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a b s t r a c t

Human experts constitute pattern classes of natural objects based on their observed appearance. Auto-
matic systems for pattern recognition may be designed on a structural description derived from sensor
observations. Alternatively, training sets of examples can be used in statistical learning procedures. They
are most powerful for vectorial object representations. Unfortunately, structural descriptions do not
match well with vectorial representations. Consequently it is difficult to combine the structural and sta-
tistical approaches to pattern recognition.
Structural descriptions may be used to compare objects. This leads to a set of pairwise dissimilarities

from which vectors can be derived for the purpose of statistical learning. The resulting dissimilarity
representation bridges thereby the structural and statistical approaches.
The dissimilarity space is one of the possible spaces resulting from this representation. It is very general

and easy to implement. This paper gives a historical review and discusses the properties of the dissimi-
larity space approaches illustrated by a set of examples on real world datasets.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Pattern recognition is an intrinsic human ability that starts in
infancy. Already in early childhood we are able to recognize com-
plex patterns such as smells, voices, faces and toys. It takes how-
ever a long time before we can accurately describe how we do
this, and perhaps sometimes we are not able to outline it. It is
not directly clear how we recognize a particular person as John
or some toy as a car. This holds for children as well as for adults.
Even experts such as medical doctors have difficulties in defining
sharply how a particular heart disease is recognized from an
ECG. If they specify their relevant observations to the designer of
an expert system for coding an automatic recognition system,
interestingly, this explicitation has to go through several iterations.
In such a process the expert is being confronted with his mistakes
in order to clarify the recognition steps.

The human expert is aware of different pattern classes but is in
trouble to motivate them in terms of explicit observations. We
often see that he is tempted to use the structure of the objects:
the relations between internal parts when complicated objects
need to be described. In such cases he is not able to stick to a
straight set of directly measurable observations such as color,
weight and size. Consequently, he phrases his arguments not only
in measurable quantities, but also in a wordy description of the

structure. If we want to incorporate this approach to building an
automatic recognition system, both, a set of sensors as well as a
structural model may be necessary.

It is difficult for an expert to define exactly how sensor outputs
have to be combined into a decision function that accurately deter-
mines a pattern class. Such functions are usually optimized by
learning from examples when using procedures developed in mul-
ti-variate statistics, statistical pattern recognition or machine
learning. This works well for objects represented in vector spaces
by measurements or by features derived from measurements.
The lack of structural knowledge or the lack of its representation
may hereby be partially compensated by statistical properties de-
rived from a (large) set of examples. On the contrary, it is much
more difficult to apply such procedures in order to optimize deci-
sion functions based on structural models. Often reasoning proce-
dures are used to measure the similarity between the models of
objects to be recognized and those of (examples of) objects of the
pattern classes to be distinguished. The use of examples is thereby
usually restricted to their storage in order to determine the most
similar ones for new objects to be recognized. The generalization
is thereby in the models and not derived from an analysis of the
set of given examples.

In order to build automatic machines that mimic human recog-
nition, the expert becomes gradually more and more aware of his
own decision making, while he tries to make his recognition pro-
cess explicit. Or, to phrase it somewhat differently, he is forced
to do so. In this process he becomes more conscious of his own
internal recognition procedure. The result is a description in terms
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of both observations and models. Initially, most people are not
aware of these two aspects of the decision making. Only after being
challenged to define it sharply they become conscious of how they
do it.

To phrase it more generally: consciousness splits recognition in
empiricism and rationalism. As a result, mechanical recognition
devices can be built, as we have in place approximate procedures
for both processes. In spite of Dennett’s belief that consciousness
is an illusion and does not play a role in the world (Dennett,
1991), the existence of automatic recognition systems proves the
contrary. The expert becomes conscious of his recognition process
when he is forced to clearly outline it such that it can be pro-
grammed in a computer.

