
Pattern Recognition Letters 11 (1990) 501-506 July 1990

North-Holland

An algorithm for benchmarking an SIMD
pyramid with the A bingdon Cross

W.B. T E E U W and R . P . W . D U I N
Pattern Recognition Group, Faculty of Applied Physics, Delft University of Technology, Delft, The Netherlands

Received 7 August 1989

Revised 30 November 1989

Abstract: Benchmarking an S1MD pyramid with the Abingdon Cross is discussed. Measured results for a simulated pyramid

architecture on a CLIP4 processor array are presented, as well as estimates for a hypothetical hardware pyramid built with

CLIP4 like processing elements.

Key words: Abingdon Cross, SIMD processor array, CLIP4, pyramids, pyramid simulation.

1. Introduction

It is good practice that (new) computer architec-
tures specialized for image processing are com-
pared to each other. Unfortunately, benchmarking
image processing systems is a difficult task. It is
hardly possible to define a task and to select test
data without favouring certain systems in some
way, either through permitting the choice of
methods favoured by these systems or by matching
the parameters of the data to the dimensions of the
systems.

During the Abingdon Workshop in 1982, a
benchmark test image, called the 'Abingdon
Cross' , was devised. The Abingdon Cross is an im-
age with grey values ranging from 0 to 255. The
image shows a cross on a background. The cross is
centered in the middle of the image and consists of
a horizontal and a vertical arm. All background
pixels have a grey value of 128. The pixels of the
two arms of the cross have a grey value of 160, and
the pixels of the intersection of the two arms have
a grey value of 192. If the image is N by N pixels,
then the arms of the cross are 3 N / 4 pixels long and
N / 8 pixels wide. White gaussian noise having zero

mean and a standard deviation of 32 is added to all
points. The image is shown in Figure 1.

For benchmarking a machine with this image, it
is required to produce the medial axis or skeleton
of the cross. The solution of this problem includes
two common tasks used in picture processing. First
the cross has to be isolated, e.g. by filtering and
thresholding or by edge detection, and second a
skeletonization has to be performed.

In order to compare the performance of various
multicomputer systems in executing the Abingdon
Cross test, the results are expressed in a quality
factor Q which is defined by

Q = N / t e (1)

where t e is the execution time for solving the prob-
lem and N is the image span (width of the image
in pixels). The problem is described by Preston
[7,8], who lists the results of many systems that
have been benchmarked using this test image.
These benchmark results do not include pyramidal
systems.

This paper presents the results for benchmarking
an SIMD pyramid, which is based on the CLIP4
chip, using the Abingdon Cross. First a brief over-

0167-8655/90/$03.50 © 1990 - - Elsevier Science Publishers B.V. (North-Holland) 501

Volume 11, Number 7

128

160

160 192 160

160

Figure 1. The Abingdon Cross benchmark.

PATTERN RECOGNITION LETTERS July 1990

Figure 2. Schematic pyramid architecture.

view of the pyramid machine model (as used) is
given and an algorithm for executing the Abingdon
Cross benchmark is described. Then the implemen-
tation of the pyramid on a CLIP4 processor array
is described and the results of the algorithm as run
on this pyramid machine simulator are given.
Finally, the results are discussed and conclusions
are drawn.

2. The CLIP4 pyramid

A pyramidal data structure is a sequence of two-
dimensional arrays of increasing dimensions. For
example a pyramid with nine levels contains arrays
of sizes 1 ,1 , 2 , 2 , 4 , 4 , 8 , 8 , 16,16, 32,32,
64*64, 128,128 and 256,256. Each of these
arrays is filled with image data.

A parallel computer whose processing elements
are arranged in such a pyramidal structure is
called a pyramid machine. Therefore a pyramid
machine is a stack of two-dimensional square
arrays of processing elements. The arrays are num-
bered level 0, level 1 level L and consist of
1 • 1, 2 , 2 2 c , 2 L processing elements. A pro-
cessing element in the interior of this pyramid
system has a local neighbourhood which consists
of a father in the level above, eight neighbours in
the same level and four sons in the level below.
Figure 2 shows the connections in a pyramid
machine.

