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Experiments with a featureless approach to pattern recognition
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Abstract

Traditionally automatic pattern recognition is based on learning from examples of objects represented by features. In
some applications it is hard to define a small, relevant set of features. At the cost of large learning sets and complicated
learning systems discriminant functions have to be found. In this paper we discuss the possibility to construct classifiers
entirely based on distances or similarities, without a relation with the feature space. This is illustrated by a number of

Ž .experiments based on the support object classifier Duin et al., 1997 , a derivative of Vapnik’s support Õector classifier
Ž .Cortes and Vapnik, 1995 . q 1997 Elsevier Science B.V.

Keywords: Support vector classifier; Featureless recognition; Character recognition; Hilbert space

1. Introduction

Almost the entire field of statistical pattern recog-
nition is based on the feature vector representation.
This is a straightforward way to implement expert
knowledge of measurable discriminative properties
of the classes to be distinguished. In case this knowl-
edge is not available this is often compensated by
considering large numbers of possibly useful fea-
tures.

A consequence of the lack of knowledge is that
the dimensionality of the feature space increases. For
most of the traditional methods this implies that

Žlarge training sets are needed curse of dimensional-
Ž ..ity, see Jain and Chandrasekaran, 1987 . Intuitively

this is the price one has to pay: if knowledge lacks,
more examples have to be supplied.

) Corresponding author.

One of the ways to overcome the problem of
missing feature knowledge is to sample the object
and use these samples as features. Now several
normalizations might be necessary to obtain invari-
ance for transformations like translation, rotation,
resizing, etcetera. From this point of view, however,
the demand for larger training sets for increasing
feature sizes, here sample sizes, is counterintuitive.
Why are more examples needed if in the character
recognition problem the characters are not repre-
sented by 6=6 pixels, but by 1024=1024 pixels?
A 36-dimensional feature space may reasonably be
filled by a few thousand characters. There are, how-
ever, no feasible ways to obtain training sets large
enough to fill a space with a dimensionality of about
a million.

In this paper the possibility will be discussed of
Ž .using a dis similarity representation instead of a

feature vector representation. So the training set is
represented by a similarity matrix and new objects
are classified on the basis of their similarity with
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objects in the training set only. This way of classifi-
cation using a given set of prototypes is traditionally
known as template matching. Recently we discussed
how these object similarities can be combined into a
classification function and how such a classifier can

Ž .be trained Duin et al., 1997 . This was based on the
Ž .support vector classifier SVC developed by Cortes

Ž . Ž .and Vapnik 1995 and Vapnik 1995 , which we
Ž .already studied experimentally Tax et al., 1997 .

The SVC is still based on feature spaces, but has two
interesting properties which we will briefly discuss.

First, as it is defined on vector dot products
between test objects and training objects, its com-

Žplexity say the number of parameters in case of
.polynomial classifiers is independent of the dimen-

sionality.
Second, the complexity of the SVC is optimized

with respect to the training set by reducing the
so-called support set, i.e., the subset of the training
set that is actually used for the classifier. This reduc-
tion might be compared with the condensing proce-

Ž .dure for the nearest neighbor rule NNR . In both
cases the memory demand and the computational
complexity are reduced. The generalization error,
however, is expected to decrease by the reduction
process in the SVC, while in case of the NNR
reduction it has an unpredictable, but often increas-
ing effect on the error.

For the SVC the feature size might grow to
infinity as long as the vector dot products remain
finite. There exists a clear mathematical foundation
for this property. We thereby have a classifier that

Žcan operate in Hilbert space. In our proposal Duin et
.al., 1997 we replace the dot products by arbitrarily

defined similarities and thereby loose the relation
with the feature vector space. What we gain on the
other side, is a classifier that can be used in connec-

Ž .tion with any procedure for measuring dis similari-
ties between objects. It is insensitive to the number

Ž .of samples pixels used to measure these, except for
a possible effect on the digitalization error. What we
expect therefore is, the more samples the better,
instead of the curse of dimensionality, causing some
training set size dependent optimum.

As our classifier is a straightforward extension of
the SVC from a vector representation to an object
representation it is called the Support Object Classi-

Ž .fier SOC . An important issue for both, the SVC as

well as the SOC, is the question whether the classes
are overlapping or not. It is not possible to estimate a
probability density function in an infinite-dimen-
sional space. This is the reason behind the curse of
dimensionality. The support classifiers not only avoid
that, but are not based on the underlying Bayes
theory at all. They are optimized by the minimum
description length criterion instead of by criteria
based on error minimization or on likelihood maxi-
mization. Consequently it is difficult to handle class
overlap. The optimization criterion that has been

Ž .used by Vapnik 1995 for that purpose is in our
opinion rather ad hoc. For the moment we prefer to
restrict ourselves to non-overlapping classes. In con-
trast to feature based approaches, this is not a severe
restriction for classifiers based on object distances. It
simply demands that two objects with distance zero
always belong to the same class. If the distance
measure is such that different objects cannot have a
zero distance, the demand is fulfilled if different
classes cannot generate objects that are entirely simi-
lar.

