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a b s t r a c t

In many classification problems objects should be rejected when the confidence in their classification is
too low. An example is a face recognition problem where the faces of a selected group of people have to
be classified, but where all other faces and non-faces should be rejected. These problems are typically
solved by estimating the class densities and assigning an object to the class with the highest posterior
probability. The total probability density is thresholded to detect the outliers. Unfortunately, this proce-
dure does not easily allow for class-dependent thresholds, or for class models that are not based on
probability densities but on distances. In this paper we propose a new heuristic to combine any type
of one-class models for solving the multi-class classification problem with outlier rejection. It normalizes
the average model output per class, instead of the more common non-linear transformation of the
distances. It creates the possibility to adjust the rejection threshold per class, and also to combine class
models that are not (all) based on probability densities and to add class models without affecting the
boundaries of existing models. Experiments show that for several classification problems using class-spe-
cific models significantly improves the performance.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In standard problems one has to classify an object and assign it
to one of a set of known classes. In practice one also has to reject
the objects that do not fit to any of the classes (Dubuisson et al.,
1985). In these applications some classes may be known, but novel
classes can appear and these are unknown. In a face recognition
problem a model for each person in the training set has to be
trained. The system should recognize a novel person and it should
not assign this outlier person to one of the known persons. Further-
more, an extra practical demand is that the system should be easily
extendible to include new persons, and it should be simple to re-
move known persons. Moreover, such an extension should not af-
fect the decision boundaries between existing models. These types
of demands are not only typical for face recognition (Kang and
Choi, 2006), but also for the classification of crops, industrial prod-
ucts, disease detection in medical imaging etc.

The standard approach to rejection in pattern recognition is to
estimate the class conditional probabilities, and to reject the most
unreliable objects, that is, the objects that have the lowest class
posterior probabilities. This is called the ambiguity reject (Chows
rule, Chow, 1970). This reject rule is optimal when the posterior
probabilities are estimated without error. In the case of estimation
ll rights reserved.
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errors, it was recognized in Fumera et al., 2000 that a per-class
threshold may be required.

Furthermore, using the class posterior probability for rejection
ignores the possibility of having objects from unknown classes.
These objects do not typically appear in areas with a low posterior
probability (i.e. in areas between the known classes), but they are
often distributed around the known classes, where the total data
probability density is low, but the posteriors are high. In Dubuisson
and Masson, 1993 the ambiguity reject was extended to the dis-
tance reject in which objects are rejected for which the full data
density is below a threshold. This can be seen as outlier detection,
or novelty detection, and numerous other outlier detection algo-
rithms in a wide range of scientific fields have been proposed (Da-
vies and Gather, 1993; Japkowicz et al., 1995; Tarassenko et al.,
1995; Cerioli and Riani, 1999; Baker et al., 1999; Pan et al., 2000;
Ramaswamy et al., 2000; Tax and Duin, 2001; Marsland, 2001).

It appears that some of these outlier detection methods do not
rely on a probability density estimate. To estimate a probability
density requires a large amount of training data, and when the fea-
ture space is large in comparison to the training set size, density
estimators suffer from the curse of dimensionality (Duda et al.,
2001). It is therefore often better to avoid an explicit density esti-
mation and to use an approximate model. Unfortunately, this
makes the combination of the models to a multi-class classifier
more complex, in particular when one wants to do more than sim-
ple voting. Confusion often occurs in situations where objects are
accepted by more than one model. Unfortunately, in many cases
it is just two models, and in this situation voting is not applicable.
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For these situations the soft outputs of the models have to be com-
pared. But because each model may have a different way to mea-
sure the similarity of an object to its class, the output values of
the different class models have to be normalized.

In this paper we investigate and compare two rescaling heuris-
tics for one-class models. Both heuristics are constructed such that
the decision boundaries between the classes and the outliers are
not affected. The first scaling makes use of the assumption that
all class models give a fixed output for outlier objects, and for that
it requires a non-linear scaling of distances. The second scaling as-
sumes that the average output for a class is constant, and assumes
that classes are relatively well sampled. In Section 2 we start with
discussing the standard approach of rejecting objects. Next, the
combination of models and the required normalization are pre-
sented in Section 3. In Section 4 the experimental evaluation is
done and the paper finishes with conclusions in Section 5.