The pyramid machine is of the Single Instruction
Multiple Data (SIMD) type. That is, all processing
elements execute the same instruction simultane-

ously on different data. Each processing element
has a certain amount of local memory for data
storage. The results of an instruction are written at
the same local memory address for each processing
element. However, for each level of the pyramid
machine it can be specified that, after executing
such a process-and-store statement, the data at the
selected address have to be overwritten or left un-
changed.

The processing element itself is a binary one, re-
sembling a CLIP4 processing element as described
by Duff and Fountain [5], but having thirteen in-
stead of eight neighbour inputs. A simplified pro-
cessing element is shown in Figure 3. The logical
'or ' of the signals of the selected neighbours and
the old pixel value are used to calculate the new
pixel value.

Other pyramidal systems (hard- and software)
are described by Cantoni and Levialdi [4].

3. The algorithm

Our algorithm for executing the Abingdon Cross
benchmark performs a noise removal by a 4 by 4
average filter. Then the image is thresholded and a
skeletonization is performed. The algorithm uses a
pyramidal data structure and contains the follow-
ing steps:

Step 1. The image (Abingdon Cross) is placed in
level 8 (the base, 256 by 256 pixels) of the pyramid
machine.

Step 2. A processing upwards in the pyramid is
performed, up to level 6, with the father each time

502

Volume 11, Number 7 PATTERN RECOGNITION LETTERS

data irput data output

I

from all
n e i g h b o u r s ~ ~ Ceg ister i

input

select

and

OR

gate

A

P

2-INPUT

2-OUTPUT

BO©LEAN

FUNCTION

GENERATOR

to all neighbours

Figure 3. A simplified pyramid processing element based on the CLIP4 processing element.

July 1990

getting the value of the average of his four sons. In
this way, an image of 64 by 64 pixels in level 6 of
the pyramid is obtained, which contains a smooth-
ed version (4 by 4 average) of the original in the

base.
Step 3. A thresholding of the image in level 6 of

the pyramid at grey level 144 (the average of 128

and 160).
Step 4. Noise removal in the binary image in

level 6 of the pyramid by executing an opening
(= erosion + dilation) followed by a closing (= di-
lation + erosion) on the image.

Step 5. Skeletonization of the image in level 6.
Eight iterations of the skeletonization routine as
described by Arcelli et al. [1] are used.

Step 6. Processing level by level downwards in
the pyramid, down to the base, each time passing
the value of the father through to his four sons
followed by one iteration of a skeleton on this son-
image. To get a symmetric result, it is necessary to
change the order in the set of skeletonization masks

compared to Step 5.
Step 7. The result is displayed.
The algorithm is based on the principle that av-

eraging an image means low pass filtering it. But if
the high frequencies are removed, the image can be
processed at a correspondingly lower resolution. It
is necessary to translate the skeleton in the low

resolution image to a skeleton of the original image
size. This is performed by processing downwards
in the pyramid. It will be clear that, with this going
downwards, aberrations in the skeleton are en-
larged.

4. Implementation and experimental results

The algorithm presented has been tested on a
256 by 256 Abingdon Cross image, using a simula-
tion of the described pyramid on the Delft 64 by 32
CLIP4 processor array. A pyramidal data struc-
ture was implemented in the image memory of this
processor array. The described algorithm only uses
three levels of the pyramid. These levels are the one
of 64 by 64 pixels in size, which was stored window
wise, and those of 128 by 128 and 256 by 256 pixels
in size, which were stored crinkle wise in the CLIP4
image memory. The difference between window
mapping and crinkle mapping is explained in Fig-
ure 4. Crinkle mapping means that neighbouring
image pixels are stored in the memory of the same
processing element. To execute an instruction on
a crinkle-wise stored image, the usual CLIP4 in-
struction for specifying array operations had to be
adapted (simulated).