The fact that experts experience the split of their knowledge
into observations and structural models may lead to clear and
computerizable representations, but has also severe drawbacks.
Observations disposed from structural relations may be repre-
sented by vectors related to sensors or sensor samples. This repre-
sentation is poor as dependencies are not included. They may be
partially reconstructed from a statistical analysis of a large set of
observations (learning from examples). Structural models, on the
other hand, may preserve dependencies and relations, but it is dif-
ficult to enrich such a knowledge-based description by new obser-
vations. This is a fundamental problem in epistemology: the truth
of a fact or statement may be proven either by showing an example
or by reasoning. Consequently, research areas such as pattern rec-
ognition and artificial intelligence have been separated (around
1970) as they demanded different approaches and, consequently,
attracted different types of researchers. Also within the pattern
recognition domain the topics of statistical and structural recogni-
tion obtained their own sessions and tracks on conferences and
were organized by different committees. The consciousness split
in the expert’s mind has thereby even a social impact.

The possibility of the merge of the two separated sources of
knowledge has intrigued various researchers over the decades.
Thereby, it has been a research topic in pattern recognition from
its early days. Watanabe (1985) and especially Fu (1982) pointed
to several possibilities of how to combine the approaches of statis-
tical and structural pattern recognition based on information the-
oretic considerations and stochastic syntactical descriptions. In
spite of their inspiring research efforts, it hardly resulted in practi-
cal applications. The ‘gap’ between the statistical and structural ap-
proaches continued, stimulated by the associated social gap.
Around 1985, Goldfarb proposed to unify the two directions by
replacing the feature-based representation of individual objects
by distances between structural object models. Existing statistical
tools might thereby become available in the domain of structural
pattern recognition. This idea did not attract much attention as it
was hardly recognized as a profitable approach. After 1990, Gold-
farb himself focussed on a very fundamental, structural approach
with a long-term perspective that the models might be learned
from example – the Evolving Transformation System (Goldfarb
et al., 2004). So, he shifted the focus of his research from using
the structural models as they are in a statistical context to shifting
the structural model building out of the expert’s mind into a for-
malism by which a generative structural model will be directly
learned from examples. This ambitious research line is still
unfinished.

After 1995, the authors of this paper started to study the first
proposal by Goldfarb to replace the traditional feature representa-
tion by a distance representation that could be applied to struc-
tural models. They called it the dissimilarity representation as it
allows various non-metric, indefinite or even asymmetric proxim-
ity measures. An inspiration for this approach was also the obser-
vation that a human observer is primary triggered by object
differences and that the description in terms of features and

models comes second (see Edelman, 1999). We consciously ob-
serve differences, while similarity is a usually assumed context in
which comparisons take place. The analysis of dissimilarities,
mainly for visualization, was studied much earlier in the domain
of psychonomy in the 1960s (e.g. by Shepard, 1962; Kruskal,
1964). The emphasis of the renewed interest in dissimilarities in
pattern recognition, however, was in the construction of vector
spaces that are suitable for training classifiers using the extensive
toolboxes available in multivariate statistics, machine learning and
pattern recognition. The significance for the accessibility of these
tools in structural object recognition was recognized by Spillmann
et al. (2006) and others such as Wilson and Hancock (2010) and
Mottl et al. (2001), Mottl et al. (2002). They realized that the dis-
similarity representation might be profitable for the use of vector
space learning procedures on top of matching algorithms used
for graphs and strings. Traditionally, template matching (i.e. the
nearest neighbor rule) was used as the main classification proce-
dure. Since the dissimilarity representation puts just mild restric-
tions on the distance measure, it allows for the use of non-
Euclidean distances as resulting from many procedures common
in graph matching and shape recognition. Important application
areas may be the classification of spectra, histograms, image recog-
nition and, recently, multi-instance learning.

In addition, it appears that a dissimilarity representation de-
fined on top of a traditional feature-based representation may lead
to interesting classifiers with unique advantages (Pękalska and
Duin, 2006; Pękalska and Duin, 2005). In general, such classifiers
have a good performance and may be robust against variations in
scale in the same feature space. If the nearest neighbor distances
are small in some areas and large in other areas, such a dissimilar-
ity-based classifier is less affected by that than a classifier in the
original feature space.