2. Multi-class classifiers with reject and class models

Assume we are given objects x from c classes x1, . . ., xc, with
prior probabilities p(xi). All objects are represented by p-dimen-
sional feature vectors in a bounded area in the feature space:
x 2 D � Rp. A training set Xtr

i ¼ fxj; j ¼ 1; ::;nig is available for each
of the classes xi. The standard pattern recognition approach to
classification is to estimate the class conditional probabilities
p(xjxi), i = 1,...,c. By applying Bayes rule the posterior probabilities
p(xijx) can be computed using the class conditional probabilities
and the class priors:

pðxijxÞ ¼
pðxjxiÞpðxiÞPc
j¼1pðxjxjÞpðxjÞ

¼ pðxjxiÞpðxiÞ
pðxÞ : ð1Þ

In the standard rejection approach, the ambiguity reject (Chow,
1970), the objects x are rejected for which the maximum posterior
probability maxi p(xijx) is below a threshold.

In real applications objects from other, novel classes may ap-
pear. This situation can be modeled by an extra reject (or outlier)
class x0 that has a uniform distribution in the area D. To distin-
guish this outlier class from the c known classes, one can put a
threshold on the total data density of the known classes (Bishop,
2006). The total classifier with reject therefore becomes:

ŷ ¼
x0 pðxÞ 6 h;

xi pðxijxÞ > pðxjjxÞ; i 6¼ j and pðxÞ > h:

�
ð2Þ

This approach is suitable when a sufficiently large training sample
is available for all of the classes and when the training sample is
not contaminated by outliers. In this case p(xjxi) can be estimated
reliably by some model p̂ðxjxiÞ. A first problem may be that the dif-
ferent classes in the training data may be contaminated by different
amounts of outliers. In that case a different rejection threshold hi

per class (Fumera et al., 2000) has to be used. In this case a den-
sity-based one-class model for class xi is obtained:

ŷ ¼
x0 p̂ðxjxiÞ < hi

xi otherwise:

�
ð3Þ

Even when we know the class priors and we are using proper den-
sity models (as in (3)), we cannot just use the standard Bayes rule
(Eq. (1)) for finding the most probably class. The Bayes rule does
not incorporate the model thresholds hi, and these thresholds may
vary significantly in value, especially when classes have a large
spread. For classes with a large spread, the probability density val-
ues tend to be low, because the probability densities are normalized
to integrate to one. On the other hand, classes that are very compact
will have a much higher probability densities. When a single rejec-
tion threshold is chosen in the standard Bayes rule, most of the re-
jected objects will therefore come from the class with the highest
spread, while (almost) none of the objects from a very compact
class is rejected.

A second problem is that to apply Bayes rule (1) a good estimate
of the class priors p(xi) should be available. When the training set
reflects well what can be expected in the practical application,
these priors can be simply obtained. For situations that new classes
may appear, for instance because new types of diseases or new
types of defects may appear in the objects that should be classified,
it may be hard to find these priors.

A third significant problem for formulation (2) is that density
estimation is a hard problem. For high dimensional feature spaces
many training objects are required to avoid the curse of dimen-
sionality (Duda et al., 2001). When a limited training set is avail-
able, approximations to the class densities have to be made, like
k-means clustering centers, self-organizing maps, subspace models
using PCA or hypersphere models inspired by the support vector
machines (Tax, 2001). These methods often use a distance to pro-
totypes or subspaces, and are therefore called distance-based class
models. In contrast to the density models, the distance-based class
models give a high output to the outliers:

ŷ ¼
x0 diðxÞ > hi

xi otherwise;

�
ð4Þ

where di(x) is the distance of object x to the model of class xi.
Although these distance-based class models (4) may describe a

class better, they lack a common output scaling and it is not clear
how they can be compared and combined. A similar problem ap-
pears when density-based models and distance-based models are
combined, because one cannot directly compare (3) with (4); the
first one increases while the second one decreases when one ap-
proaches a class.

