ELSEVIER

Pattern Recognition Letters 17 (1996) 529-536

Pattern Recognition
Letters

A note on comparing classifiers '

Robert P.W. Duin *

Pattern Recognition Group, Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands

Received 23 June 1995; revised 22 November 1995

Abstract

Recently many new classifiers have been proposed, mainly based on neural network techniques. Comparisons are needed
to evaluate the performance of the new methods. It is argued that a straightforward fair comparison demands automatic
classifiers with no user interaction. As this conflicts with one of the main characteristics of neural networks, their flexibility,
the question whether they are better or worse than traditional techniques might be undecidable.

Keywords: Automatic classifiers; Benchmarking; Comparisons; Feedforward neural networks

1. Introduction

The large interest in artificial neural networks
(ANN) during the last ten years has produced a
number of interesting pattern recognition applica-
tions with sometimes surprisingly good results
(Cheng and Titterington, 1994; Golomb et al., 1991;
Kamata et al., 1992; Michie et al., 1994; Prechelt,
1994; Ripley, 1994; Sabourin and Drouhard, 1992;
Schmidt, 1994, Sejnowski and Rosenberg, 1988).
This at least suggests that neural networks are good
for building pattern classifiers. It has to be regretted
that originally almost never comparisons were made

* Temporarily with the Vision, Speech and Signal Processing
Group, Dept. of Electrical Engineering, Univ. of Surrey, United
Kingdom. Email: duin@ph.tn.tudelft.nl

" This paper is based on a presentation at the ICMS Workshop
on Statistics and Neural Networks, Edinburgh, April 19-20, 1995,
titled ‘‘The Feedforward Network as an Automatic Classifier’”.
The experiments presented here are new and more extensive.

with traditional techniques like the nearest neighbor
rule (NNR). More recently, the interest in such com-
parisons has grown, e.g. see (Ripley, 1994; Prechelt,
1994). A study by Schmidt et al. (1994) showed that
the NNR is equivalent or better in a number of
applications, including NETtalk, the text-to-speech
recognition problem studied by Sejnowski and
Rosenberg (1988) that originally caused much enthu-
siasm for the neural network possibilities.

A very broad comparison study was organized in
the STATLOG project (Michie et al., 1994) using 22
real-world datasets and 23 different classifiers in-
cluding a number based on ANN. This made clear
that there is no unique best classifier. Several meth-
ods showed a good performance over a wide range
of databases, among which the NNR and the feedfor-
ward neural network.

The question whether neural nets can outperform
traditional techniques remains an intriguing one for
many researchers. It is the topic of several discus-
sions on the Internet, the theme of workshops and
competitions (ICMS Workshop, 1995) and it enters

0167-8655,/96/812.00 © 1996 Elsevier Science B.V. All rights reserved

SSDI 0167-8655(95)00113-1

530 R.P.W. Duin / Pattern Recognition Letters 17 (1996) 529-536

the discussion sections of many research papers. It is
the goal of this paper to discuss this question itself.
What do we mean by: ‘*‘Can neural networks outper-
form traditional techniques?’’. How might such a
question be answered? What are the pitfalls and traps
that should be avoided? We realize that for some
researchers our conclusions might not be that surpris-
ing. Given the large set of publications, however, in
which the authors struggle with the problem of pre-
senting fair comparisons it is clear that it deserves
more attention.

2, Comparison problems

At a first glance it may seem that comparing
classifiers is as easy as error counting. There is,
however, certainly more to say. Even if we skip the
issue of computing time then still two other factors
are of importance: For what application(s) will the
classifier be used and by whom?

It is perfectly clear that performance differences
are a function of class distributions and sample sizes
and therefore of the application. If one tries to draw
conclusions that are application independent and thus
distribution free, then only performance bounds can
be obtained, e.g. in terms of the Vapnik—
Chervonenkis complexity of classifiers (Vapnik,
1982; Devroye, 1988). This is not the issue here. We
are interested in the real performance for practical
applications. Therefore, an application domain has to
be defined. The traditional way to do this is by a
diverse collection of datasets. In studying the results,
however, one should keep in mind that such a collec-
tion does not represent any reality. It is an arbitrary
collection, at most showing partially the diversity,
but certainly not with any representative weight. It
appears still possible that for classifiers showing a
consistently bad behavior in the problem collection,
somewhere an application exists for which they are
perfectly suited.