There are two essential ways of constructing a vector space
from a dissimilarity representation (Pękalska and Duin, 2005;
Pękalska et al., 2008): (Pseudo-) Euclidean embedding and the
so-called dissimilarity space. The first one, based on an (extension
of) linear multi-dimensional scaling, has recently been studied
extensively. Especially, an intriguing issue was the topic of
embedding the given non-Euclidean dissimilarities into a vector
space such that the obtained distances are sufficiently accurate
in comparison to the original dissimilarities. Several aspects have
beenresearched: why non-Euclidean dissimilarities arise, whether
they are informative, and how to deal with them. These issues are
challenging, both from theoretical and mathematical point of
view.

The second way of handling the dissimilarity representation,
the postulation of the dissimilarity space, raises less problems
and is of high interest for practical applications. It can, without
problems, be used for almost any kind of dissimilarity measure.
Moreover, it has good asymptotic properties and offers the possi-
bility of an adjustable computational complexity. It is the target
of this paper to discuss and illustrate the use of the dissimilarity
space and to elaborate on a number of interesting properties.

2. Road map

In this section we discuss shortly the various approaches for
object representation. The road map of Fig. 1 shows their position
between the real world objects and the generalization in either a
vector space or by template matching.

Feature representation: the initial feature set consists of the
object properties that are potentially judged as relevant for
classification by the application expert or the system designer.
It may sometimes be chosen as samples of the data, e.g. the
pixels of an image.
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Feature space: this is the most relevant subset of the original
feature set or their combination obtained by an analysis of the
training set. This feature space can directly be used for the training
of classifiers. It may also become an input for the computation of
kernels or dissimilarities (see below).

Structural representation: a structural representation includes
relations between individual measurements. It is thereby richer
than a feature representation. Also if these features cover rela-
tions between separate object measurements, a structural rep-
resentation may include the relation between several such
features.
Dissimilarity representation: pairwise dissimilarities are com-
puted between the training examples and objects from the rep-
resentation set. The measure is defined on top of a structural
representation or in the feature space. A representation set is
a set of either chosen or generated prototypes, in particular, it
may also be the entire training set.
Kernel representation: similaritiesmay be used, instead of dissim-
ilarities. In case of structurally represented objects there is little
difference. For feature spaces kernels are usually based on inner
products. It often holds for the commonly used dissimilarity
measures that they are translation independent. Kernels in fea-
ture spaces use similarity measure which are usually rotation
independent.
Pseudo-Euclidean space: given a dissimilarity representation or a
kernel matrix we may find whether the Euclidean distances or
the Euclidean inner products perfectly reproduce the original
dissimilarities or kernels (embedding). This is only possible if
the original dissimilarity measure is Euclidean or if the kernel
satisfies the Mercer conditions (Pękalska and Duin, 2005). In
other situations, the so-called pseudo-Euclidean embedding
can be found for a symmetric definite measure for which a dif-
ferent distance measure and a different inner product are
defined. Such a pseudo-Euclidean space can be transformed
into one or more Euclidean spaces by various correction proce-
dures. The standard statistical classification algorithms may be
applied in these spaces.
Kernel space: existing classification procedures are written in
terms of inner products. By the use of the so-called kernel trick,
the inner products are substituted by nonlinear kernel values.
As a result, the classifiers implicitly operate in a (reproducing
kernel) Hilbert space for which the inner product corresponds
to the kernel measure. For kernel matrices, this is the isometric
embedded Euclidean space mentioned above. The embedding
itself, however, is now not needed. This may also hold for clas-

