
Ž .Pattern Recognition Letters 18 1997 1293–1300

Investigating redundancy in feed-forward neural classifiers

Aarnoud Hoekstra) ,1, Robert P.W. Duin
Pattern Recognition Group, Faculty of Applied Physics, Delft UniÕersity of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Abstract

Ž .In this article we will focus on how we can investigate read visualise the clustering behaviour of neurons during
training. This clustering property has already been investigated before, by Annema, Vogtlander and Schmidt. However, we¨
will present a different approach in visualisation illustrated by experiments performed on two-class problems. q 1997
Elsevier Science B.V.

Keywords: Self-organising map; Feed-forward neural classifier training; Symmetry breaking

1. Introduction

Training neural networks is a difficult task. In
general it is very hard to understand what is happen-
ing inside a network. Furthermore, many parameters
have to be chosen in order to solve a particular
problem. In this article we will focus on investigat-
ing the training behaviour of feed-forward neural
classifiers. Moreover we are interested in how the
weights of such a classifier behave during training. It
is generally assumed that during training a learning
rule directs the weights of a network in such a way
that it solves a problem as well as possible. The
number of weights may be much larger than the
number of samples used to find the weights. This
causes some kind of redundancy in the network in
the sense that some weights, or neurons as we will
assume, perform the same operation. Consequently
the neurons, or weights belonging to a neuron, are

) Corresponding author.
1 This work was partially supported by the Foundation of

Ž .Computer Science in the Netherlands SION and the Dutch
Ž .Organization for Scientific Research NWO .

somehow clustered in the weight space. Furthermore,
since network training starts from approximately the
same weights, neurons start off as a large cluster and

Ž .then slowly break down in smaller clusters which
solve the problem. This behaviour of the weights,
referred to as symmetry breaking, can also be ob-
served in the mean squared error curve during net-
work training. In this curve changes of the error

Ž . Ž .occur. Annema 1994 and Vogtlander 1994 showed¨
that these changes coincide with the change of direc-
tion of the decision function of a hidden unit, i.e.
‘breaking’ of symmetry. Our experiments confirm
this behaviour in a visualisation of the neuron weight
space.

Usually the initial weights in a network are cho-
sen small and centered around 0. For a feed-forward
network with sigmoidal output neurons this means
that all the neurons have approximately the same

Ž .output somewhere around 0.5 and implement ap-
proximately the same function. In Fig. 1 this is
graphically illustrated for two data sets. It shows the
decision function of the different hidden neurons at
the point of initialization. Most of the neurons per-
form the same function, i.e. their decision functions

0167-8655r97r$17.00 q 1997 Elsevier Science B.V. All rights reserved.
Ž .PII S0167-8655 97 00107-4

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–13001294

are clustered. Consequently there is a large redun-
dancy in the network. It is expected that during
training these clusters of neurons break apart in
smaller clusters, thereby reducing the redundancy in
the network. However, if all redundancy is removed
from the network, it may become overtrained. The
question is: can we visualise the behaviour of the
weights? If so, is it possible to detect the symmetry
breaking property of a neural network and is it
possible to detect cases of undertraining and over-
training? In this article we will address these ques-
tions by presenting a mapping tool and illustrate the
behaviour using two-class classification problems.

It is assumed here that we investigate feed-for-
ward neural networks consisting of a single hidden
layer. The neurons in the hidden layer span a space
by their weights, the neuron weight space. The di-
mensionality of this space depends on the dimen-
sionality of the input space and the output space. In
the experiments to be presented, the neurons span a
four-dimensional space. During training the hidden
neurons move through that space. When a sufficient
number of neurons is available, some neurons will
perform the same task indicating that there is some
redundancy in the network, especially at the initial-
ization point of the network.