A second issue, causing even more problems, is
the dependence of the performance of some classi-
fiers on the skill of the analyst who applies them. We
will elaborate on that in the following.

Some classifiers are very flexible, with many
user-adjustable parameters, others are almost entirely

automatic. There will be hardly any discussion on
the performance of Fisher’s linear discriminant or
the 1-NN rule (for a given metric) on a particular
dataset. However, if somebody states that he uses an
ANN based classifier, or even more specific, a
multi-layer perceptron using the backpropagation
rule, then there is still a wide range of possibilities.
His results will be highly dependent on the architec-
ture, the initialization procedure, his strategy of de-
termining targets, step sizes, momentum terms and
the use of weight decay. There is not such a thing as
a uniquely defined neural network classifier. Soft-
ware packages and textbooks give guidelines on how
to establish the parameters for a particular applica-
tion. The result and its performance will be user
dependent. Some people might get better neural net-
work classifiers than others on the same problem.

Almost all of the traditional classification tech-
niques are well defined and can be used without
much user interaction. This holds for linear and
nonlinear discriminant analysis, the nonparametric
methods as well as for decision trees. This has
several consequences for the issue of comparing
classifiers on a particular application.

First, the answer to the question: ‘‘Can neural
networks outperform traditional techniques?’’ might
be ““Yes”’, if a better classifier has been found. The
answer, however, can never be ‘‘No’’, because there
is always the possibility that somebody finds a better
ANN-based solution.

Second, as the neural network technology is very
flexible, it can implement almost any classification
function, including the ones found by traditional
classifiers. A good experimenter may find this and
thus obtain an at least equal performance.

Third, the use of neural networks involves a skill.
It is not just the use of an off-the-shelf algorithm for
which it is sufficient being able to read the manual in
combination with some general experimentation ca-
pabilities. It demands training, awareness of all types
of pitfalls and a special art for tuning the parameters.

Fourth, as tuning the design parameters involves a
lot of experimentation and as datasets are finite,
there is always the possibility that a good classifier is
found by chance. In order to avoid this, the datasets
should be divided into three subsets: one for training,
one for tuning and one for testing. For a fair compar-
ison, the last one should be used only once for all

R.P.W. Duin / Pattern Recognition Letters 17 (1996} 529-536 531

classifiers, at the moment they have been estab-
lished. There will be a strong temptation for the
researcher to do some more tuning when he finds out
that his neural network performs relatively badly.
Papers that emphasize that this has not been done are
very rare. On the contrary, one regularly may read
that the test performance improved as a result of
modifying the algorithm. So the test set is used as a
training set and performances estimated by it are
biased.

In summary, for an arbitrary application it is to be
expected that a neural network-based classification
function exists that performs at least as good as
traditional classifiers. If this has not been found, it is
unlikely that this result will appear in print as it
throws doubt on the capabilities of the experimenter.

This might be the end of the comparison issue.
We just establish that neural networks are not a
classifier but a large and complicated toolset and the
result does heavily depend on the analyst or artist
using the tools. This is the strength and the weakness
of this technique. If you know how to use the tools
you can do a lot, if not, better stay away and use
traditional automatic tools.

After realizing the above, there may still some-
thing to do. We might investigate (1) what an expert
can reach using this toolset, (2) what the value of the
toolset is for an arbitrary researcher and (3) what
automatic tools can be built using this toolset. These
three possibilities will be worked out in some more
detail below.

If we assume that the result mainly depends on
the expert using the toolset and not on what is in the
toolset, a comparison between experts (or groups of
experts) is more appropriate than one between meth-
ods. This implies that a set of datasets has to be sent
to a number of experts. They are free to use what-
ever technique they want to find good classifiers.
These classifiers are collected and independently
tested. A report of the experts explaining what they
have done will indicate the usefulness of the particu-
lar tools for them. Such competitions have been
organized in the past, e.g. during the 3rd Interna-
tional Pattern Recognition Conference in 1976, but
often on just a single dataset. Below it is argued that
this is not very informative.

In order to find out the value of particular toolsets,
including their description, possibilities for user in-

teraction, etcetera, the following test might be done.
Assume that we have a small number of toolsets,
some based on traditional techniques, some on neural
networks only and some mixtures. Now each toolset
Is sent to a number, say ten, researchers, together
with the datasets in order to find out what the value
of the toolset is for ‘“the average researcher’’. In this
scenario it is necessary that each participant gets a
toolset at random, not his favorite one, as this i1s a
type of consumer test on toolsets.