To generalize formulation (2) to both density and distance-
based class models, a normalization has to be defined. We define
this normalization with two demands. The first demand is that
the normalized output for a class is high for objects that come from
that class. The second demand is that the decision boundaries of
the different models between the outlier objects and their corre-
sponding class objects are not changed.

Because each model characterizes the same outlier class with
their threshold hi, these thresholds should coincide. On the other
hand, each model characterizes a different ‘target’ class, and there-
fore these class outputs have to be compared to find the most
probable output class. The exact construction of the normalization
is explained in the next section.

3. Combination of class models

We propose to use the following transformation for the normal-
ization the outputs of models (3) and (4). For the density-based
models we chose to use a simple linear rescaling, for the dis-
tance-based models we have a possibly nonlinear transformation
g:

~piðxÞ ¼
1

Zp
p̂ðxjxiÞ þ p0 density-based models;

1
Zd

gðdiðxÞÞ þ d0 distance-based models;

(
ð5Þ

with the two free parameters Zp, p0 for the density models, and g, Zd,
d0 for the distance models.

To remove the first free parameter, we use the assumption that
all one-class models are assumed to model the same outlier distri-
bution with their threshold hi. The rejection thresholds hi in (3) and
(4) should therefore coincide for all classes. This removes one of
the free parameters.

To fix the second free parameter two alternatives are possible;
the first is based on the expected output for the outlier class data,
the second is based on the expected output for the target class:
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Fig. 1. Class model normalization. Left plot: the original outputs of two class models (a density p̂ðxjx1Þ and a distance d2(x) model) with their thresholds h1 and h2, indicated
by the dashed lines. Center plot: the outputs rescaled using O-norm, Right plot: the outputs rescaled using T-norm. Note that in the center and right plot just a single
threshold is defined.
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� Outlier normalization, O-norm
Here the outputs of the models for objects that are (infinitely)
far away from the given training data (i.e. the outliers) are
standardized. This fixed value is chosen to be 0, such that the
density-based models automatically fulfill this. The normalized
output for objects on the rejection boundary (i.e. objects x* for
which p̂ðx�jxiÞ ¼ h) can be standardized to any positive value,
and here it is chosen to be 1: ~piðx�Þ ¼ 1. Using these constraints
the free parameters for the density models in (5) can be solved:
p0 = 0, Zp = h.
For the distance-based models the classifier output has to be
transformed such that an infinite distance is mapped to a 0. A
linear scaling of the distance is not sufficiently flexible to satisfy
the constraints that outliers obtain a 0 output. Inspired by Kang
and Choi, 2006, we chose a nonlinear exponential function,
~piðxÞ ¼ 1

Zd
expð�d2

i ðxÞÞ þ d0. Solving the free parameters in this
model, we obtain Zd = exp(�h2) and d0 = 0. Combined, the fol-
lowing O-norm normalization is obtained:

~piðxÞ ¼
pðxjxiÞ

hi
density-based models;

expð�d2
i ðxÞ þ h2

i Þ distance-based models:

(
ð6Þ

� Target normalization, T-norm
In this normalization the outputs for the target class are stan-
dardized. We choose to fix the integral of the output over xi to
pi, the empirical class priors:

R
D

~piðxÞdx ¼ pi.1 In general, this
integration cannot be performed exactly, but it can be approxi-
mated by summing the classifier output ~pi over all training objects
from class xi:

1
ni

Xni

j¼1

~piðxjÞ ¼ pi; ð7Þ

where ni is the number of training objects in class xi. The output for
objects on the rejection threshold can be fixed to any value lower
than minipi, and here we choose to fix it to zero: ~piðx�Þ ¼ 0. For this
situation the identity function can be used for g. Solving the free
parameters p0, d0, Zp and Zd, results in the following T-norm

normalization:

~piðxÞ ¼
pi

pðxjxiÞ�hiPni
j

pðxj jxiÞ=ni�hi
density-based models;

pi
hi�diðxÞ

hi�
Pni

j
diðxjÞ=ni

distance-based models:

8><
>: ð8Þ
1 Another idea may be to fix the maximum value of the classifier output for the
training set. In practice, it appears that this normalization is very noise sensitive.
Small variations in the position of the training data change the smallest distance to
the model center, which appear to have a significant influence on the final scaling
factor. Therefore in this paper T-norm normalization is defined based on the average
training set output.
When the outputs of the class models are normalized, we assign a
new object z to the class with the highest output:

ŷ ¼
x0 ~piðxÞ 6 hi; 8i
xi ~piðxÞ > ~pjðxÞ; j 6¼ i and ~piðxÞ > hi:

�
ð9Þ

This classification rule is very similar to (2), with the important dif-
ference that it reproduces the decision boundaries that were ob-
tained using the individual models (3) and (4) (except where class
models overlap).

Both normalizations are shown in Fig. 1. The left subplot shows
a one-dimensional dataset containing two equi-probable classes.
The two classes are described by a density and a distance-based
model, respectively. Their model outputs and their thresholds are
drawn using solid and dashed lines. In the center subplot both class
model outputs are normalized using O-norm: the thresholds are
set to 1 and remote outliers will have output 0. In the right subplot,
the T-norm is applied. Here the rejection threshold becomes 0,
while the average training object output becomes p1 ¼ p2 ¼ 1

2.
Although the philosophy behind the heuristics are different, in

practice the results are often very similar. Both normalizations
are constructed such that the decision boundaries between the
classes and the outliers are not changed (around x = 0.3 and
x = 3.7 for class x1, and around x = 2.5 and x = 5.5 for class x2). Ob-
jects that are classified as outliers by the individual class models,
are also rejected in both normalization schemes. Only in the areas
where the non-reject classes overlap (that is around x = 3 in the
example shown in Fig. 1) a difference between the normalization
schemes can be observed.

In the O-norm the distances are transformed in a non-linear
manner. When identical models for all classes are used, this non-lin-
ear transformation changes the output for the classes in an identical
manner, and the non-linear transformation has no effect on the final
outcome. Changes only occur when density and distance-based
models are combined. The O-norm is inspired by the transformation
that transforms the Mahalanobis distance to the center of a Gauss-
ian distribution to a true density. When the model distance can be
interpreted reasonably well as a Mahalanobis distance, and the
resulting output is similar enough to a density, the combination of
a density output with a true density output can be very fruitful.

A drawback of the O-norm is that the output ~p for a distance
model is nearly flat around di = 0, with a constant value of exp(1)
(compare the right graphs in the center and right subplot of
Fig. 1). This is important when two classes heavily overlap and
the class means are close, or when a class with large variance cov-
ers a class with a much smaller variance. The outputs for the two
classes ~p1 and ~p2 both become exp(1) in the O-norm, and it be-
comes hard to distinguish the two classes. The T-norm is therefore
better than the O-norm for combining distance models with heav-
ily overlapping classes. This is shown in Fig. 2. Here the two classes
severely overlap. The means of the classes are located at l1 = 2 and
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Fig. 2. The difference between O-norm (left plot) and T-norm (right plot) for overlapping and imbalanced classes. Because of the constant output of the O-norm around di = 0,
the distinction between the classes vanishes and the O-norm classifies almost all data to the ‘star’-class. The T-norm can distinguish the classes, and classifies objects around
x = 3 to the ‘circle’-class.
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l2 = 3, while the variances are r2
1 ¼ 6 and r2

2 ¼ 1. On both classes a
support vector data description is fitted, and the outputs using the
O-norm and T-norm are shown in the left and right subplot respec-
tively. Clearly the O-norm suppresses the difference between the
class outputs around x = 3, while the T-norm retains it very clearly.
This difference is more pronounced in high dimensional feature
spaces where differences in class variances tend to be larger.

Although the O-norm avoids the loss of class distinction for
overlapping classes, it assumes that the training data for the clas-
ses is sampled well. That means that the class distributions in
training and testing should be relatively similar. When the training
data for a certain class is sampled such that it only covers the class
area in the feature space (as may be sufficient for models that do
not perform a density estimation, like the SVDD (Tax and Duin,
1999)), then the average outcome of the objects in the test set is
very different from that in the training set. This may result in clas-
ses that are totally overwhelmed by other classes. Fortunately, in
most applications the sampling of the trainingset is sufficiently
reliable, as can be observed in the next section.