The execution time for the described algorithm

503

Volume 11, Number 7 PATTERN RECOGNITION LETTERS July 1990

al a2 bl b2

a3 a4 b3 b4

cl c2 dl d2

c3 c4 d3 d4

al a21113 b 4 ~
(a) b

a3 a4

al bl
(b) d

cl dl

Figure 4. Window (a) and crinkle (b) mapping an image.

programmed in c4vm, the CLIP4 virtual machine
(see Fedorec and Otto [6]), was measured to be
0.45 s (that is Q = 571). This time does not include
the Steps 1 and 7, because the image had to be read
from a file into the memory of the CLIP4's host
computer and special hardware to display a crinkle-
wise stored image was not available. The result is
surprising, for the fastest solution measured so far
for solving this problem with our 64 by 32 CLIP4
array took 0.65 s (Q = 394) using CLIP assembler
(CAP) code (see Buurman [3]). Taking into ac-
count that CAP code is about 4.4 times faster than
c4vm, the quality factor for the pyramidal algo-
rithm executed on the 64 by 32 CLIP4 array, using
CAP code, can be estimated to be Q = 2500.

Counting the pyramid machine (SIMD) instruc-

tions used in the presented algorithm, and assum-
ing that the measured times for the corresponding
CLIP4 array instructions on the 64 by 32 CLIP
array are representative for these pyramidal in-
structions, an estimation for the execution time on
a real hardware pyramid (made with the hypotheti-
cal processing element of Figure 3 and having a
base of 256 by 256 processing elements) can be
made. Now, the hypothetical quality factor for the
presented algorithm is Q = 2 1 0 0 0 using c4vm, or
when using CAP Q = 93 000. Table 1 shows these
Abingdon Cross results as well as some other re-
suits cited from Preston [7, 8]. As these results are
achieved by systems with different numbers of pro-
cessors, we also give the 'efficiency' which is the
quality factor Q divided by the number of pro-
cessors.

The qualitative result for the presented algo-
rithm appeared to be extremely well. The skeleton
that was found consisted of two straight crossing
lines, as shown in Figure 5. This good result is due
to the fact that the symmetric Abingdon Cross im-
age fits the pyramidal structure perfectly well. The
four sons of a father always belong simultaneously
either to the background pixels, or to the cross pix-
els. Shifting the image, although not changing the
quality factor, influences the qualitative result in a
negative sense. This location dependent nature of
the pyramid machine is inherent to the pyramidal
structure. The location dependency can be reduced
by making pyramids having overlapping neigh-
bourhoods of sons (see for example Blanford and
Tanimoto [2]).

Table 1
Results for various systems benchmarked with the Abingdon Cross. The results are indicated to be actual (A), estimated (E) or hypo-
thetical (H) results. An indication of the efficiency (quality factor divided by the number of processors used) is given too. (1) pro-

grammed by host controlled 'C' (C4VM). (2) programmed by downloaded assembly language (CAP).

machine image size affiliation quality factor efficiency

pixels Q

CLIP4 (96 *96 array) 96 *96
CLIP4 - scanned (64 * 32 array) 256 *256
CLIP4 - pyramid (64*32 array)(1) 256*256
CLIP4 - pyramid (64*32 array) (2) 256*256
CLIP4 - pyramid (256 * 256 base) 256 * 256
DAP (64*64 array) 128 * 128
GAPP (array)
MPP (128 * 128 array)

University College London (M.J.B. Duff) 7 273 (A) 0.8
TU Delft (H. Buurman) 394 (A) 0.2
TU Delft (W.B. Teeuw) 571 (A) 0.3
TU Delft (W.B. Teeuw) 2 500 (E) 1.2
TU Delft (W.B. Teeuw) 93 000 (H) 1.1
Intnl. Comp. Ltd. (S.F. Reddaway) 64000 (E) 15.6
Martin Marietta (R. Jackson) 74 000 (E)
NASA Goddard (T. Reeves) 26000 (E)

504

Volume 11, Number 7 PATTERN RECOGNITION LETTERS July 1990

Figure 5. Abingdon Cross benchmark result using a pyramid.