The neuron weight space, referred to as weight
space, can be considered as a feature space in which
the neurons, i.e. their corresponding weight vectors,
are data points. In order to find out whether they
form clusters or not, cluster analysis has to be per-
formed. This can be done by traditional clustering
methods like hierarchical clustering or k-means clus-
tering. However, one is also interested in what the
weight space looks like. Are there regions which are
never visited by the training algorithm? This requires
a method to map the high dimensional weight space
onto a lower, easy to visualise, one. When a tradi-
tional method is used, one needs a method to display
the clusters found, which is in general hard to do.
We will show that by using the self-organising map
Ž . Ž .SOM Kohonen, 1989 we are able to do both:
project the weight space and observe the clustering
properties of the weights. The SOM can be used to
map a high dimensional space onto a lower dimen-
sional one in such a way that the topological proper-
ties of that space are preserved as well as possible.
This enables one to get an indication of what the

space looks like. Moreover, by determining the tra-
jectories of the weights on the SOM grid it can be
shown that the weights indeed break into smaller and
smaller clusters.

Ž .A technique introduced in Kraaijveld et al., 1995 ,
is used to create an image of the scatter of the data in
the feature space using the mapping found by the
network. After training, the distances of neighbour-
ing neurons in the SOM grid are determined and
displayed as gray value images. This is done by
calculating the Euclidean distance of a grid neuron
prototype vector to the prototype vectors of its four
neighbouring neurons. The gray value for the grid
neuron under investigation is now set to the maxi-
mum distance found among the four calculated
inter-neuron distances. In this way a gray value
image of the resulting mapping can be found. Neu-
rons having a low gray value will lie close together
in the original space and will therefore belong to the
same cluster. A large value for a neuron implies a
large distance between the neurons in the weight
space and therefore the neurons probably belong to
different clusters. By also inserting the trajectory of
the neurons one is able to get an indication of what
the neuron weight space looks like and how it is
searched.

2. Experiments

In order to investigate the behaviour of the weights
of a neural network in the weight space, we per-
formed several experiments. The neural networks
were trained on two different data sets, one perfectly
separable and one overlapping data set. Fig. 1 shows
the two data sets. On the left the perfectly separable

Ždata set is depicted. It was derived from Annema,
. Ž .1994 and Vogtlander, 1994 , who also performed¨

experiments on redundancy in neural classifiers. The
Žoverlapping data set was derived from Hoekstra and

.Duin, 1996 . This set which was used to ensure
overtrained neural classifiers, are of particular impor-
tance since it is expected that all neurons behave
differently.

All networks used in the experiments consist of
two inputs, six hidden neurons to ensure enough
freedom for the network to adapt, and one output
neuron since both problems are two class problems.
For each of these data sets different networks with

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–1300 1295

Fig. 1. Two networks consisting of six hidden neurons, for two different data sets, at the initialization point. The dotted line denotes a
decision function of a hidden neuron. The clustering behaviour of the neurons is clearly visible due to decision functions having the same
direction.

different learning methods were trained, standard
Žbackpropagation using our C-library Hoekstra et

.al., 1996 , LeÕenberg–Marquardt and fast back-
propagation using our Matlab PRTools toolbox
Ž .Duin, 1995 and the neural network toolbox. The
reason for choosing different learning rules is to
investigate the influence of the learning rule in re-
dundancy reduction. A SOM was trained on the
weights of the different networks. This was done in
the following way. At certain time steps the weights
of the hidden units of the networks are encoded in a
four-dimensional vector and saved in a file, the
training set of the SOM. Fig. 2 shows how the
encoding works.