4. Experiments

In this section we report experiments on some multi-class data-
sets, for which it is beneficial to adapt different models per class.
First the datasets and some class models are discussed in Section
4.1. In Section 4.2 the results are shown and discussed.

4.1. The datasets and classifiers

For the comparison of the normalizations some standard multi-
class UCI dataset(Newman et al., 1998) (see Table 1) are used. To
simulate a realistic real world setting, the datasets have to contain
some outliers in the test set. Without this outlier data in the test
Table 1
Datasets used and their characteristics

Dataset Train
classes

# Train
objects

Outlier
classes

# Outlier
objects

Dim.

Datasets with generated outliers
Thyroid 1–3 727 360 21
Hepatitis 1–2 155 77 19
Ionosphere 1–2 351 175 34
Glass 1–7 323 161 9

Datasets with classes are labeled as outliers

Vowel 1–6 540 7–11 450 10
Face 1–10 100 11–40 300 25a

Digits 1–5 2000 6–10 2000 256
Pump 1–3 1350 4 450 64

a The Face data is originally 10305 dimensional, but the feature size was reduced
by applying PCA first.
set, classifiers without reject option will obviously always perform
best. For datasets that only contain two or three classes (or many
tiny classes, like Glass), some artificial outlier data is added to
the test set. These outliers are generated from a Gaussian distribu-
tion that has a covariance matrix that is four times larger than that
of the dataset itself. The number of generated outliers is 50% of the
size of the genuine data. That means that when a classifier rejects
all test data, a classification performance of 33.3% is obtained. For
datasets that contain many larger classes, a few of the classes are
relabeled to outlier. The outlier data is ignored during training,
only examples from the labeled classes are used. More details on
the datasets is shown in Table 1. In the experiments the following
class models are fitted:

Gaussian model. In the experiments, the Gaussian class model is
implemented as a distance model, by computing the Mahalanobis
distance to the class mean:

diðxÞ ¼ ðx� liÞ
T
X�1

i

ðx� liÞ ð10Þ

When a single Gaussian distribution is estimated on each of the
classes the standard quadratic discriminant (Duda et al., 2001) is
obtained. This classifier is called ‘QD’ in the experiments when a
single rejection threshold is used. When the rejection threshold is
adapted for each individual Gaussian model, it is called ‘Gaussian’.
Parzen density model. This density-based model estimates the class
conditional density as:

p̂ðxjxiÞ ¼
1
ni

Xni

i¼1

Nðx; xi;h
2Þ ð11Þ

where Nðx; xi;h
2Þ is the Gaussian kernel function centered on xi and

with parameter h, evaluated at x. The width parameter in the density
estimator is estimated using a leave-one-out procedure (Duin, 1976).
Naive Parzen density model. This is the Naive Bayes approach for
estimating the class density per feature and combining it to a full
density estimate (Hastie et al., 2001). In this case the class model
per feature is a Parzen density. The full class density is computed
by multiplying the per-feature densities:

p̂ðxjxiÞ ¼
Yp

l¼1

1
ni

Xni

i¼1

Nðxl; xil;h
2
l Þ ð12Þ

where xl is the lth element of feature vector x. Again, the width
parameters in the density estimator are estimated using a leave-
one-out procedure.
hypersphere class model. Here a single hypersphere, with center ~ai,
is fitted on a class xi. The distance to the sphere center is computed
like:

diðxÞ ¼ kx�~aik2 ð13Þ



Table 3
Classification performances on four datasets for which some classes are used as
outlier classes. The best results, and the ones that are not significantly worse, over the
automated procedures are indicated in bold. All classifiers are trained to reject 10% of
the data, except for the hand-optimized classifiers in the last two lines

classifier Vowel Face Digits Pump

Standard multi-class classifiers using Bayes rule
QD with reject 58.9 (1.6) 75.0 (0.0) 63.8 (0.5) 51.9 (1.8)
Parzen with reject 47.3 (0.5) 91.0 (1.9) 57.9 (0.4) 25.1 (0.1)
Naive Parzen with reject 59.0 (2.1) 89.0 (1.4) 10.0 (0.0) 49.0 (1.7)
1-NN with reject 42.2 (1.8) 75.0 (0.0) 45.9 (0.4) 56.3 (1.3)
SVM 2nd degree polyn. 39.5 (1.2) 24.2 (0.5) 48.0 (0.2) 48.7 (1.8)

