
Pattern Recognition Letters 4 (1986) 269-272 September 1986

North-Holland

Fast percentile filtering

R.P.W. DUIN, H. HARINGA and R. ZEELEN
Department of Applied Physics, Delft University of Technology, Delft, Netherlands

Received September 1985

Revised 13 October 1985

Abstract: Four algorithms for percentile filtering are compared. The ways they can be implemented in hardware and software,
their flexibility and their speed are taken into account.

Key words: Image processing, non-linear filtering, percentile filtering, rank order filtering, image processing hardware.

1. Introduction

Percentile filtering is a well known non-linear
technique for filtering images (and other signals).
Each pixel in the image is replaced by the value of
that point in the histogram of its neighbour pixels
that corresponds with a preset percentile. Percen-
tile filtering includes minimum and maximum
filtering (grey-value erosion and dilation) and me-
dian filtering. It is very suitable for background
estimation and removal of outlyers without
degrading the image. A review of properties and
applications has been given by Hodgson et al.
(1985).

In the discussions we will assume that the
neighbourhood of a pixel is defined by a square
window of size N. However, results for other
shapes may be derived directly. Pixels are process-
ed in a rasterscan way, resulting in an overlap of
successive windows. If the pixels are ordered with
respect to their value then a preset percentile
(0-100070) corresponds with a certain rank number,
the 'percentile rank number' with a range from 1
to N. (For this reason, percentile filters are
sometimes called rank order filters.) We will call
the pixel corresponding to the percentile the
'percentile pixel'. Finally, we will assume that pix-
els are given by K-bit data words.

In this paper we will discuss some algorithms for
percentile filtering of images. As images tend to
contain a lot of data, algorithms have to be fast.
Special purpose hardware is often investigated for
speeding up image processing. An important
feature of algorithms is therefore the suitability for
implementation in parallel hardware. Flexibility in
window size should not be sacrified as different ap-
plications may demand different sizes.

2. Window search

The most direct way of finding the percentile
pixel value is to sort all pixels in the window on
their value. Hereafter, the percentile pixel value
follows immediately from the percentile rank
number. The complexity of this procedure is deter-
mined by the sorting algorithm. This is for the
worst case of order N.N, but for random input
orders, Nlog N can be expected.

As we are not interested in a complete ranking,
but only in the value of the pixel with the percentile
rank, the above number may be further reduced as
follows:

0. Put the pixels under investigation (initially all)
in a bucket A. Let their number be M (initially

0167-8655/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 269

Volume 4, Number 4 PATTERN RECOGNITION LETTERS September 1986

M = N) . Determine the percentile rank number
Mp: I___MpzM.

1. Select an arbitrary pixel from A.
2. Compare the selected pixel with all pixels in A.

If a pixel is smaller or equal to the selected one,
put it in a temporary bucket As. Let M s be the
number of pixels in A s : l <_Ms<M.

3. If M s > M p then proceed with A=A~ and
M = Ms, otherwise with A = A - As,
M = M - M s and Mp = Mp - M s . Empty A s .

4. If M > 1 then go to 1, otherwise stop.

The pixel in A is now the percentile pixel. This
procedure comes never to an end if two or more
pixels have the percentile pixel value. This can be
detected if M does not change while M > 1. In that
case an arbitrary pixel out of A can be used as the
percentile pixel. The number of comparisons need-
ed for this procedure is on the average
N + N/2 + N/4 + 2N.

The following two observations can be made on
the WINDOW SEARCH algorithm:

(a) The ranking procedure may be further
simplified by using only the pixel bits that are real-
ly needed.

(b) Succesive windows overlap considerably. By
treating each window separately a lot of ordering
work is repeated several times.

Of the following three algorithms two ones try
to take into account one of these aspects and the
third one combines both.

3. Histogram search

A widely used algorithm for percentile filtering
is given by Huang et al. (1979). It consists of an in-
itialisation in which the histogram is computed of
the window defining the neighbourhood of the
first pixel. This is followed by an updating pro-
cedure for the histograms of the next windows. As
windows corresponding with successive pixels dif-
fer only on the window boundary, this part of the
algorithm is of order q--N.