Finally, it can be argued that if a toolset is good,
one should also be able to build an automatic classi-
fier with it. This, of course, eliminates the possibil-
ity for the user to incorporate his skills and a priori
knowledge of the problem. Nevertheless, it is still
interesting to investigate what can be reached by
such an automatic classifier, as it might help to find
out and understand what types of approaches are
useful for what problems. Most neural network pack-
ages have as a default one or more of these classi-
fiers. This will be discussed further in the next
section.

Of these three possibilities, the expert contest, the
consumer test and the automatic classifier compari-
son, only the last one can be done by a single
researcher. The other two have to be organized at
large. None of them will straightforwardly answer
the question whether neural nets are better than
traditional techniques. They will, however, all give a
contribution to a final answer.

One of the largest comparisons recently under-
taken, the STATLOG project (Michie et al., 1994),
has already been mentioned shortly in the introduc-
tion. Due to the large number of methods included,
the wide variability of datasets and the careful proce-
dures followed, and the extensive report of the re-
sults, this is a very valuable experiment. One can
find out for which types of problems what methods
score well and which don’t and see that some are
almost always bad and some are very often among
the good performers. In terms of the above three
possibilities, this project is a mixture of an expert
contest and an automatic classifier comparison. Basi-
cally each method was run by another expert. As a
guideline they were supposed to adjust as few pa-
rameters as possible. In the discussions, however,
one can read that especially for neural networks this
is still a subtle process that may heavily influence

532 R.P.W. Duin / Pattern Recognition Letters 17 (1996) 529--536

the results. Consequently, the results may be differ-
ent if the methods are rotated over the experts.

3. The automatic classifier

For a given labeled dataset, an automatic classi-
fier finds without any user interaction a discriminant
function. It can thus be used by anybody. It has of
course the disadvantage that it will probably perform
worse than a skilled analyst using a good toolset.
Automatic classifiers may also be of value as a
reference to such analysts. For less demanding prob-
lems they give a fast and easily obtained result.

We are here interested in automatic classifiers as
their performance in a given application area or on a
given set of problems can easily and objectively be
obtained. If one wants to use the result of such a
comparison for the scientific study of classification
algorithms and strategies, then it is useful to add one
more demand: an automatic classifier should be well
defined on a clear concept and should not include
disputable parameter choices. If it does not fulfill
this condition, the result of the comparison might not
be generally accepted and will not clearly show the
value of particular concepts.

Examples of automatic classifiers are the nearest
mean classifier, the linear and quadratic discrimi-
nants based on normal density assumptions, the
1-nearest neighbor rule, the k-nearest neighbor rule
with optimization of %, using the leave-one-out error
estimator and the Parzen density classifier using
leave-one-out maximum likelihood optimization of
the smoothing parameter for each class. Some of
these classifiers are metric dependent. It has there-
fore to be assumed that the metric is given. Auto-
matic scaling methods should be studied separately
and in addition to the classification.

Decision trees are somewhat more problematic.
For binary decision trees, well defined criteria are
available, such as maximum information gain or the
gini criterion. The problem, however, is the size of
the tree. If a tree is grown until its natural end of
zero error, it is oversized (over-trained) and might
perform badly on an independent test set. Pruning or
early stopping is necessary. There is a lot of discus-
sion possible on the best strategies.

Neural networks are very problematic for design-

ing clear automatic classifiers. A large part of the
research in this area is focused on strategies for the
selection of an architecture and regularization during
training. The training rules themselves show also a
very large variability: fixed or variable step sizes,
targets, momentum terms, weight decay, first- or
second-order techniques, addition of noise in various
places and averaging results. For the moment each
proposal for an automatic classifier based on neural
networks seems disputable. In (Schmidt et al., 1994)
we experimented with a conjugated gradient descent
technique, avoiding the choice for step size and
momentum term. Stopping was defined by a fixed
number of line optimizations. The only free parame-
ter was the number of hidden units. This classifier
showed bad results compared with the nearest neigh-
bor classifier. During various presentations it was
remarked that for the presented datasets much better
neural network classification results than ours ex-
isted. This is true. It should be emphasized, however,
that we want to have a constant classifier over a set
of problems and that this classifier is not to be
changed after the comparison started.

