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Abstract: A summary is given of the various pattern recognition situations in which continuous variables may be used for label- 
ing objects. Specific problems may arise during the construction of classification functions, e.g. when discontinuities of the 
assigned labels have to be avoided. Solutions are discussed and an example is given. 
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1. I n t r o d u c t i o n  

In statistical pattern recognition one tries to 

assign a label A to an object x that is represented by 

K featurevalues: x =  (xl ,x2 . . . . .  xg) .  Such a label is 
usually a nominal variable: 2 e { l, 2 . . . . .  L } with L 

the number of  classes. There is no order defined on 

the possible values of 2. They are just symbols 

referring to some class. In this paper the case will 

be investigated in which 2 is a continuous variable, 

e.g. ;t e [0, 1] or ,,1. ~ ( - 0% oo). Below a number of 

situations is given where this kind of  labeling can 

be used. Note that the number of classes may still 

be finite. 
(1) Probabilistic labels, 2~ [0, l] is the probabi- 

lity that the corresponding object, given a number 

of  observations, belongs to a certain class. To a 
certain object L - 1  probabilistic labels may be 

assigned independently. 

(2) Fuzzy labels, 2~  [0, 1] is the membership- 

value of  the corresponding object to a certain 

class. By this the labelvalue may represent some 
(subjectively estimated) distance to the class ideal. 
To a single object L fuzzy labels may be assigned 

independently. 
(3) Mixtures. If  each object is in fact a mixture 

of  L different components (e.g. chemical c o m -  

pounds) L - 1 continuous labels may be assigned to 

it independently, defining the mixture rates. 

These three situations are really different but 

often confused. They are all closely connected to a 

situation with, in some way or another, a finite 
number of classes. In the two-class case a probabi- 

listic label 2 =0.7 implies that the corresponding 

object is a member of  a family of objects of  which 

70°7o belongs to one of the classes. A fuzzy label of  

0.7 implies that the corresponding object is a 

reasonable, but not very good example of  the class 

of objects the label is referring to. A mixture label 

of  0.7 implies that the corresponding object con- 

sists for 70°7o of  one of the components. Each of  

these three label types are in fact a refinement of  

the case of nominal labels. This does not hold for 

the next type. 

(4) Class-continuum. In this case one of  the con- 

tinuous variables measured on the objects is treat- 

ed as a label. The aim is to estimate the value of  

this 'label variable' from all other variables 
(features), instead of  measuring it. For an example 

see Section 4. 

The classification problem with continuous 
labels may look similar to the multiple nonlinear 
regression problem. However, a few differences 

exist. In regression one is interested in the relation 
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)t =g(x,O) between 2 and the set of  variables x. 
Often the function g(-) is given without the exact 
values of  the parameters  0. These have to be esti- 
mated f rom the learning set, consisting of the 

measured combinations { Ai, xi, i = 1 . . . . .  m }. 
In the classification problem there is usually no 

function g(-) given and one is pr imary even not 

interested in it at all, but just in the possibility of  

classification: find label estimates 2 for new 

objects, based on some learning set of  labeled 

objects. Another  difference is that in regression 
each set of  variable values generates some value of 
2, including some noise, while in the classification 

problem each label 2 generates a set of  objects 

according to some distr ibutionfa(x).  Therefore the 
relation between x and 2 has here primary to be 

written as 

x = X(2)  + e (1) 

in which t represents a K-dimensional additive 
noise vector. This difference in approach is caused 

by the fact that with each feature its own noise may 

be related and that for the noise-free case a label- 
value 2 uniquely defines some featurevalues xj 
( j =  1 . . . . .  K),  but not the other way around. 

In Section 2 classification problems and strate- 

gies are discussed. The feature reduction problem 
is shortly treated in Section 3. An example in which 
some of the problems discussed before are illu- 

strated is given in Section 4. 

2. Classification strategies and problems 

In the case of  continuous labels classification 
errors cannot be measured in terms of  probabilities 
of  wrong classification as almost each estimated 
label will differ from the true one. In this case the 
difference between the label and its estimate is of  
interest. It seems natural to use the expected square 
error for measuring the performance 

6=Ei( , ( i_  ,~i)2 (2) 

is the true label of  an arbitrary object i, and ~'i is its 
estimate. Other choices, however, may be possible. 
I f  the relation X(2)  is linear (1) can be written as 

x = A a + b + e .  