In Section 2 we summarize the concept of object
distance based classifiers. In Section 3 this is fol-
lowed by an illustration using a set of character
recognition experiments. We believe that these ex-
periments clearly indicate the potential power of the
object distance approach. In Section 4 we elaborate
further on this and formulate some additional re-
search questions.

2. Object based discriminants

Consider the linear classifier in a k-dimensional
Ž . Tfeature space R : S x sw. xqw sW X. We willk 0

consider here the very small sample size problem in
which the number of training samples m is less than
the feature size, so m-k. Thereby the minimum
norm W points into the subspace R defined bym

these samples and can be written as WsÝ a X .i i i

Minimizing the mean square error in the training set,

WX yy s a X X yy , 1Ž .Ý Ý Ýj j i i j j½ 5
j j i

yields asKy1 y, with K sX TX . This linear clas-i j i j

sifier is equivalent with Fisher’s linear discriminant
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based on the Moore–Penrose pseudo-inverse, see
Ž .also Duin, 1995; Skurichina and Duin, 1996 . As

m-k a zero-error solution is obtained. In these
references it is also shown that if the training set is
further selectively reduced a classifier with a larger

Žgeneralization capability smaller error on the test
.set might be constructed based on just the training

objects close to the margin between the classes. This
procedure, based on an iterative reduction of the set

Ž .of objects used in Eq. 1 is called the Small Sample-
Ž .size Classifier SSC .

Ž .The SVC developed by Cortes and Vapnik 1995
Ž .and Vapnik 1995 is based on just a slightly differ-

ent viewpoint, resulting in an almost identical classi-
fier. They add, however, two important observations.
First it is noted that by almost the same procedure
polynomials and other nonlinear classifiers can be
found if the elements in the inner product matrix K

Ž T .nare replaced by K s X X for order-n polyno-i j i j
Ž T .mials and even by K s f X X for a restricted seti j i j

of functions like sigmoids. This can be done without
increasing the complexity of the classifier as this is
still determined by the set of coefficients stored in
asKy1 y. Their number is equal to the reduced
number of training objects: the support vectors.

The generalized support vector classifier as de-
scribed above, opens an entirely new area for dis-
criminant analysis. As it is solely based on inner
products of feature vectors it also holds for objects
represented by an increasing or possibly infinite
number of features, i.e., a continuous description.
Until now objects like non-digitized photographs
Ž . Ž .characters, faces or time signals speech could
only be handled by template matching techniques.
This new approach makes it possible to build dis-

Ž .criminant functions linear as well as nonlinear based
on inner products defined as

n
TK s X X s X t X t d t , 2Ž . Ž . Ž .Ž . Hi j i j i j

in which t is a one or more dimensional parameter
Ždefining the object domain e.g., time, 2D or 3D

.space .
We generalize this approach one step further. The

whole procedure still works if the inner product
matrix K is replaced by a similarity matrix K of
which the elements are defined using some arbitrary
similarity measure between object pairs. So K si j

Ž .S X , X . For instance, for any distance measure D,i j

e.g.,

2D s X t yX t d t , 3Ž . Ž . Ž .Hi j i j

Ž .we can define a similarity Ssexp yg D in which
g is some normalization value.

By this process the correspondence with the fea-
ture space classifiers is now lost. What is gained,
however, is that herewith a discriminant analysis
approach is defined based solely on similarity mea-
sures.

For our implementation of the SOC we experi-
mented with the above mentioned iterative minimiza-
tion of the support set used in the SSC. In addition
the quadratic minimization procedure proposed by

Ž .Vapnik 1995 was used which automatically mini-
mizes the support set while optimizing the weight
vector a ,

1 T< <a sarg min a y a Sa , 4Ž .� 4opt a 2

< <in which a is the sum of the coefficients a . In thisj

procedure only those objects that are necessary for
building the classifier obtain values a /0.j

In preliminary experiments, the minimization of
Ž .Eq. 4 appeared to be faster and to yield smaller

support sets on the average compared to the iterative
procedure. However, sometimes the minimization
did not start due to accuracy problems. In the re-

Ž .maining of this paper we used Eq. 4 .
Several other classifiers are also possible starting

Ž .from a dis similarity matrix K. We mention:
1. The Pseudo-Fisher linear discriminant directly

Ž .based on Eq. 1 , using arbitrary similarities and
using the entire training set. We will call this the

Ž .Generalized Pseudo-Fisher Discriminant GPFD .
Ž .2. The Nearest Neighbor Rule NNR .