In the next section an example is presented for
which we used ‘trainbpx’, one of the neural network
classifiers of the Neural Network Toolbox of the
MATLAB package. We have good experiences with
this backpropagation feedforward classifier (Hoekstra
et al., 1995) and used it here with its default parame-
ter setting as defined by MATLAB. This method is
not exactly what we mean by an automatic classifier.
It has an adaptive learning rate that often produces
fast and good results but that appears rather ‘en-
gineered’ and is certainly not a clearly defined and
implemented concept. We use it in our example
because it is a ‘state-of-the-art’ method and is widely
used with the MATLAB package.

Two choices for this classifier are still open: the
architecture and the stopping rule. We decided to use
a single hidden layer with a fixed number of 20
hidden units. For most problems with a moderate
feature size this will be sufficient. For small sample
sizes, the danger exists that the networks will be
overtrained. In order to prevent this an early stopping
rule is used based on an artificial tuning set having a
size of five times the training set. This tuning set is
generated from Parzen density estimates for the
classes (Duin, 1976). With this set the neural net-

R.P.W. Duin / Pattern Recognition Letters 17 (1996) 529-536 533

work performance is evaluated during training using
the error count. Training is stopped when the itera-
tion number is twice that during which the last
improvement occurred.

4. An example

We will now present a small comparison of six
classifiers. It is not our purpose to draw any definite
conclusions from this. The goal of this experiment is
mainly to serve as an illustration. The following
classifiers are used in a MATLAB implementation.
They were entirely developed, including the auto-
matic choice of parameters, before they were run on
the datasets used for the comparison.

-NMean, the nearest mean rule. Each object is
assigned to the class of the nearest class mean
computed from the training set. This is a very simple
basic rule, very fast to compute and use. It does not,
however, take into account any other distribution
information than the mean. Moreover, it cannot be
made dependent on the a priori class probabilities,
nor on differences in class frequencies in the training
set.

-Norm, the Bayes rule assuming normal densities
and an equal covariance matrix for all classes. This
covariance matrix is estimated as the average of the
within-class covariance matrices. This method can
handle different a priori class probabilities. We esti-
mated these probabilities by the observed class fre-
quencies in the training set.

-1-NNR, the 1-nearest neighbor rule. Each incom-
ing object is assigned to the class of its nearest
neighbor in the training set. This procedure is sensi-
tive for different class frequencies in the training set,
which, however, cannot be taken into account.

-k-NNR, the k-nearest neighbor rule. In this case
the highest frequency of the class labels of the
k-nearest neighbors is used for assigning a label to a
new object. We estimate & automatically by select-
ing the best result over all & of the leave-one-out
error estimates for the training set.

-DTree, binary decision tree. We use the informa-
tion gain criterion for growing an error-free tree for
the training set and then prune it by the pessimistic
pruning technique, see (Quinlan, 1986, 1987). This

procedure is sensitive for different class frequencies
in the training set.

-ANN, The neural network classifier described
above, which is also sensitive for different class
frequencies in the training set.

The following datasets were used.

-IRIS, Fisher’s Iris Set (Fisher, 1936).

-IMOX, extracted from Munson’s handprinted
character set, see (Jain and Ramaswami, 1988).

-80X, also extracted from Munson’s handprinted
character set, see (Jain and Ramaswami, 1988).

-BLOOD, as published by the American Statisti-
cal Association, see (Cox et al., 1982). We used the
patient’s age as a feature and removed all samples
with missing data fields.

-SONAR, a collection of sonar signals bounced
off a metal cylinder and a roughly cylindrical rock
(Gorman and Sejnowski, 1988).

-GLASS, a collection of glass fragments of differ-
ent origin used for forensic investigations. We re-
grouped the classes as proposed in (Ripley, 1994).

-DNORM, an artificial 30-dimensional dataset of
two normally distributed classes. The classes are
initially generated with means u, = (0,0, 0,...,0)
and pp=(3,3,0,0,...,0) and with a diagonal co-
variance matrix having (1, 40, 1, 1,...,1) on its di-
agonal. Subsequently the dataset is rotated in R¥
obtaining high feature correlations. As the vector
between the class means is not perpendicular to one
of the eigenvectors of the covariance matrix, simple
procedures like the nearest mean rule fail. This
example is constructed such that most classifiers
yield a much larger error than the class overlap of
0.064. See also (Duin, 1995).