sifiers that can operate in pseudo-Euclidean spaces, i.e. they can
handle the indefinite inner product definition (Ong et al., 2004;
Canu et al., 2003; Pękalska and Haasdonk, 2009). This is not true
for the standard Support Vector Machine (SVM) (Cristianini and
Shawe-Taylor, 2000), but may still be applied with some restric-
tion (Haasdonk, 2005).
Dissimilarity space: a straightforward way of handling the dis-
similarity representation is by interpreting the dissimilarity
vectors (defined by dissimilarities between objects and proto-
types) as features. This is in fact a data-dependent mapping to
a vector space which we equip with traditional inner product.
This can be done without almost any restriction as it can be
applied to an indefinite, asymmetric distance measure. The dis-
similarity space is thereby a simple straightforward way to map
a structural representation into a vector space in which further
traditional statistical training procedures may be applied.
Class models: class models may be constructed in various ways.
We do not indicate them here to maintain clarity. However,
both statistical (e.g. pdf’s, HMMs and one-class classifiers) and
structural (e.g. by the Evolving Transformation System) class
models can be built. They can be used directly for classification
by template matching as well as for building a dissimilarity
space.

3. The dissimilarity space

The dissimilarity space is a vector space in which the dimen-
sions are defined by dissimilarity vectors measuring pairwise dis-
similarities between examples and individual objects from the
so-called representation set R. Hence, a dissimilarity representa-
tion D(X,R) is addressed as a data-dependent mapping
Dð�;RÞ : X ! Rn from an initial set of objects X to a dissimilarity
space, equipped with the traditional inner product and Euclidean
metric. The representation set can be chosen as the complete train-
ing set T, a set of carefully selected or constructed prototypes or an
arbitrary set of labeled or unlabeled objects (even objects from a
test set S can be considered). Here, we choose R to be either the
training set T or its subset. All training and test objects are now
represented in this space by dissimilarity vectors whose elements
express degrees of differences to individual objects from R.

In order to show the possibilities of the dissimilarity space we
use the Pendigits dataset (Alimoglu and Alpaydin, 1997). It consists
of a training set T of 7494 handwritten digits 0–9, obtained from 30
writers, and an independent testset S of 3498 digits, obtained from
another set of 14 writers. All digits were transformed into string
sequences of vectors of constant length and compared by using a
vector cost function (Spillmann et al., 2006). In the below experi-
ments we thereby use a 7494 � 7494 training set DT = D(T,T) with
pairwise dissimilarities between all training objects and a
3498 � 7494 test set DS = D(S,T) with pairwise dissimilarities be-
tween the 3498 test objects and the 7494 training objects. Both,
training set and test set, can thereby be represented in a 7494-
dimensional vector space, the dissimilarity space.

In traditional approaches to structural pattern recognition test
objects are classified by the 1-NN rule determining the class of
the nearest neighbor in the training set. In this example test ob-
jects have to be compared to all 7494 objects in the training set,
leading to a classification error of 0.0374 for the 1-NN rule. For
k > 1 no better results are found by the k-NN rule. In this approach,
however, the given training set D(T,T) is not used for the learning
process, except for the storage of examples. Hence, there is a pos-
sible room for improvement.

The dissimilarity space can be used for object representation
and construction of classifiers. Fig. 2 shows a 2D subspace of the
dissimilarity space built by all training objects as found by LDA.
The projected objects come from 500 randomly selected test

Fig. 1. Road map of various representations between objects and generalization as
discussed in the paper.
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objects, not used for the definition of this space. Clearly, a class
structure can be observed, which is promising for building
classifiers.

To illustrate the possibilities of this representation we first
compute learning curves for growing subsets, randomly drawn
from the training set T. Since the representation set R is chosen
as T, R = T, the dimension of the dissimilarity space equals the size
of T. In this space we build the 1-NN classifier and a linear SVM,
using the LIBSVM package (Chang and Lin, 2001). The results are
compared with the 1-NN rule directly applied to the original dis-
similarities; see Fig. 3.