Ž .3. The Condensed Nearest Neighbor Rule CNNR .
In our implementation we minimized the support
set under the condition of a constant classification
Ž .no label change of the original training set using
a leave-one-out approach.

4. Kernel based approaches in which objects are
assigned to the class for which the sum of all
kernels or the maximum of any kernel is the
largest. This is possible as kernels can be entirely
based on distances matrices. This method resem-
bles the use of Parzen estimators. It differs from
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it, however, in the sense that no densities are
estimated.

3. Experiments

The above will be illustrated by a number of
experiments on the recognition of handwritten nu-

Žmerals. We will use the NIST-3 database Wilson
.and Marris, 1990 which contains about 2000 sam-

ples for each of the 10 classes 0,1, . . . ,9. In the raw
data we used, the characters are represented in binary
128=128 images. In one of the experiments we also
used the normalization software supplied with this
dataset. It normalizes for position, size, angle and
line-width, resulting in 16=16 gray value images.

Previous experiments with this dataset resulted in
a classification error of about 1% using 1000 objects
per class for training. As we intended to set up a
large range of experiments using different types of
distance measures and classifiers we had to restrict
ourselves to small training sizes for computational
reasons. This was also necessary due to the nature of

Ž .the input data format of our methods: dis similarity
matrices. A training set of 1000 objects per class
yields for 10 classes matrices of 10000=10000s
100 million entries. This is still possible. Matrix
inversion, however, which has to be done iteratively,
is prohibitive.

For these reasons we restricted ourselves to
datasets of just 20 samples per class from which we
generated randomly training sets of 10 samples per
class. Most of our experiments were repeated 100
times and we report the average error of test sets of
100 samples.

The following classifiers are used, see also Sec-
tion 2.
Ø NNR: Nearest neighbor rule.

Ø CNNR: Condensed nearest neighbor rule. This
classifier was used to obtain a reference for the
size of the support sets.

Ø SOC: Support object classifier. For the 10-class
problem we compute a classifier between each
class and all other classes. Objects are assigned to
the class for which the classifier shows the largest
outcome. We did not try to combine the 10
support sets. In the tables below the average
support set sizes over all 10 sets are reported.

Ø GPFD: Generalized Pseudo-Fisher Discriminant.
This is the same classifier as SOC but now based
on all objects, i.e., no support set reduction.

In studying the following experiments one should
Žrealize that our training sets are very small 10

.objects per class and that for a 10-class problem the
a priori probability of error is 0.9. The best results
reported for this data show an error of about 2.5%.
This has been obtained using large neural networks.

Ž .The results for the Nearest Neighbor rule NNR for
training sizes of 1000 objects per class are close to
this result, indicating dat for these sample sizes the

Ž .NNR is close to optimal, see De Ridder, 1996 . We
performed the following experiments.

3.1. Experiment 1. Resolution

In this experiment we computed distances by Eq.
Ž .3 for the NNR and the CNNR and similarities by

Ž .Eq. 2 for GPFD and SOC on the raw 128=128
binary images and on several sub-samplings of that,
see Table 1. We added the result on the 16=16
normalized gray value representations. From this
table it can be concluded that the SOC performs
much better than the NNR. The normalization makes
the SOC and the NNR perform almost equal. For the
SOC, however, it is much better to use the raw data
instead.

Table 1
Mean classification error and support set sizes for various resolutions of binary characters

Resolution NNR error CNNR error CNNR size GPFD error SOC error SOC size

128=128 0.412 0.435 54 0.314 0.310 88
64=64 0.420 0.451 55 0.323 0.322 88
32=32 0.448 0.473 57 0.359 0.343 86
16=16 0.583 0.619 69 0.562 0.521 75
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Table 2
Mean classification error and support set sizes for various bounding box normalizations of 128=128 binary characters

Ž .Normalisation 128=128 NNR error CNNR error CNNR size GPFD error SOC error SOC size

No 0.412 0.435 54 0.314 0.310 88
Mean 0.381 0.415 52 0.299 0.304 88
Size 0.342 0.390 41 0.485
Skewness, linewidth 0.129 0.220 33 0.146 0.130 73

3.2. Experiment 2. Normalization

Here we studied a simple normalization of the
raw 128=128 data. In the mean normalization the
bounding boxes of the characters were given equal
means. In the size normalization they were given
equal sizes as well by resampling. Finally a normal-
ization on skewness and linewidth was used in addi-
tion to mean and size, resulting in 16=16 grey

Ž .value images, see De Ridder, 1996 . Table 2 shows
that these normalizations are useful in all circum-
stances with one exception. In the case of size
normalization the GPFD gives a bad result and the
SOC could even not be computed due to an unstable
minimization procedure. This will be discussed be-
low.