The dataset sizes, their number of classes and
features are listed in Table 1. For each dataset the
following procedure is followed. The dataset is di-
vided at random in two equally sized subsets. No
special care is taken that classes are represented
evenly. From this training set an artificial tuning set
is generated of five times the size of the training set.
This is done from a pseudo-maximum likelihood
Parzen density estimation of the training set (Duin,
1976). This tuning set is used for stopping the train-
ing of the neural network. The test set is used for

534 R.P.W. Duin / Pattern Recognition Letters 17 (1996) 529-536

Table 1
Feature and sample sizes for the datasets

Dataset No. of No. of

Total no. of No. of sam-

features classes samples ples per class

IRIS 4 3 150 50,50,50
IMOX 8 4 192 48,48,48,48
80X 8 3 45 15,15,15
BLOOD 5 2 194 127,67
GLASS 9 4 214 70,76,17,51
SONAR 60 2 208 97,111
DNORM 30 2 200 100,100

estimating the error rates. The entire procedure is
repeated 10 times.

In Table 2, the averaged results are shown as well
as the standard deviations over the 10 runs. The best
result for each dataset is underlined. Results that
deviate significantly from the best result significantly
based on the standard deviations are listed in italics.
If this holds for all other results the best result is
printed in bold. Note that judging the significance of
differences on the basis of the standard deviations is
in fact a too simple procedure, since the error esti-
mates are based on the same testsets and are there-
fore dependent.

The first striking point in studying Table 2 is that
although the datasets have all relatively small sample
and feature sizes, the results are very different. There

Table 2
Averaged error rates and standard deviations over 10 runs

Dataset NMean Norm k-NNR 1-NNR DTree ANN
IRIS 0.077 0.025 0048 0.053 0071 0.052
0.019 0.010 0019 0017 0.031 0.026

IMOX 0.115 0102 0.08 0.071 0.092 0.088
0.027 0026 0018 0.023 0.045 0.031

80X 0.114 0.123 0.077 0.082 0255 0.118
0.054 0074 0.083 0.088 0.099 0.078

BLOOD 0./63 0125 0.131 0153 0158 0.123
0.034 0.035 0035 0.041 0.048 0.033

GLASS 0.569 0431 0303 0286 0334 0380

0.049 0.098 0040 0.045 0052 0.075

SONAR 0.352 0315 0.194 0188 0307 0.236
0072 0061 0050 0.044 0.043 0.034

DNORM 0.334 0.5 0185 0212 0344 0.121
0.045 0041 0.045 0038 0045 0017

is no uniformly best procedure. The nearest mean
method and the decision tree perform badly on these
datasets. It is, however, easy to construct artificial
examples for which they do well. If, for instance, the
correlation in the DNORM problem is removed by
rotating the data, the decision tree is best while the
other methods keep the same performance. If we
shift the class mean difference to one of the eigen-
vectors, the nearest mean method performs very
well.

If we compare the neural network procedure with
the nearest neighbor methods, then there is no dataset
where the neural network performs significantly bet-
ter, except for the artificial DNORM dataset. This
was deliberately constructed such that almost any
method would perform badly. It is interesting that we
have thus at least one example for which the neural
network classifier is significantly better than all other
classifiers. The training effort necessary for the neu-
ral network classifier is about 10 to 100 times larger
than for any other classifier.

5. Discussion

The above example illustrates and confirms what
has already been found by others (Michie et al.,
1994), i.e., that there is not such a thing as a best
classifier. Moreover, for almost any classifier a prob-
lem can be selected or constructed for which it does
well. Researchers presenting new or modified classi-
fiers should realize that. As a consequence, their
comparisons should include a diverse set of alterna-
tive classifiers and should cover a number of real-
world datasets, preferably sets already studied in the
literature.

The pitfalls that might show up when one is too
sloppy with this can be illustrated by results in Table
3, where we compare the above-used neural network
classifier with a modification. This modified classi-
fier has one additional step in which the network is
pruned using the same tuning set used for the early
stopping procedure. In this pruning step all hidden
units are removed for which the classification error
on this tuning set decreased after removal. If we look
at the overall results, this modification is not an
improvement. For two datasets, GLASS and SONAR
it is even significantly worse.