Model normalization using O-norm

O-norm Gaussian 56.3 (1.7) 75.0 (0.0) 60.6 (0.4) 47.3 (1.5)
O-norm Parzen 45.5 (0.0) 75.0 (0.0) 50.0 (0.0) 25.0 (0.0)
O-norm NaiveParzen 50.7 (2.1) 80.8 (1.8) 50.0 (0.0) 35.7 (2.0)
O-norm SVDD 32.2 (3.1) 88.0 (2.0) 59.1 (2.1) 30.4 (3.5)
O-norm k-Means 61.1 (1.5) 80.2 (1.6) 67.9 (3.1) 40.2 (2.3)
O-norm k-NN 55.7 (1.1) 93.2 (1.5) 70.7 (3.1) 79.7 (1.5)

Model normalization using T-norm

T-norm Gaussian 56.6 (1.8) 75.0 (0.0) 60.5 (0.5) 49.3 (1.5)
T-norm Parzen 45.5 (0.0) 75.0 (0.0) 42.0 (5.3) 25.0 (0.0)
T-norm NaiveParzen 53.3 (2.4) 80.8 (1.8) 50.0 (0.0) 45.0 (1.9)
T-norm SVDD 32.0 (2.7) 88.0 (2.0) 59.4 (2.1) 30.7 (3.7)
T-norm k-Means 62.7 (1.5) 78.5 (1.1) 66.0 (3.1) 42.1 (3.5)
T-norm k-NN 55.7 (1.1) 93.2 (1.5) 70.7 (3.1) 79.7 (1.5)

Hand-optimized model normalization using variable rejection rate
Optimized O-norm 68.0 (2.1) 94.0 (1.3) 75.3 (2.8) 82.4 (2.1)
Optimized T-norm 65.3 (1.6) 94.0 (1.3) 75.3 (2.8) 82.4 (2.1)
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A hypersphere boundary may be a poor and inflexible model for
that class, but for small sample sizes it may be sufficient. Further-
more, the description can be made more flexible by applying the
kernel trick, resulting in the Support Vector Data description (Tax
and Duin, 2001).
k-means class model. Instead of using a single hypersphere for a
class, a set of spheres may be more suitable. The locations of the
spheres for class xi, f~aij; j ¼ 1; . . . ; kg, can be found by a clustering
procedure, like k-means clustering (Tax, 2001). The distance to
the nearest center is used as the output of the classifier:

diðxÞ ¼min
j
kx�~aijk2 ð14Þ

In the experiments in this paper, per default k = 5.
Nearest-neighbor model. When each single training object is consid-
ered as the center of a hypersphere, a nearest neighbor approach is
obtained. It can be generalized to consider not only the distance to
the closest object, but to consider the average distance to the k
nearest objects. Without the rejection option, this results in the
k-nearest neighbor classifier.

The combined class models are compared to standard classifiers
that have a fixed rejection threshold (as defined in (2)). In all cases,
the threshold h is set such that 10% of the training data is rejected.
Finally, a combination of different class models is fitted, where each
class obtains its own optimized model. The optimization of the
class models is done manually, by fitting the combinations of class
models that create the smallest training error. Although this may
introduce a bit more overfitting (and in some cases may be subop-
timal), results on the test set show still satisfactory performances,
as can be observed in the following section.