The point in the histogram that corresponds
with the desired percentile value has for the first
window to be found by a search starting from one
side of the histogram and can thereafter be up-

dated for successive window histograms. This has
to be prepared by updating the rank of the
previous percentile pixel value simultaneously with
the histogram updating. The number of steps need-
ed for this procedure is data dependent,
somewhere between 0 and 2 K - 1. Huang reports
an experiment in which for a number of 8-bit im-
ages this takes, on the average, less than 10 steps
for each update.

The total procedure is at most of order ~-N+ 2 K.
The algorithm as formulated by Huang can not
easily be implemented by parallel hardware: it is
almost completely sequential.

4. Binary window search

Danielsson (1981) proposed a completely dif-
ferent approach directed to hardware parallellisa-
tion. In his algorithm each window is treated
separately (no updating) as in the WINDOW
SEARCH, but now bitplane for bitplane is analysed
in a binary search. The result is the bit combina-
tion of the desired percentile pixel value. An
algorithm, somewhat modified by us, that per-
forms this task is the following:

0. Put the pixels under investigation (initially all)
in a bucket A. Let their number be M (initially
M = N). Determine the percentile rank number
Mp:I<_Mp<_N. Set the bitplane under in-
vestigation, j , on the most significant bitplane:
j = l .

1. Move the pixels in A with bit-j equal to zero to
a temporary bucket As. Let M s be the number
of pixels in A s.

2. If Ms>_Mp then proceed with A = A s and
M = M s , otherwise with A =A - A s ,
M = M - M s and Mp = Mp - M s . Empty A s .

3. j = j + 1,
4. I f j g : K t h e n go to 1, otherwise take an arbitrary

pixel from A and stop.

Like in the WINDOW SEARCH only 2N steps (here
bit-inspections) are needed on the average.

In the scheme given by Danielsson no buckets
are used but masks, so in each iteration the bits of
all pixels are inspected, resulting in K . N steps. The

270

Volume 4, Number 4 PATTERN RECOGNITION LETTERS September 1986

nice feature of it is, however, that it may easily be

parallised for all pixels, resulting in a time com-
plexity of K. Also bitplane parallellisation seems to
be possible, using a pipeline approach. For that
case the time-complexity is just 1" in each step a
new percentile value is produced. The hardware
complexity, however, may be very large: N * K bit-
wide logic. The BINARY WINDOW SEARCH is nicely
implementable on bit serial SIMD machines like the
CLIP, DAP, MPP, GRID and GAPP.

5. Binary histogram search

Another idea put forward by Danielsson (1981)
and independently by Ataman et al. (1980) is to
collect a set of histograms

H1, H2 Hi , Hk

where Hi is based on the i most significant bits of
the input data only. Hi has a length of 2 i. This
idea can be combined with the algorithm of Huang
(1979) into a binary search on histograms with up-
dating. The algorithm can be summarised as

follows:

1. Compute for the first window the K histograms

n l , n 2 H i n~ .

2. Find the percentile pixel value of a window by
a binary search:
Let the percentile rank number be r.
Set j = 0 and a = 0.
Do f o r i = l t o K

j = j*2;
if r > a + H (j) then (j = j + 1, a = a + H i (j)) ;

Enddo;
Now j equals the percentile pixel value.

3. If all windows are treated, stop; else, goto the
next window and update the K histograms H i.

4. Goto step 2.

For this algorithm, K histograms have to be up-
dated. The search part consists of a fixed number
of K steps. The total complexity is therefore of the
order of K.x/-N+ K. This can easily be reduced to
X/N+K by using parallel hardware for the
histogram bookkeeping. This has been done by the

authors of this paper (Duin et al., 1985; Zeelen
and Haringa, 1985), yielding a fast and flexible

hardware set-up.

6. Discussion

We will compare here the four algorithms
described above. Finally a short characteristic of
the use of each of them will be given.

