm is superior in most cases, suggesting that this is
generally the best approach. The Pairs algorithm (omitted)
did not work well by itself, suggesting higher order (i.e. >2)
interactions. However, the superior performance of the

N
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Fig. 5. Detailed results for the Letter dataset, comparing MSU perfor-
mance (larger scores are better) across 50 different experiments, involving
randomly varying cost specifications.

PairsG algorithm shows that the Pairs algorithm did pro-
vide a good starting point for the post-processing, by con-
sidering the most important pairs. The Lachiche results are
omitted because no improvements resulted under any
conditions.

6.3.1. Synthetic datasets

The first two entries in Table 4 summarise the perfor-
mance on the two synthetic datasets. The Pairs and
PairsG algorithm perform best in both cases, with little
difference in performance between them. This is because
these datasets suit the Pairs algorithm since there are only
pairwise interactions. The Lachiche algorithm results in no
improvement in most cases for the first dataset, and none
at all for the second. The Naive algorithm generally results
in an improvement in performance, but is outperformed
by the Greedy and Pairs algorithms. This is because of
the limitation of the Naive approach, which is prone to
local minima. The Pairs algorithm outperforms the
Greedy approach here because all interactions are
accounted for. Referring to Table 5, it can be seen that
the PairsG algorithm outperforms the Greedy algorithm
more often as the number of classes increases. This shows
that the pairwise approach scales with increasing C,
whereas the Greedy approach becomes more susceptible
to local minima.

6.3.2. Real datasets

Referring to Table 4, in general, the PairsG algorithm per-
forms best overall. In the Digits and Satellite cases, the Pairs
algorithm performs well (better than the Greedy approach),
showing that in some cases the raw algorithm is robust. This
suggests that these datasets may be dominated by pairwise
interactions. In the case of the Letter and Chands datasets,
the Pairs approach is inferior to the Greedy algorithm,
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suggesting important higher-order interactions. The inclu-
sion of the post-processing (PairsG) results in superior
performance, showing that the initial weighting from the
pairwise algorithm is in fact useful. The reason is that the
initial Pairs algorithm optimises the most important inter-
actions for the given conditions, which is a good starting
point. As in the case of the synthetic experiments, the Naive
algorithm improves performance rather consistently, but
as expected is inferior to the more sophisticated Greedy
approach. The Lachiche algorithm occasionally results in a
significant improvement in performance, but most scenarios
result in none at all. The Chands dataset shows a scenario
where the Greedy algorithm competes in many cases with
the PairsG algorithm. This dataset may have many higher
order interactions that are not dealt with effectively due to
the pairwise limitation.

Considering Table 5, it can be seen that the PairsG algo-
rithm is generally better than the Greedy approach. The
Letter dataset results in the best PairsG performance, with
49 out of 50 scenarios favouring this algorithm, whereas
only 70% of experiments show superiority in the CBands
case. Perhaps the PairsG algorithm would perform better
if more interactions were considered here (i.e. increasing
the AUC threshold 7,), but this would significantly increase
the computational burden.

7. Conclusion

In this paper, a practical framework for generalised
multiclass ROC analysis was presented, providing an
extension of techniques and analyses commonly used in
two-class ROC analysis. The computational complexity
of multiclass ROC analysis was discussed as a function
of the number of classes and ROC resolution, exhibiting
a computational burden that increases to the power of
the number of classes. This severely limits its practical
use to problems with a small number of classes. This
limitation was used as the argument for the development
of approximate techniques. For cost-sensitive applica-
tions, two simple algorithms were proposed that use a
search paradigm, in which a new cost and prior is used
to direct a search, resulting in new “optimal” operating
weights. The first uses a simple approach that optimises
operating weights independently, ignoring interactions,
and the second uses a greedy search with random initiali-
sations, attempting to account for interactions. Both
algorithms extend linearly with the number of classes
C, and are thus tractable for even high C. However,
these approaches do not result in a multiclass ROC, los-
ing the various benefits, and are susceptible to local min-
ima. The paper then presented an approximation of the
multiclass ROC, called the Pairwise Multiclass ROC,
which is tractable for high C problems. As the name sug-
gests, this algorithm investigates interactions between
operating weight pairs (two-class ROC’s). In the cost-
sensitive case, each ROC pair is optimised to the new
priors and costs, followed by construction of the final

operating weight vector. However several possible pair
combinations exist, so the pairwise algorithm considers
the various feasible pairings, and chooses the best one,
based on minimum loss. Conceptually, this results in
considering the most interacting pairs, and the most
costly errors, which impact the new situation most signif-
icantly. A variety of experiments compared the various
approaches, showing consistent benefits (except the
Lachiche algorithm) of the various algorithms over a
default unoptimised classifier in the cost-sensitive case.
The naive approach is usually inferior to the greedy
approach, and the pairwise algorithm outperformed the
other algorithms in most cases, indicating that it is well
formulated, and generally works well.

It is anticipated that this study will encourage new algo-
rithms and approaches to tackling the area of multiclass
ROC analysis, which will further diversify the field of sta-
tistical pattern recognition into new applications.
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