4.2. Results

In Table 2 the results for the datasets with artificial outliers are
given, and in Table 3 the results for datasets with ‘real’ outliers (i.e.
the outliers are from unseen classes). The best results (and the ones
that are not significantly worse) are indicated in bold. The signifi-
Table 2
Classification performance (%) on four datasets for which artificial outlier data is
added. The best results, and the ones that are not significantly worse, over the
automated procedures are indicated in bold. All classifiers are trained to reject 10% of
the data, except for the hand-optimized classifiers in the last two lines

classifier Thyroid Hepatitis Ionosphere Glass

Standard multi-class classifiers using Bayes rule
QD with reject 42.7 (0.6) 67.7 (3.1) 80.7 (1.9) 62.2 (1.8)
Parzen with reject 60.6 (2.1) 56.7 (4.3) 74.9 (0.9) 62.4 (1.9)
Naive Parzen with reject 41.3 (0.3) 56.5 (5.0) 42.5 (0.1) 65.6 (2.3)
1-NN with reject 59.2 (0.2) 53.3 (1.7) 56.0 (1.3) 43.9 (1.1)
SVM 2nd degree polyn. 62.6 (0.1) 49.4 (3.0) 57.5 (1.9) 32.8 (2.9)

Model normalization using O-norm

O-norm Gaussian 89.8 (0.5) 67.7 (3.1) 63.5 (3.0) 61.5 (1.9)
O-norm Parzen 56.0 (2.1) 41.4 (2.0) 39.8 (1.5) 59.5 (2.1)
O-norm NaiveParzen 92.0 (0.4) 78.4 (3.3) 81.2 (2.2) 58.3 (2.5)
O-norm SVDD 85.0 (0.4) 78.0 (3.4) 46.6 (1.4) 38.0 (3.4)
O-norm k-Means 82.0 (0.5) 73.1 (3.2) 52.2 (2.6) 61.7 (2.4)
O-norm k-NN 84.1 (0.6) 78.0 (3.6) 58.6 (2.8) 38.7 (2.8)

Model normalization using T-norm

T-norm Gaussian 89.5 (0.6) 67.7 (3.1) 52.4 (2.0) 66.6 (2.8)
T-norm Parzen 56.0 (2.1) 41.4 (2.0) 39.8 (1.5) 63.3 (3.0)
T-norm NaiveParzen 92.0 (0.4) 75.0 (4.1) 82.1 (2.6) 61.5 (2.5)
T-norm SVDD 84.9 (0.4) 76.3 (3.8) 56.2 (2.3) 30.8 (3.0)
T-norm k-Means 85.6 (0.6) 70.3 (4.0) 51.3 (2.3) 62.8 (2.5)
T-norm k-NN 89.9 (0.4) 78.0 (3.6) 58.6 (2.8) 38.7 (2.8)

Hand-optimized model normalization using variable rejection rate
Optimized O-norm 94.7 (0.3) 84.8 (2.5) 78.6 (2.8) 62.2 (2.5)
Optimized T-norm 95.8 (0.3) 85.1 (1.7) 86.2 (1.7) 68.1 (3.2)
cance is computed using a paired-differences t-test on 10-fold
cross validation (Dietterich, 1998). The first five lines give the re-
sults for the standard classifiers with a fixed threshold (using
(2)). The threshold h is fixed to obtain 10% rejection. Next, the re-
sults are shown for the two normalization methods O-norm and
T-norm, (6) and (8). The thresholds hi are fixed such that on each
class a 10% rejection rate is obtained. The last two lines in the table
show the results for the manually optimized models per class. In
the last cases both the class models p(xjxi), di(x) as the thresholds
hi are optimized by hand.

Having a single threshold on all the class models performs rea-
sonably well, in particular when the classes are of the same size
and shape and (some of) the classes are all relatively small. This
holds for the datasets Ionosphere, Vowel and Face. Here the classes
are almost balanced, and the results of the classifiers using a global
threshold h match the performance of the classifiers using a per-
class threshold hi.

For other classification problems it appears to be important that
the thresholds per class model are adjusted. This happens in the
Thyroid, Hepatitis, Glass, Digits and Pump. The classifiers with a
threshold per class significantly outperform the classifiers with a
fixed global threshold.