The computational effort needed for the
HISTOGRAM SEARCh is of lower order (x/N) than the
effort needed for the WINDOW SEARCH (N).
However, the additional overhead needed for up-
dating the percentile pixel in the histogram may be
so large that for small windows the WINDOW
SEARCH has to be preferred. Where the break even
point lies depends on the number of bits, the
characteristics of hardware and software and even
on the data. For windows as small as 3*3 (N= 9)
and 8-bit pixels usually the WINDOW SEARCH has to
be preferred.

Both algorithms are not very suitable for im-
plementing in parallel hardware. Moreover, for
that case the WINDOW SEARCH may be replaced by
the BINARY WINDOW SEARCH, using 1-bit logic in-
stead of K-bit logic. For both the number of com-
parisons that is needed is on the average 2N. If the
scheme proposed by Danielsson (1981) is used for
the BINARY WINDOW SEARCH the number of steps is
K . N , but by parallellisation it can be reduced to K,
or even to 1. This solution seems particulary suited
for a VLsi-design.

The use of histograms instead of a direct search
in the window has for the case of a hardware
design, the advantage that it offers flexibility for
the window size: the same hardware may be used
for windows with all kinds of shapes and sizes.
Windows of 15.15, or even 30*30 should be no
problem. The disadvantage that for histograms the
number of bits has to be fixed is compared to that
rather small. In many applications windows of
several sizes may be needed, but always combined
with the same bit accuracy. However, extreme pix-
el accuracies (K> 16 bit) are hardly possible in
combination with histograms as they become to
large to be stored for the present state of
technology.

271

Volume 4, Number 4 PATTERN RECOGNITION LETTERS September 1986

T h e BINARY HISTOGRAM SEARCH needs, com-
pared to the HISTOGRAM SEARCH K histograms in-
stead of one. The search parts of the algorithms
need a fixed number of K steps, versus a data
dependent number of maximum 2 K - 1 steps. This
last figure may for some images be very small, e.q.
10, but will in the presence of noise be of the order
2 K', in which K" is the number of bits that is ef-
fected by the noise. The BINARY HISTOGRAM
SEARCH is insensitive for this. It always needs just
K steps. Moreover, the histogram updating is more
simple as only the histogram has to be updated and
not simultaneously the rank of the previous
percentile pixel value. These advantages have to be
paid by the updating of K histograms instead of
one. However, this can easily be parallellised in
hardware.

Finally the following conclusions may be stated.
The WINDOW SEARCH is suited for small windows

and when implemented in hardware, of a fixed
size. The HISTOGRAM SEARCH is fast for larger win-
dows and offers flexibility in window size. It is the
best algorithme that is available for software solu-
tions. The BINARY WINDOW SEARCH offers the
possibility of very fast parallel hardware, especial-
ly suited for VLsi-design. It is only feasible for
small windows, and it is not flexible. The BINARY
HISTOGRAM SEARCH is suited for a flexible, fast
parallel hardware design, offering the possibility
of large windows, but is restricted to a fixed and
limited bit width for the pixel data.

Acknowledgement

The authors thank P.E. Danielsson for his com-
ments on an earlier version of this paper.

References

Ataman, E., V.K. Aatre and K.M. Wong (1980). A fast method
for real time median filtering. IEEE Trans. Acoustics,
Speech and Signal Processing, 28(4), 415-421.

Danielsson, P.E. (1981). Getting the median faster. Comput.
Graphics Image Processing 17, 71-78.

Duin, R.P.W., H. Haringa and R. Zeelen (1985). A hardware
design for fast 2-D percentile filtering. Proc. Internat. Soc.
Opt. Eng. 596.

Hodgson, R.M., D.G. Bailey, M.J. Naylor, A.L.M. Ng, and
S.J. McNeil (1985). Properties, implementations and ap-
plications of rank filters. Image Vision Comput. 3(1), 4-14.

Huang, T.S., G.J. Yang and G.Y. Tang (1979). A fast two-
dimensional median filtering algorithm. IEEE Trans.
Acoustics, Speech Signal Processing 27(1), 13-18.

Zeelen, R. and H. Haringa (1985). Hardware for percentile
filtering (in Dutch). Thesis, Dept. of Applied Physics, Delft
University of Technology, Delft, Netherlands.

272