3.3. Experiment 3. Contours

In this experiment we computed distances using
contours, equi-distantly sampled on 128 points. The

Ž .modified Hausdorff Dubuisson and Jain, 1994 dis-
tance is used in the NNR and similarities are com-

Ž .puted according to S s exp yg D with g s
Ž .1r2var D . Here we also included normalizations in

Žorder to obtain invariance to mean, size contours are
.given equal variances in both directions and rotation

Žusing an angular contour description and rotating

.over all starting points . The latter normalizations
include the first. The figures in Table 3 show that the
NNR gives much better results and now outperforms
the SOC in most cases. Note that bad results for the
SOC correspond with a large support set. Obviously
the similarity matrix we computed does not behave
well. Therefore we decided to study the influence on
the performance of monotonic transformations of the
similarity matrix in a new experiment.

3.4. Experiment 4. Contours, different similarities

Now similarities are computed using S s
Ž .exp ysDrg for the contour distances including

size normalization, compare Table 3. Again, g is the
standard deviation of all values in D. This is varied,
however, with a multiplicative scaling factor s, which
corresponds to the polynomial degree in the finite

Ž .vector spaces studied by Vapnik 1995 .
In Figs. 1 and 2 the average classification error

and the average size of the support set are given as a
function of the scaling factor. Especially the size of
the support set is very sensitive to scaling. This
corresponds to the minimizations problems we had
in some of the experiments in Experiment 2. It is
clear that the overall use of the value ss1 for the

Žscaling factor i.e., use just the standard deviation of

Table 3
Mean classification error and support set sizes for 32 point contour normalizations of 128=128 binary characters

Normalisation NNR error CNNR error CNNR size GPFD error SOC error SOC size

No 0.261 0.337 47 0.682 0.327 100
Mean 0.230 0.300 44 0.524 0.268 100
Size 0.160 0.242 37 0.149 0.138 33
Rotation 0.311 0.398 50 0.276 0.281 97
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Fig. 1. The average error as a function of the scaling factor for
various normalizations.

.D for normalization is a too simple method. Some-
thing more sophisticated has to be developed.

ŽFinally, for a set of values of s the average here
.over 25 experiments error was computed as a func-

tion of the training size, see Fig. 3. In this experi-
ment only the characters ‘‘3’’ and ‘‘8’’ are used. The
sensitivity of the scaling factor demonstrates itself
clearly, again.

More interesting is that here a deterioration of the
performance can be observed for increasing sample
sizes similar to what has been found earlier for the

Ž .pseudo-Fisher classifier Duin, 1995 . An explana-
tion for the case of Gaussian distributed feature

Ž .vector data given by Raudys and Duin 1997 is

Fig. 2. The average size of the support set as a function of the
scaling factor for various normalizations.

Fig. 3. Mean classification error as a function of the training size
in discriminating size-normalized 128 point contour representa-
tions of 128=128 binary characters ‘‘3’’ and ‘‘8’’ as a function
of the scaling factor s.

based on the large noise for classification problems
in which the feature size equals the sample size. It
has to be investigated further how that relates to the
scaling factor in the example discussed here.

4. Conclusions

Object based discriminant analysis will be of
importance in applications where no natural discrim-
inative features are given, but instead some object
similarity measure can be supplied. It thereby widens

Žthe application area of statistical in the sense of data
.based pattern recognition. Other, different types of

expert knowledge will be needed or might be used.
The automatic search for good features is replaced
by the search for the optimal set of support objects:
the objects close to the discriminant boundary that
define its final position. The guidelines and criterion

Ž .functions given by Vapnik 1995 are certainly help-
ful, but, as we observed, might yield some numerical
and computational problems.