R.P.W. Duin / Pattern Recognition Letters 17 (1996) 529-536 535

Table 3
Results for a pruned neural network classifier (averaged error
rates and standard deviations over 10 runs)

Dataset ANN Pruned
ANN
IRIS 0.052 0.047
0.026 0.032
IMOX 0.088 0.090
0.031 0.030
80X 0.118 0.100
0.078 0.074
BLOOD 0.123 0.162
0.033 0.066
GLASS 0.380 0.547
0.075 0.119
SONAR 0.236 0.350
0.034 0.129
DNORM 0.121 0.114
0.017 0.023

If we imagine that we just present the results on
IRIS, 80X and DNORM only, the pruned method
seems better and if we ‘forget’ the standard devia-
tions or run a number of additional trials a ‘real’
improvement might show up. No conscious re-
searcher, of course, would do such a thing, selecting
just the results that show improvements. But as
hundreds of researchers and students are constantly
trying to improve existing methods, these things
might easily happen by ‘accident’, due to the random
process of selecting datasets, training sets and, in
case of neural networks, initializations. One way to
prevent this is to use standard benchmark datasets.
Here again a trap might arise. In the long run such
datasets wear out as they start to become training
sets for new methods. A general tendency will be
that the seemingly best methods belong to the most
complicated ones, as these are heavily and frequently
tested and modified thereby adapting the most to the
datasets. As a consequence, a standard benchmark
should not only include a collection of diverse prob-
lems (in order to cover all aspects of real-world
applications), and be large (in order to get significant
results), but it should also be renewed from time to
time. The collections of datasets gathered for the
STATLOG project (Michie et al., 1994) and in (Pre-

chelt, 1994) may be good starting points for defining
benchmarks.

6. Conclusions

In comparing classifiers one should realize that
some classifiers are valuable because they are heav-
ily parameterized and thereby offer a trained analyst
a large flexibility in integrating his problem knowl-
edge in the classification procedure. Other classi-
fiers, on the contrary, are very valuable because they
are entirely automatic and do not demand any user
parameter adjustment. As a consequence they can be
used by anybody. It is therefore difficult to compare
these types of classifiers in a fair and objective way.
Three possibilities are proposed:

1. We accept that classifiers are user dependent
and we focus on a comparison of experts rather than
of classifiers. In this proposal a collection of prob-
lems is sent to each of a set of experts. The results
compare their skills. Their reports, describing which
classifiers they have used and in what way, may
show which techniques and procedures are the most
valuable ones.

2. We compose toolsets containing classifiers and
user instructions and send each of them to a different
set of nonexperts, accompanied with always the same
collection of problems. These toolsets have a differ-
ent character, e.g. one using density estimators, one
based on decision trees and a neural network-based
toolset. As the results are averaged over sets of
users, they may show us which toolset is for what
problem the best to be used by an arbitrary user.

3. We restrict ourselves to automatic classifiers,
realising that this neglects some possibilities of some
classifiers. A comparison can now be performed by a
single researcher on a benchmark set of problems
provided that:

(a) the classifiers are defined entirely before they
are run on the benchmark;

(b) the benchmark set contains a variety of prob-
lems;

(c) the benchmark set is large enough to make
results significant;

(d) benchmarks are used sparsely and then re-
newed.

536 R.P.W. Duin / Pattern Recognition Letters 17 (1996) 529-536

As a consequence of the first demand, modifica-
tions of classifiers performing badly, should not be
developed on the benchmark. As a consequence of
the last demand, modifications have to be proposed
sparsely.

Each of these three possible types of comparisons
will contribute in its own way to the evaluation of
the value of neural networks for classification pur-
poses. Because of the intrinsic complexity and flexi-
bility of the technique, a direct, straightforward an-
swer cannot be obtained. For the time being the
problem whether neural networks are better than
traditional techniques might be undecidable.

Acknowledgements

This paper was prepared while the author visited
the Department of Electrical Engineering, University
of Surrey, United Kingdom in the spring of 1995.
The author likes to thank Prof. Josef Kittler and the
members of the Vision, Speech and Signal Process-
ing Group most cordially for their hospitality during
his stay. The author also likes to thank Wouter
Schmidt for stimulating discussions and for prepar-
ing most of the datasets.