We observe that the direct use of the dissimilarities leads to
better results than the other two approaches for small training
sets, while the dissimilarity approach is more beneficial for large
training sets. Relating test objects to all training objects, followed
by computing distances over dissimilarity vectors gradually takes
over in the latter case. This can be understood by realizing that
the original dissimilarities, as obtained from string matching, con-
tain some noise, e.g. caused by the arbitrary chosen starting points
of the vectors of the string vector description used for describing
the digit structure. By taking into account all dissimilarities to all
objects in the training set this noise is reduced w.r.t. the result ob-
tained by just a single pairwise comparison. The figure also shows
clearly that a global classifier such as the linear SVM finally outper-
forms the local sensitive 1-NN rule. The fact that this classifier uses
all dissimilarities in the training set DT pays off. This is in contrast

to the direct 1-NN rule applied to the given dissimilarities which
does not make use of DT.

Another interesting aspect of the learning curves in Fig. 3 is that
they are not saturated. It is to be expected that a significantly
better performance may be obtained by enlarging the training set
by, e.g. by a factor of 10. A severe drawback of these approaches
is that dissimilarity representations based on a large training set
can be computationally demanding, especially if they are based
on string matching or graph matching procedures. For that reason
it is worthwhile to study the pruning of the representation set R in
order to reduce it from the complete training set T to a significantly
smaller set. The representation of the training set thereby becomes
a rectangular matrix D0

T ¼ DðT;RÞ. As a result, test objects need a
simpler representation. The test set is now D0

S ¼ DðS;RÞ.
Several procedures have been studied for the reduction of the

representation set R (Pękalska et al., 2006; Lozano et al., 2006;
Calana et al., 2010; Riesen et al., 2007): random selection, cluster
analysis, geometric distribution, feature selection, nearest neigh-
bor based prototype selection and genetic algorithms. A simple
and fast procedure, suitable for selecting a small R out of a large
training set, is a forward search based on the 1-NN performance
of the reduced dissimilarity matrix D0

T (Pękalska et al., 2006; Calana
et al., 2010). It is fast as it is based on the given dissimilarities.
Fig. 4 compares performance of linear SVM in dissimilarity spaces
built by either systematic or random selection of R. The dashed line
shows the asymptotic performance of the direct 1-NN rule by using
all training objects. It is clear that systematic selection is better
than random selection. Already for R consisting of 30 objects, a bet-
ter classifier is found than by using the 1-NN rule on all 7494 train-
ing objects. The best performance, an error of 0.0189, is found for
an R of 500 selected objects. This is, given the size of 3498 objects
of the test set, significantly better than the error of 0.0244 found
for the classifier on the original representation set R = T.

Learning curves may be computed for representation sets of
various sizes; see Fig. 5. It shows that an increased performance
may be expected for all sizes of the representation set if large train-
ing sets become available. Moreover, it can be observed that train-
ing sets can be not only larger, but also smaller than the
representation set. An interesting application of this observation
is that an unlabeled test set may be added to the representation
set and used for an improved performance (in transductive learn-
ing). This will demand an increased computational effort, of course,
in which also the dissimilarities between the test objects have to
be computed.
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Fig. 2. A random subset of the test set of the Pendigits dissimilarity data projected
on a 2D LDA space computed from the training set.
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Fig. 3. Learning curves for the Pendigits dataset for the direct 1-NN rule on the
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training the classifier. The dashed line shows the asymptotic performance of the
1-NN classifier.
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An interesting phenomenon, which attracts more and more
attention, is that multiple dissimilarity matrices, available for the
same data, may often be combined in a profitable way. There are
several options (Pękalska and Duin, 2001), e.g. concatenation of
the dissimilarity spaces, combining classifiers trained on the indi-
vidual dissimilarity spaces and a (weighted) average of the dissim-
ilarity matrices, resulting in a new matrix. Especially, the last
option is attractive as the resulting representation has the same
shape and size as the original ones. Comparison is thereby straight-
forward and reliable. A question is about weights to be used for the
input matrices. This issue is very similar to the problem studied in
kernel metric learning (Lanckriet et al., 2004). In case the classifica-
tion performances of the individual dissimilarities are about equal,
equal weights are appropriate. We illustrate this by the following
example.