After training the feed-forward networks we have
a set of four-dimensional weight vectors which con-
stitute the training set for the SOM. These vectors
are normalized in order to prevent large weights
from dominating the SOM training process. This

Fig. 2. Encoding of the weights of a hidden neuron. This four-di-
Ž .mensional vector, W , W , B, W , is used as a training pattern1 2 out

for the SOM.

procedure normalizes the weights such that the vari-
ance is scaled to 1. For each collection of weights a
SOM was trained. Note, however, that due to the
different learning methods weight files have unequal
lengths. The self-organising maps consist of a two-
dimensional grid of 150=150 neurons, to ensure
enough detail. Since it is not known in advance how
the weight space is searched, a large map is chosen.
The maps were trained for a large number of epochs
Ž .500 000 to ensure convergence. After training the
distances of neighbouring neurons in the grid were
calculated and displayed in a gray value image. In
Fig. 3 such an image is shown. It can clearly be seen
that there are regions of different gray levels. The
darker areas in the picture are places where the
neurons have a small neighbouring distance. The
next two subsections show the experimental results
for the two data sets.

2.1. Separable data set

Here, for the three different training methods, ten
different initializations of networks were used. As
can be observed from Fig. 1, the data set can be
separated with at least two hidden neurons. How-
ever, we used networks with six hidden neurons to
ensure enough redundancy and it is therefore ex-
pected that the weights of the networks still remain
clustered after a satisfactory solution is obtained.
Figs. 3–5 show the results for the backpropagation
rule, the Levenberg–Marquardt and fast backpropa-
gation rule, respectively. As can be observed, there

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–13001296

Fig. 3. The SOM image of the weights resulting from the of the standard backpropagation training with momentum on the ‘Annema’ set are
displayed on the left. On the right the final decision function for a network is displayed. The solid line depicts the output function and the
dashed lines are the decision functions implemented by the hidden neurons.

is a significant difference between the different rules
on the same training data. The SOM for the Leven-

Ž .berg–Marquardt training rule in Fig. 4 left picture
Ž .shows the flattest surface almost black everywhere

indicating that the neurons are always clustered to-
gether. Apparently this learning rule quickly finds a
satisfactory solution and almost always in the same
manner. The experiments show that the Levenberg–
Marquardt rule usually finds a solution after one
iteration. This is probably due to the fact that it is a
second-order method and that the data set is easily
separable. Note that the surface is the result of
averaging the results of ten different network initial-
izations.

The surface for the standard backpropagation rule
with momentum shows far more variation. During
training the weights can differ quite dramatically
causing a rough surface. The isolated black regions

Ž .in the map Fig. 3 show that the ten networks have
been trained quite long resulting in regions to a far
distance of the initialization. After a certain time the
weights do not alter much anymore and start to
circulate in the map. In Fig. 9 this map is shown
again, but now with the trajectories of the six hidden
neurons. These trajectories are for a particular real-
ization of one of the ten trained networks, i.e. one
training session of one neural network. The starting
point of the weight trajectory is indicated by the

Fig. 4. The SOM image of the weights resulting from the Levenberg–Marquardt training on the ‘Annema’ set are displayed on the left. On
the right the final decision function for a network is displayed. The solid line depicts the output function and the dashed lines are the
decision functions implemented by the hidden neurons.

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–1300 1297

Fig. 5. The SOM image of the weights resulting from the fast backpropagation training on the ‘Annema’ set are displayed on the left. On the
right the final decision function for a network is displayed. The solid line depicts the output function and the dashed lines are the decision
functions implemented by the hidden neurons.

double circle. From this point the weights move over
the map towards a more or less stable situation. It
should be noted that the map is an average over
many weight configurations. It can be seen that some
trajectories stay close together and split at a certain
time step, indicated by a circle. This splitting of the
paths coincides with a change in the mean squared

Ž .error MSE and therefore with a decrease in redun-
dancy. The MSE curve shown in Fig. 8 shows the
drops in error corresponding to redundancy reduc-

tion. However, the danger still exists that the net-
work becomes overtrained.

2.2. OÕerlapping data set

ŽThe overlapping data set the right picture in Fig.
.1 is expected to cause more redundancy reduction

since it easily causes the network to become over-
trained when using a constant MSE as a stopping
criterion. Here we trained ten networks using two

Fig. 6. The SOM image of the weights resulting from the Levenberg–Marquardt rule on the overlapping data set are displayed on the left.
On the right the final decision function for a network is displayed. The solid line depicts the output function and the dashed lines are the
decision functions implemented by the hidden neurons.