References

Cheng, B. and D.M. Titterington (1994), Neural networks: a
review from statistical perspective. Statistical Sci. 9 (1), 2-54.

Cox, L.H., M.M. Johnson and K. Kafadar (1982). Exposition of
statistical graphics technology. ASA Proc. Statistical Compu-
tation Section, 55-56.

Devroye, L. (1988). Automatic pattern recognition: a study of the
probability of error. IEEE Trans. Pattern Anal. Mach. Intell.
10 (4), 530-543.

Duin, R.P.W. (1976). On the choice of the smoothing parameters
for Parzen estimators of probability density functions. IEEE
Trans. Comput. 25 (11), 1175-1179.

Duin, R.P.W. (1995). Small sample size generalization. SCIA’9S5,
Proc. 9th Scandinavian Conf. on Image Analysis (Uppsala,
Sweden, June 6-9, 1995), Vol. 2, 957-964.

Fisher, R.A. (1936). The use of multiple measurements in taxo-
nomic problems. Ann. Eugenics 7, 280~322.

Golomb, B.A., D.T. Lawrence and T.J. Sejnowski (1991). Sexnet:
A neural network identifies sex from human faces. In: Lipp-
mann et al., Eds., Advances in Neural Information Processing
Systems 3. Morgan Kaufman, San Mateo, CA, 572-577.

Gorman and T.J. Sejnowski (1988). Learned classification of
sonar targets using massively parallel network. IEEE Trans.
Acoust. Speech Signal Process. 36 (7), 1135-1140.

Hoekstra, A., S.A. Tholen and R.P.W. Duin (1995). Confidence
Value Estimation in Neural Networks. Internal report.

ICMS Workshop (1995). ICMS Workshop on Statistics and Neu-
ral Networks. Edinburgh, April 19~20, 1995.

Jain, A K., and M.D. Ramaswami (1988). Classifier design with
Parzen windows. In: E.S. Gelsema and L.N. Kanal, Eds.,
Pattern Recognition and Artificial Intelligence. North-Holland,
Amsterdam, 211-228.

Kamata, S., R.O. Eason, A. Perez and E. Kawaguchi (1992), A
neural network classifier for LANDSAT image data. Proc.
11th Internat. Conf. on Pattern Recognition, Vol. 2, 573-576.

Michie, D., D.J. Spiegethalter and C.C. Taylor (1994). Machine
Learning, Neural and Statistical Classification. Ellis Hor-
wood, New York.

Prechelt, L. (1994). A Study of Experimental Evaluations of
Neural Network Learning Algorithms: Current Research Prac-
tice. Technical Report 19/94.

Quinlan, J.R. (1987). Induction of decision trees. Machine Learn-
ing 1, 81-106.

Quinlan, JLR. (1987). Simplifying decision trees. Internat. J.
Man- Machine Studies, 27, 221-234,

Ripley, B.D. (1994). Neural networks and related methods for
classification. J. Roy. Statist. Soc. B 56 (3), 409-456.

Sabourin, R. and J.P. Drouhard (1992). Off-line signature verifica-
tion using directional PDF and neural networks. Proc. 11th
Internat. Conf. on Partern Recognition, Vol 2, 321-325.

Schmidt, W.F. (1994). Neural Pattern Classifying Systems. Ph.D.
Thesis, Pattern Recognition Group, Department of Applied
Physics, Delft University of Technology, ISBN 90-9006716-7.

Schmidt, W.F., D.F. Levelt and R.P.W. Duin (1994). An experi-
mental comparison of neural classifiers with traditional classi-
fiers. In: E.S. Gelsema and L.N. Kanal, Eds., Pattern Recogni-
tion in Practice IV: Multiple Paradigms, Comparative Studies
and Hybrid Systems. North-Holland, Amsterdam, 391-402.

Sejnowski, T.J. and C.R. Rosenberg (1988). NETtalk: a parallel
network that learns to read aloud. The Johns Hopkins Univer-
sity Electrical Engineering and Computer Science Technical
Report JHU /EECS-86 /01, 1986. Reprinted in: J.A. Anderson
and E. Rosenfeld, Eds., Neurocompurting: Foundations of
Research. MIT Press, Cambridge, MA.

Vapnik, V. (1982). Estimation of Dependences based on Empiri-
cal Data. Springer, New York.