The parameters a and b may easily be estimated 
from a learning set {xi, i-- 1 . . . . .  m } by minimizing 
the mean square distance between X()~i) and xi for 

the learning set. This problem is identical with the 
linear regression problem, except that a,  b and x 
are vectors. The following estimators follow there- 
fore immediately from the linear theory, e.g. see 

Draper and Smith (1966): 

a= ~, A i ( x i -X ) / (2  2 - X2), (3) 
i 

6 = x -  Za (4) 
I 

where X, X and A 2 are the averages of  respectively 
x, 2 and ,,]2 o v e r  the learning set. An unknown 

label 2 may now be estimated from a given x by 

minimizing the distance between x and .8(2)= 

2d + 6. I f  for this distance the Euclidean distance 
is used, differences in variances between features 
are not taken into account. If  the var iance-  

covariance structure may assumed to be constant 
over the feature space the covariance matrix X may 
be used for normalizing the feature space: rotate 
over the eigenvectors of  2" and divide by the square 
roots of  the eigenvalues of  2". The value of A that 

minimizes the distance to Y~(2) is now given by 

£ = ( x -  6). a/ (a.  a). (5) 

I f  X(A) is an unknown nonlinear function, other 

strategies have to be followed such as: 
(A) Piece-wise linear approximation.  The range 

of values/l  takes on for all learning objects is split 
into a number of  nonoverlapping intervals, such 

that for each interval the number of  corresponding 
learning objects is about  equal. An unknown 
object x is first classified into one of the subsets by 

some classical multiclass classification technique. 

The resulting subset corresponds to a possible 
region for 2. An estimate £1 may now be found by 
assuming that in this interval X(A) is linear and 
applying the linear technique treated above. The 

nonlinear dependency between X and ;t is thereby 
approximated by a piece-wise linear fucntion. How 
good this is depends upon the degree of nonlineari- 
ty, the number of  subsets chosen and the number 
of  available learning objects. 

(B) The stochastic relation between x and 2 may 
be estimated from the learning set by estimating 
the joint density distribution f (x ,  2). An estimate ~" 
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for 2 by a given value of  x may be found by maxi- 

mizingf(x,  2) for 2: 

~'2 = arg max { f (x ,  2)} (6) 
2 

or by the mean value of  2 for the given value of x:  

~'3 = J2f (2  Ix)d2 
2 

= ~ ,~ . f (Lx )d2 /~ f ( ,Lx )d2 .  (7) 
2 2 

The joint distribution f ( x , 2 )  can have any form, 
because of  the nonlinear dependency. For that 
reason a general, nonparametric estimator like the 
Parzen estimator may be used for estimating 
f ( x ,  2). As the computation of  a single Parzen esti- 
mate is already computational heavy, the compu- 
tations of  the estimates (6) or (7) for 2 will become 
very unfeasible for any reasonable size of the 
learning set. An approximative method might be 

the following. 
(C) Nearest neighbour method. For an object x 

to be classified its N nearest neighbours in the 
learning set are found: x~,,g "2 . . . . .  X K. Let the corre- 
sponding labels be given by 2 1, 2 2 .... 2 N. An esti- 
mate for 2 is now: 

N 

L =  2 (8) 
i - l  

If  the size of  the learning set goes to infinity 
simultaneously with N, 2"4 becomes identical with 
~3. If the size of  the learning set is finite, N should 
be small enough to obtain local linearity between 2 
and X,  otherwise a systematic error is introduced 
in the estimate '~4" 

All the above methods linearize in some way or 
another the function X(2).  In (A) it is piece-wise 
linear, in (B) it is hidden in the density estimation 
procedure and in (C) it is caused by the local use of 
learning objects. The mean square error in the 
label estimate of  an unknown x is therefore direct- 
ly related to the mean square error in the linear 
case, which is given by 

= a T,Sa/(a" a) 2. (9) 

The effect on the error of  using a finite learning 
set is primary dependent on the number of  learning 
objects used for the local estimates: in (A) the 
number per subset, in (B) the number used for 
finding a local density estimate and in (C) the 

number of  nearest neighbours. Second order 
effects are the additional error made by choosing 

the wrong subset in (A), or by having some syste- 
matic error due to a too heavy linearization of  the 
nonlinear relation X(2).  