The dataset we used is based on 612 FL3-A DNA flow cytometer
histograms from breast cancer tissues in 256 resolution. The initial
data were acquired by M. Nap and N. van Rodijnen of the Atrium
Medical Center in Heerlen, The Netherlands, during 2000–2004,
using the four tubes 3–6 of a DACO Galaxy flow cytometer. Histo-

grams are labeled in 3 classes: aneuploid (335 patients), diploid
(131) and tetraploid (146). Every tube contained about 20,000 cells
per patient. We removed the first and the last bin of every histo-
gram as here outliers are collected, thereby obtaining 254 bins
per histogram. As the histograms may suffer from an incorrect cal-
ibration in the horizontal direction (DNA content) we computed for
every pairwise dissimilarity between two histograms the multipli-
cative correction factor for the bin positions that minimizes their
dissimilarity using the ‘1 norm. This representation makes use of
the shape structure of the histograms and removes an invariant
(the varying original calibration).

The four dissimilarity matrices based on the four tubes have
about the same performance, as shown by the top curves in
Fig. 6 based on the linear SVM in a hold-out evaluation experiment.
Representation set equals the training set, while the test set is the
hold-out set. We normalized the four sets such that the average
dissimilarities between different objects is one. The learning curve
for the averaged dissimilarity matrix, which is the lower curve in
the figure, is strikingly better than the ones based on the individual
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Fig. 5. Learning curves for the Pendigits dataset for SVM-1 in dissimilarity spaces
defined over various fixed-size representation sets.
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sets. An explanation is that the original dissimilarities suffer from
noise as 20,000 counts for a 256 bin histogram results in many
noisy bin counts.

An often returning question about the dissimilarity representa-
tion is whether it is any better than a feature representation. This
cannot be answered. The performances depend on the choices of
the dissimilarity measure or features and thereby on the ability
of the analyst or application expert to express his knowledge on
the problem in a particular way. Thereby, the preference for one
representation or the other depends on the application as well as
the expert.

A direct comparison of the two approaches can be made in case
of given feature representations and dissimilarities computed by
the Euclidean distances in the feature space. This is certainly not
the target situation for the dissimilarity approach as much better
dissimilarity measures might be defined on the original data even
before features are extracted. Nevertheless, such comparisons can
be made. In (Duin et al., 2010) it is shown in a contest on 300 data-
sets that linear classifiers in a Feature based Dissimilarity Space
(FDS) perform very well. Fig. 7 illustrates such a comparison for a
2D spiral problem. It shows that a linear classifier in the FDS has
a type of neighborhood adaptive kernel characteristic and, unlike
the radial basis SVM, is insensitive for scale variations.1

For a comparison of various representations based on the same
set of objects we summarize here the results of an experiment re-
ported more extensively elsewhere (Duin et al., 2010). It is based
on four representations of a subset of a NIST digit database (Wilson
and Garris, 1992) with 32 � 32 resampled images: features (10
moments), pixels, a dissimilarity space built by distances between
the original images and a dissimilarity space built by distances be-
tween blurred images. The latter is less sensitive for small varia-
tions in the way digits are positioned (shifts and rotations) and
written. The learning curves in Fig. 8 show that this is better than
the direct use of the image distances. The features are not suffi-
ciently well defined to be of use anywhere. The pixel representa-
tion needs a sufficiently large training set and then finally
outperforms the other approaches. The fact that pixel representa-
tions finally win is to be expected as they just store the universe
of objects.