Generally, the difference between the O-norm and T-norm is
not very large. This is because a large contribution to the error is
the misclassification of outlier data and the rejection is identical
under the two normalizations. This is visible for the Thyroid, Face
and Digits datasets. Only in cases where classes significantly over-
lap, differences between the normalizations can be observed. The
results show a slightly better performance for the T-norm than
for the O-norm. A clear example is the Glass dataset. In the Glass
dataset two classes overlap heavily, and one of the classes has a
much smaller variance than the other. This is the situation that is
shown in Fig. 2: almost all objects of one of these classes are as-
signed to the other class by the O-norm, resulting in a high classi-
fication error.

Furthermore, the performance can be improved even further
my manual optimization of the rejection threshold. For four data-
sets (Thyroid, Hepatitis, Digits, Pump) the class models are identi-
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cal for all classes (Naive Parzen for Thyroid and nearest neighbor
for Hepatitis, Digits and Pump), but the thresholds are changed
to (10%, 10%, 3%), (10%, 5%), (5%, 10%, 10%, 20%, 20%) and (2%,
10%, 2%) rejection rate per class, respectively. This can result in a
performance increase of 5%.

Adjusting the class models per class can also be done by chang-
ing the complexity of the class model or by using different models.
For the Vowel and Face datasets the class models are fixed to k-
means and k-NN, but the parameter k is optimized for the classes:
k = (10, 5, 5, 10, 5, 10) for Vowel, k = (1, 1, 1, 1, 1, 3, 1, 1, 1, 3) for
Face. Although the combiner now combines only distance models,
the distance distribution for the models with different k appear to
be very different. The normalization is therefore still essential to
combine the class models.

Finally, in the datasets Ionosphere and Glass density and dis-
tance models are combined. For Ionosphere a Gaussian model (in
this implementation a distance model, using the Mahalanobis dis-
tance) and a Naive Parzen model is combined. For the Glass dataset
a wide variety is required, due to the large variance in class com-
plexity and class size: three Gaussian models, a Parzen density
and two Naive Parzen density models.

5. Conclusions

In real-world classification problems, not only several classes
have to be distinguished, but also outliers have to be rejected,
and possibly new classes may have to be added. The standard
assumption in pattern recognition that only objects from a known
set of classes will appear, is not always realistic. For these situa-
tions it might be worth to develop a model for each class. When
different models for different classes are defined, a normalization
heuristic should be used to combine the individual class models
into a multi-class classifier. When an object does not fit any of
the class models, the object has to be rejected. This heuristic
should be such that the addition of new models does not change
the acceptance of objects by old models.

This paper presents a new normalization heuristic. The heuristic
does not change the rejection boundary between the classes and
outlier objects as they are defined by the individual class models,
but it defines how objects that are accepted by several class models
will be classified. This heuristic fixes the average class output, in
contrast to the more common heuristic that fixes the output for
the outliers (using a nonlinear transformation of distances). It ap-
pears that it performs better in situations where classes severely
overlap. It has a higher sensitivity to differences between overlap-
ping classes, and avoids that a larger class (both in terms of spread
and number of objects) overwhelms a smaller class. The price to be
paid is that the training set distribution should be similar to what
is observed in testing. The experiments show that in most practical
situations this demand is satisfied.

Furthermore, because the outputs of the class models are nor-
malized, not only the class models themselves may differ in terms
of the functional form of p(xjxi) or di(x), but they may also contain
different feature preprocessings (resulting in a different x per
model), or they may even work in different feature spaces. The
important assumption is that the models output a distance or
density, and supply a threshold for the rejection of outliers. This
therefore allows for the integration of completely independently
constructed class models into one classification system.

One note of warning should be added. In the proposed combina-
tion of class models it is assumed that the class overlap is very se-
vere. When large class overlap exist, good density models have to
be constructed in order to distinguish the classes. In this paper we
considered class models that are based on distances. In order to
combine these with other models (both density-based and dis-
tance-based) ad-hoc heuristics have to be used and no proofs of
optimal performance can be given.

Finally, optimizing the models per class appears to be very fruit-
ful. A fixed model per class may easily introduce overtraining for
some of the classes and undertraining for others, in particular
when classes differ in size, complexity, and the amount of outliers
differs in the training set of each class. By optimizing the complex-
ity of the model to each of the classes, the final classification per-
formance may be improved significantly.
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