The classification methods (A) and (C) are dis- 
continuous in the sense that an infinitesimal devia- 
tion of x may cause a step in the label estimate £. 
For a number of applications this may be very un- 
desirable. For instance, if one studies the classifi- 
cation of  a mixture of components with a conti- 
nuous varying mixture rate, one does not expect a 
discontinuous mixture rate estimate (the label). As 
the use of  method (B) may be unwanted for its 
computational complexity, some heuristic 
approach has to be used for avoiding this problem. 
A detailed example is given in Section 4. 

3. Feature reduction 

There may be two reasons for lowering the 
dimensionality of  the feature space. One is to 

decrease the amount of  computations and 
measurements to be done during classification. 
The second is to attempt to increase the classifica- 
tion accuracy by using less parameters to be esti- 
mated and by filling the feature space better by the 
available learning set. 

The usual methods for feature reduction may be 
applied to the subset-classes as defined in the 
previous section, method (A). This method initial- 
ly approximates the continuous labeling by a 
multiclass problem, thereby discretizing the labels. 
This will decrease the accuracy of the feature 
reduction. Therefore some method may be needed 
that treats the feature space as a whole, e.g. a 
Karhunen-Loeve expansion. If the noise is large 
for some features this method will focus on the 
noise structure instead of  the discriminating power 
of  the features. This again can be avoided by 
normalizing the feature space as indicated in the 
previous section, provided that the noise is con- 
stant over the space. It seems very hard to perform 
a reasonable feature reduction in the case of  heavy, 
spatial dependent noise. A solution might be to 
select subsets of  the learning set, like in method 
(A), such that for each subset X(2) can be approxi- 
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mated by a linear function. For some applications, 
however, this may be impractical or impossible. 

A problem that also exists in multiclass separa- 
tion may arise here too: The selected feature set 

gives a very good performance for some intervals 
of  2 but is very poor  for other intervals. By this the 

classification accuracy may become strongly non- 
uniform over the range of  2. This effect may be 

restricted by using a max-min method,  by which 

the minimum classification accuracy over the 
range of  2 is maximized. 

4. Example 

In this section we will present an example where 
a number  of  problems described previously arose. 

The solutions developed so far will be worked out. 
The problem arose in a project in which the possi- 
bilities of  controlling an fore-arm prosthesis are 
investigated. One of  these possibilities is a prin- 

ciple originally formulated by Wirta and Taylor 
(1969) that states that with each distal effort  of  the 

arm of  a normal subject an activity of  the proximal 
shoulder musculature corresponds. The contrac- 

tion of  these muscles serve to provide reaction 
force and stabilize the shoulder joint in a natural 
way. A prosthesis controlled by these synergistic 
muscles may be operated in a way that it is natural 

and easy to learn. 
In one of  the experiments set up to investigate 

this principle for practical use the activities of  10 
muscles in the shoulder girdle of  a normal subject 

are measured, resulting in the features Xl, x2, ..., xl0. 
Simultaneously the direction of  the force exerted 
by the hand in the vertical plane is measured. This 
direction is treated as the label 2. For details of  the 
experimental situation see Duin et al. (1977). The 
aim is to find out whether it is possible to estimate 
the direction 2 (0<2<_2~)  of  a force from the 
muscles activities (xj, x2 . . . . .  xl0). The classification 
accuracy has to be reasonable but not necessarily 
very good, as in practice the accuracy will be 
increased by visual feedback. More important  are 
the speed and the complexity of  the computat ions 
needed for classification as they have to be per- 
formed fast (less than 100 ms) by a microprocessor 
builtin in the prosthesis. Moreover,  it is necessary 

that discontinuities as described in Section 2 are 
avoided in order to obtain stable classification 

results during small changes of  the feature values. 
Finally it is desirable to obtain a uniform classifi- 
cation accuracy over the interval 0 < 2 _< 2n. 

First a learning set was measured for 16 different 

values of  2: 2i=2ni/16, i=1  . . . . .  16. For each 
value of 2, 150 measurements were made on the 10 

features, constituting a learning set of  16.150 
objects. As each subset of  150 objects is measured 
for the same value of  2 they may be used for 

obtaining local estimates of  the noise structure. It 
appeared that there are considerable differences in 
the covariance matrices of  the various subsets. 