5. Discussion and conclusion

An SIMD pyramid machine has been simulated
on a 64 by 32 CLIP4 processor array. The pyramid
machine has been benchmarked with the Abingdon
Cross benchmark. However, the location depend-
ent nature of the pyramical data structure makes

that the Abingdon Cross is not a suitable bench-
mark for pyramids, i.e., results can be deceptive
due to the symmetry of the test image. Neverthe-
less, a pyramid machine seemed to be a promising

architecture for image processing.
During the benchmarking, it turned out that a

simulation of the pyramidal data structure in the
memory of a small processor array is a possibility
to increase the processing power of this array. Us-
ing a small processor array, multi-resolution image
analysis can speed up processing substantially and
is simplified by using the technique of crinkle wise

storing a large image in the memory of this small
processor array. A simulation of a pyramidal data
structure in the memory of an array offers these
possibilities.

The observed behavior of simulated pyramids
and of processor arrays using crinkle-wise stored
data holds for a restricted set of operations. It is
due to the fact that low pass filtered images can be
represented in low resolution. If the resolution is

linearly decreased by a factor n (n = 4 in our case),

a factor n 2 fewer processing elements are needed.

Moreover, in such an image the number of skele-
tonization steps is decreased by a factor n. For
parts of the algorithm the computat ional efficiency
(number of results per processing element per sec-
ond) is thereby increased with a factor n 3. This is

true for a simulated pyramid in which the highest
level used for processing is larger than or equal to
the array size of the actually used processor array.
This explains the fact that the simulated pyramid
is even more efficient than a full size hardware
pyramid, as follows f rom Table 1. This is the more
striking if one realizes that, depending on the par-
ticular instruction to be executed, up to about 600
(200) process-and-store instructions on the Delft

64 by 32 CLIP4 processor array are needed to
simulate one process-and-store instruction for a
crinkle-wise stored image of 256 by 256 (128 by

128) pixels. Furthermore, the efficiency of a full
size hardware pyramid is decreased by the fact that
this pyramid consists of so many processing
elements, most of which are idling during the
larger part of the algorithm executing.

As the advantageous features of a pyramid are
only effective for a subset of the set of image pro-

cessing tasks, and as simulated pyramids seem to
be even more effective than hardware pyramids, it
can be concluded that it may be better to simulate

a pyramid on a small processor array than to ac-
tually build one.

Acknowledgement

The investigations were (partly) supported by the
Foundat ion for Computer Science in the Nether-
lands SION with financial support f rom the Nether-
lands Organization for Scientific Research (NWO).

The authors thank E.R. Komen for his help in
the implementation and processing of the algo-
rithms on the Delft CLIP4.

References

[1] Arcelli, C., L. Cordelia and S. Levialdi (1975). Parallel
thinning of binary pictures. Electronics Letters 11,148-149.

505

Volume 11, Number 7 PATTERN RECOGNITION LETTERS July 1990

[2] Blanford, R.P. and S.L. Tanimoto (1988). Bright-spot de-
tection in pyramids. Computer Vision, Graphics, and Image
Processing 43, 133-149.

[3] Buurman, H. (1987). Scanning Algorithms for the CLIP4
Processor Array. D2-report, Pattern recognition Group,
Faculty of Applied Physics, Delft University of Technolo-
gy, Delft.

[4] Cantoni, V. and S. Levialdi, Eds. (1986). Pyramidal Sys-
tems for Computer Vision. Springer, Berlin.

[5] Duff, M.B.J. and T.J. Fountain, Eds. (1986). Cellular
Logic Image Processing. Academic Press, London.

[6] Fedorec, A.M. and G.P. Otto (1988). The CLIP4 Virtual
Machine, Reference. Report No. 88/1, Department of
Computer Science, University College London.

[7] Preston, K. (1986). Benchmark results; the Abingdon Cross.
In: L. Uhr, K. Preston, Jr., S. Levialdi and M.B.J. Duff,
Eds., Evaluation of Multicomputers for Image Processing.
Academic Press, Orlando.

[8] Preston, K. (1989). The Abingdon Cross benchmarck sur-
vey. IEEE Computer 22 (7), 9-18.

506