4. Conclusions

This paper elaborates on the advantages of a dissimilarity repre-
sentation as the one that fills the gap between statistical learning

and structural models. The elements of this representation encode
degrees of (dis)similarity between pairs of examples or between
examples and optimized (selected or generated) prototypes or be-
tween examples and class models. It is a powerful representation,
especially when one defines the dissimilarity measure based on
structural approaches and builds statistical classifiers in the
corresponding (dis)similarity space. Such a dissimilarity space
can also result from an integration or combination of various dis-
similarity representations. In this way, general proximity mea-
sures, including non-Euclidean or non-metric dissimilarities and
indefinite similarities, either symmetric or asymmetric can be used
with success and elegantly handled for the pattern recognition
tasks. Such measures are important to study as they result from
various applications, especially when invariance or robustness is
incorporated (Haasdonk and Burkhardt, 2007; Jacobs et al., 2000).
Learning in dissimilarity spaces extends the kernel methods into
indefinite kernel approaches and beyond (Pękalska and Haasdonk,
2009; Hochreiter and Obermayer, 2006).

In summary, the clear benefits of the dissimilarity space ap-
proach are:

� the straightforward use of arbitrary, yet application meaningful,
dissimilarity measure, defined either on vectorial or structural
representations,

� handling of difficult problems (Pękalska et al., 2008); an alter-
native to the NN rule for small and moderate training sets,

� an adjustable computational complexity which may be signifi-
cantly smaller than the NN rule,

� a simple but still powerful combining rule in case multiple dis-
similarity measures are available.

The development of procedures based on the dissimilarity rep-
resentation is still going on. It is thereby not yet possible to formu-
late definite recipes for its use. A few general guidelines and
insights can be presented here w.r.t. the choice of the dissimilarity
measure, the selection of prototypes and the classifier.

The formulation of the dissimilarity measure is an opportunity
to include specific application knowledge. Especially knowledge of
invariants should be used as much as possible. As dissimilarities
are computed pairwise it is more easy to incorporate such knowl-
edge than to remove invariants globally, for all objects simulta-
neously. For instance, in a pairwise comparison the alignment of
objects by rotation, translation or deformation is better possible
than by a global normalization of orientation, position or shape.
This has to be exploited. Any dissimilarity measure that is just a
straightforward summation of local differences without such oper-
ations indicates room for improvement.

Prototype selection is primarily important for computational
reasons. It will speed up the classification of new objects as less
dissimilarities have to be computed. It may also be desired to re-
duce the dimensionality of the dissimilarity space for classifiers
based on density estimation as they suffer from overtraining. In
our experience the linear SVM in the full dissimilarity space which
has as many dimensions as training objects, is very good. For large
training sets this classifier might be too complex for computational
reasons, both for training as well as for testing. Random selection
of prototypes may do reasonably well, unless a very small set
(e.g. less than 20) of prototypes has to be found. Systematic proce-
dures based on feature selection may then yield better results.

Although any classifier designed for vector spaces can be used
in the dissimilarity space, some may be preferred. In case no pro-
totype selection is applied and especially for larger training set
sizes, there is a high correlation to be expected between dimen-
sions related to similar objects. The larger the training set, the
more similar objects are to be expected. So a classifier is needed
that can handle this problem. When the total training set is used
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Fig. 8. Learning curves of SVM-1 compared for three representations of the same
digit recognition problem: features, pixels and dissimilarities.

1 This example has been published before in (Duin et al., 2010).
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for representation and the numbers of dimensions and training ob-
jects are the same, a linear classifier is sufficient. As stated above,
the linear SVM may be a good choice. For reduced sizes of the rep-
resentation set density based classifiers may be appropriate. We
had good results with LDA and QDA based on the assumptions of
normal distributions with equal or different covariances. Depend-
ing on the dissimilarity measure this assumption may be
applicable.

In future research we will study the design of optimal represen-
tation sets, in particular the use of out-off-training-set objects,
resulting in transductive learning. Another interesting topic is the
design of dissimilarity measures for various applications, e.g. the
variants of the multiple-instance-learning problem. In addition,
we will further investigate relations between kernel methods and
methods in (dis)similarity spaces in which the (dis)similarity char-
acteristic of the representation is explicitly taken into account.
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