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–13001298

Fig. 7. The SOM image of the weights resulting from the fast backpropagation method on the overlapping data set are displayed on the left.
On the right the final decision function for a network is displayed. The solid line depicts the output function and the dashed lines are the
decision functions implemented by the hidden neurons.

learning methods, the LeÕenberg–Marquardt rule
and fast backpropagation, both available through
the neural network toolbox in Matlab. Figs. 6 and 7
show the results for both methods. The Levenberg–
Marquardt clearly causes an overtrained situation
Ž .right part of Fig. 6 , which was expected. However,
this does not cause any ‘sharp’ regions in the pro-
jected weight space which is quite flat, i.e. a large
dark region. Probably all the realizations of the
networks are overtrained and therefore there seems
to be no structure in the weight space present, i.e. no
clear clusters.

Fig. 7 shows a well trained neural network. How-

Fig. 8. The MSE curve of the network of which the neuron weight
trajectories have been plotted in Fig. 9. The arrows indicate
symmetry breaking in the network and correspond to the circles
drawn in Fig. 9.

ever, not all realizations are well trained. There are
also cases of overtraining, which cause separate clus-
ters in the weight space. This is in contrast to the
Levenberg–Marquardt method which skips those re-
gions due to its second order nature. The behaviour
of the fast backpropagation is clearly shown: there
are flat areas and small isolated areas. Its behaviour
can be compared to the standard backpropagation
method used in the previous subsection. Also in that
case one notices small isolated areas to which the
weights have converged.

3. Conclusions

By using the SOM for mapping the high dimen-
sional weight space onto a two dimensional grid,
visualisation of the weight space is possible. It can
clearly be seen that there are different regions of
density in that space. The resulting SOM is deter-
mined by the weights of the different networks, in
our case ten. This may not be a sufficient number
because another network may explore another part of
the space. Experiments, however, do indicate that the
weights roughly explore the same paths in space,
although when trained quite long the paths lie far
from each other. Furthermore, by using a SOM
mapping, some information is lost in the mapping.
The symmetry breaking effect present in neural net-
works can be observed and coincides with the
changes in the mean squared error during training.

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–1300 1299

Fig. 9. The SOM image of the weights resulting from the backpropagation rule with momentum on the ‘Annema’ set. In this figure the
trajectories of the six hidden neurons for a particular network realization are shown. The redundancy reduction property is shown by the
different paths that split. The double circle indicates the initialization point of the network, whereas a single circle indicates symmetry
breaking which corresponds to the MSE drops in Fig. 8. A small single circle refers to the second drop whereas a large circle refers to the
first drop.

Experiments show that the weights of the different
networks explore different trajectories in the neuron
weight space. Initially some of the trajectories re-
main in each others neighbourhood, but after some
time their paths diverge, signalling reduction of re-
dundancy.

Furthermore, there is clearly a difference in the
behaviour of different learning rules. The Leven-
berg–Marquardt is a fast method which leads to a
fast solution and roughly the same weight configura-
tion in each experiment, reflected in large flat areas
in the visualization. Apparently the method is not
very sensitive to the initialization. Backpropagation
methods explore much larger areas and find different
weight configurations as may be observed in the
presented figures. However, these methods are much
more sensitive to an initialization, which directs the
initial direction for searching the weight space. In

contrast, a Levenberg–Marquardt method finds a
solution far more quickly.

Discussion

Kittler: You showed your results for a fully con-
nected network. Do you know how the cluster ten-
dency depends on the connectivity?