Nevertheless, the mean covariance matrix was used 
for normalising the feature space. After this, 

feature reduction was obtained by using the first 
two eigenvalues of  the covariance matrix of  the 
complete learning set. An example of  a plot of  the 

subset means in this reduced feature space for a 
normal subject is given in Fig. I. New objects x 
were classified with visual feedback for the sub- 
ject. Method (A) (Section 2) was applied in the 

feature space of  Fig. 1, pairing successive measure- 
ment directions. During the test stage the subject 

was asked to exert a force in a preset direction, 
such that the correct classification result was 

obtained. A typical result is given in Fig. 2, show- 
ing the difference £ -  2 as a function of time. How- 
ever, for a few directions it appeared sometimes 
impossible to obtain a stable result, see Fig. 3. The 

estimate ~" kept wandering between two directions. 

The cause is the discontinuity effect described in 
Section 2. 

In order to avoid these discontinuities we 
changed method (A) in the following way. After 

obtaining the two-dimensional reduced feature 
space, a point P was selected by an interactive or 

Fig. 1. The means of the 16 subsets of the learning set, projected 

on the first two eigenvectors (see text). 
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t ime 

- 1 Z  

Fig. 2. The error a c-,~ in the classification result as a function 

of time during online testing with visual feedback, stable situa- 

tion. 

automatic method such that f rom this point all 

intervals of  the curve X(2)  could be 'seen'  directly 
(this is not possible for every X(2)).  An object x is 

now classified by projecting it f rom P on X(2) .  All 
discontinuities are thereby concentrated in P. 
Objects which are close to P may be rejected. 

Moreover,  the feature selection procedure was 
changed in such a way that the shortest interval 
between two subset means corresponding with two 
successive values of  2: 

min II~(,~i)-~(~i ~)11 
i-- I , . . . , 16  

becomes as large as possible. By this stable classifi- 
cations (1070 reject) with a reasonable accuracy (0.3 

tad) were obtained as described by Den Boer 
(1980). 

-11; 

- - - - -  t i m e  

Fig. 3. The error ~ -  2 in the classification result as a function 

of time during online testing with visual feedback, instable 

situation. 

5. Discussion 

In this paper we have suggested some methods 
for the estimation of labels represented by conti- 

nuous variables. The pattern recognition aspects of  
the problem are closely connected to the lack of  
knowledge on the functional relation between 
featurevalues and labels. We have suggested some 

methods for a linear approximation of  nonlinear 
relations. As soon as knowledge becomes available 

on the functional form, parameter  estimation 
methods can be used as well and will be probably 

more accurate. I f  this knowledge is not available 

classification techniques using continuous labels 
can be of use. They may be applied in statistical 
pattern recognition in several ways, e.g.: 

(1) During the learning stage continuous labels 

enable the teacher to express his knowledge in a 
better, more subtle way. The classification accu- 
racy, also for nominal classes, can be increased by 
this, e.g. see Beukema toe Water and Duin (1981). 

(2) A classification result expressed in conti- 
nuous labels preserves the doubt that may exist 
between two or more nominal classes. Such a label 
can smooth the cascading of pattern recognizers, 

automatic or human.  For example, a human 

specialist can better integrate a probabilistic or a 

fuzzy label produced by an automatic diagnostic 
program with his own observations. Besides, he is 

more willing to. See Hermans and Habbema  
(1975). 

(3) In a number of  applications the classes really 
constitute a continuum, like in the example given 

in Section 4. It would be unnatural and decrease 
the accuracy if this is neglected. 

The use of  continuous variables for labeling 

objects makes problems like the need of a large 
learning set and the reduction of the dimensiona- 
lity even more serious than they are in the case of  
nominal labels. A new problem, discussed in Sec- 
tion 2, is the possibility of  an instable classification 
result. In Section 4 an heuristic solution is present- 
ed in the context of  an example. However,  in spite 
of  these difficulties, continuous labeling can be 
applied succesfully, provided that the learning set 
can be made large enough. If  this condition is ful- 
filled, techniques as described in this paper can be 
used for both, estimating unknown variable values 
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(labels) and  in t roduc ing  con t inuous  labels for 

classifying objects per forming  more  flexibility 

dur ing  learning and  testing. 
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