One of the most promising aspects of object based
discriminant analysis is that it removes the need for
small sets of good features in case of small training
sets. For well separable classes well performing clas-
sifiers might be based on just a few tens of training
samples, provided that a useful similarity measure
can be supplied.
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Several questions arise at the threshold of this
new area. What is the performance compared to
feature based approaches? How do we define simi-
larity measures that are invariant for shifts, rotations,
and for particular types of object deformations? How
fast is it? The support vector classifier does not make
use of Bayes rule, explicitly nor implicitly. Is hereby
the need for a randomly generated training set re-
moved? Is it useful if more boundary objects are
supplied? This paper is just a first acquaintance with
this new area. Much has to be done. In any case, it
seems to promise an increased applicability of the
pattern recognition field in practical problems.

ŽFor further reading, see Aizerman et al., 1964;
.Fogelman-Soulie et al., 1993 .

Discussion

Mao: If your similarity measure is replaced by a
radial basis function, then your object classifier is
equivalent to a radial basis function network from
the functional point of view.

Duin: But where is the radial basis function defined;
in what type of space, in your proposal?

Mao: In the feature space.

Duin: Yes, but my proposal includes featureless
representations, so this is somewhat more general.

Mao: So, do you consider a radial basis function
network as a special case of your support object
classifier?

Duin: Yes, but a radial basis function network does
not have this support object idea, where you discard
unnecessary objects. A radial basis network may
have its kernels in any place.

Mao: Suppose I use the same training algorithm as
your support object classifier and I select the loca-
tions of the prototype as support objects.

Duin: Yes, then we are back to one of the variants
proposed already by Vapnik. He also proposes, or he
mentions just the possibility of using radial basis
functions in his support vector classifier. And I

wanted to make the extension to support objects,
where I leave the feature space.

Kappen: How do the distance measures that you
propose improve the performance compared to the
original Vapnik approach that just takes the inner
product?

Duin: But then you have to go back to the feature
space. And then you have to define what features
you are using.

Kappen: Well, the inner product of the training
patterns perhaps.

Duin: Yes, but in that case, the training patterns have
to be defined in the feature space. I did not deal with
feature spaces, but in this talk the numbers are based
on an exclusive-or distance, so if we define as our
features the pixels, then we can compare this with
the Vapnik approach. If he defines his features as
pixels then the support object classifier is identical to
the support vector classifier. But that is no longer
possible for the contours, because here we are using
the modified Hausdorff distances between contours
which are not represented by features. So then it is
no longer equivalent to a feature based approach.

Kappen: So I should compare the SOC using exclu-
sive-or distances to the SOC based on the modified
Hausdorff distances.

Duin: Yes, for instance, but that is of course not
completely fair, because the first one is based on the
pixels used as features and here I use contours as a
representation and then use a distance representation
on the basis of contours. So, you can try to do a
comparison, but finally I wanted to present a method
that also works in cases where we don’t have fea-
tures, but just have some type of a distance measure
between objects.

Kappen: Perhaps you can explain again how this
scaling factor enters into the selection of your sup-
port set.

Duin: The scaling factor is a number similar to the
power, the degree of the classifier in the Vapnik
approach. So, if you go back to the feature space
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than this scaling factor defines the degree of the
classifier.

Raghavan: I would like to say two things. In our
work on image retrieval, our goals are somewhat
similar to yours, except that we did not call that
featureless object recognition. I think that the expres-
sion ‘‘featureless’’ is somehow disturbing because I
think it is very difficult to say where the deviding
line is between what is a feature and what is not. Do
you think that if I use a bitmap representation it is
not using features, but if I use intensities it is using
features? Another point is I think that you should
also look at the earlier work like the work of Lev
Goldfarb. He has some very interesting results in this
area.

Duin: I think there is a clear distinction between
what I call a featureless approach and a feature
vector approach. If you use a representation of the
objects in a feature space, for me that is a feature
vector approach. If you try to avoid that representa-
tion by a direct measurement of the distances be-
tween objects, then you no longer have a representa-
tion in a feature space and you do not have the
problems of feature spaces such as a too high dimen-
sionality and having to estimate large numbers of
parameters, or having to deal with large neural net-
works. So for me there is a clear distinction between
feature-based and non-feature based distances.

Raghavan: The work of Goldfarb, for example, tries
to make a link between syntactic pattern recognition
and statistical pattern recognition. In his work he
uses syntactic approaches, defining primitives and
using distances between primitive strings. By your
definition you seem to be restricting yourself too
much; I think that you could have much broader
ways to obtain those initial distances.

Duin: I agree, it can be further generalized, you can
define distances based on primitives. But then again
you are back to the problem of defining primitives,
in some way or another. I wanted to start from a

point where some expert knows, for instance from
the physics of the problem, what a natural distance
measure between objects is. For that type of applica-
tion I am trying to find a classifier.
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