Hoekstra: No, I have not studied that, it might be a
problem. In the network everything is fully con-
nected so I have for each hidden unit the same
dimensionality of the vector. In cases of not fully
connected networks, you should do something with
missing values. So you have to align all the vectors,

()A. Hoekstra, R.P.W. DuinrPattern Recognition Letters 18 1997 1293–13001300

such that they have equal size. And I don’t know
how that behaves, since that creates subspaces.

Mao: The results are very interesting. They reveal
some links between radial basis networks and the
standard feed-forward network. In the radial basis
function network the hidden layer also has some
clustering properties in the original feature space. In
your case it is in the weight space, so there is a
difference. You have discovered this cluster ten-
dency of the weight vectors by using several differ-
ent algorithms. Is there any theoretical analysis to
reveal why this cluster tendency should exist, and is
there a certain way to force the learning algorithm to
form clusters by some regularization techniques? For
example, in a paper by Oja, a few years ago, the
method called the soft weight sharing method was
described. They basically apply a mixture of two
Gaussians as a prior distribution of weights and then
they use a back-propagation algorithm to train and
force the weights into two clusters.

Hoekstra: I am not familiar with the reference that
you quote, that is, I have seen it but I have not gone
into its details.

Sklansky: I suggest another approach to determine
the number of neurons in the first hidden layer. The
idea is to partition the data into clusters, for instance
by K-means and then to look for hyperplanes that
separate clusters in opposite classes. The minimum
number of hyperplanes is easy to find and that
minimum number is a very good choice of the
number of neurons in the first hidden layer.

Hoekstra: Yes, but our viewpoint was somewhat
different. We saw some phenomena happening in
training, and we just wanted to know what that was.
So we are not all that interested in the original data,
but in what is happening in the network. Of course, a
possible application is to find the number of nodes.
But we just started out with exploring the phenom-
ena.

Roli: You said that you performed the clustering
algorithm in the weight space. The feature space is

related to the weights of neurons. You know there is
a problem well known in literature due to symmetry
of the weights, in the sense that you can have
weights with very different values, whereas the re-
lated neurons perform the same operation.

Hoekstra: Yes, that may be the case. I did do some
normalization on the weights, to prevent the weights
from exploding.

Kappen: I have a comment. There is some theoretical
work in this direction by David Saad and Sarah
Solla. They have used statistical mechanics tech-
niques to look at symmetry breaking in the hidden
layer, specifically in a committee machine, where the
second layer weights are fixed and the symmetry
breaking is in the first layer.

Hoekstra: I am not a physicist, and thus I am not
familiar with statistical mechanics, but I have read
some early work on symmetry breaking in percep-
trons.

References

Annema, A.J., 1994. Analysis, Modeling and Implementation of
Analog Integrated Neural Networks. PhD thesis, Twente Uni-
versity.

Duin, R.P.W., 1995. PRTOOLS a Matlab toolbox for pattern
recognition. Pattern Recognition group, Delft University of
Technology.

Hoekstra, A., Duin, R.P.W., 1996. On the non-linearity of pattern
classifiers. In: Proceedings of the 13th ICPR, Vienna, pp.
271–275. IEEE Computer Society Press, Los Alamitos. Vol.
3, track D: Parallel and Connectionist Systems.

Hoekstra, A., Kraaijveld, M.A., Ridder, D. de, Schmidt, W.F.,
1996. The Complete SPRLIB & ANNLIB. Pattern Recogni-
tion Group, Faculty of Applied Physics, Delft University of
Technology.

Kohonen, T., 1989. Self-Organization and Associative Memory.
3rd edition, Springer-Verlag, Heidelberg,

Kraaijveld, M.A., Mao, J., Jain, A.K., 1995. A non-linear projec-
tion method based on kohonen’s topology preserving maps.

Ž .IEEE transactions on neural networks 6 6 , 548–559.
Vogtlander, A.C., 1994. The learning behaviour of multilayer¨

networks used as classifiers. Master’s thesis, Faculty of Ap-
plied Physics, Delft University of technology.

