
Ž .Pattern Recognition Letters 18 1997 1307–1316

Sammon’s mapping using neural networks: A comparison

Dick de Ridder), Robert P.W. Duin
Pattern Recognition Group, Faculty of Applied Physics, Delft UniÕersity of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Abstract

A well-known procedure for mapping data from a high-dimensional space onto a lower-dimensional one is Sammon’s
mapping. This algorithm preserves as well as possible all inter-pattern distances. A major disadvantage of the original
algorithm lies in the fact that it is not easy to map hitherto unseen points. To overcome this problem, several methods have
been proposed. In this paper, we aim to compare some approaches to implement this mapping on a neural network. q 1997
Elsevier Science B.V.

Keywords: Projection methods; Sammon’s mapping; Feed-forward neural networks; SAMANN

1. Introduction

Ž .Sammon’s mapping Sammon Jr, 1969 is a use-
ful tool in pattern recognition practice. It is an
algorithm for finding a mapping of a dataset of
dimensionality d onto a non-linear subspace of m

Ž .dimensions where m-d , preserving as well as
possible the inter-pattern distances. The algorithm is
often used to visualize high-dimensional data in two
or three dimensions but can be used to map a dataset
to any low-dimensional space, i.e. the output is not
restricted to be two dimensional. The distance-pre-
serving aspect can be of importance when one wants
to use classifiers sensitive to these distances, such as
the nearest-neighbour classifiers.

A disadvantage of the original Sammon mapping

) Corresponding author.

algorithm is that it, unlike for example Principal
Ž .Component Analysis PCA , does not yield a mathe-

matical or algorithmic mapping procedure for previ-
ously unseen data points. That is, when a new point
has to be mapped, the whole mapping procedure has

Ž .to be repeated. A proposal by Mao and Jain 1995
to solve this problem is SAMANN, a feed-forward
neural network with a specialized, unsupervised
learning rule to learn Sammon’s mapping. In this
paper we test this technique and compare it with two
other generalization techniques for Sammon’s map-
ping: triangulation and a normal feed-forward ANN
trained with back-propagation. We also investigate
the influence of pre-training SAMANN with a PCA
mapping and the effect of the choice of output
transfer function. The goal is to investigate mapping
qualities only; no classifiers or other mechanisms are
used to quantify performance. We will show that
SAMANN performs well but no better than an ordi-
nary ANN.

0167-8655r97r$17.00 q 1997 Elsevier Science B.V. All rights reserved.
Ž .PII S0167-8655 97 00093-7

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–13161308

2. Sammon’s mapping and neural networks

2.1. Sammon’s mapping

Sammon’s mapping is a technique for transform-
Žing a dataset from a high-dimensional space say,

.d-dimensional to a space with lower dimensionality
m. Many criteria can be optimized in this process,

Žsuch as class separability in classification tasks in
.Fisher’s linear discriminant analysis or the amount

Ž .of variance retained in the mapped set in PCA .
Sammon’s mapping tries to preserve inter-pattern
distances. This is achieved by minimizing an error
criterion which penalizes differences in distances
between points in the original space and the mapped
space. If we denote the distance between two points
x and x , i/ j, in the original space by d and thei j i j

distance between xX and xX in the mapped space byi j

dX , then Sammon’s stress measure E is defined asi j

2Xny1 n1 d ydŽ .i j i j
Es . 1Ž .Ý Ýny1 n di jis1 jsiq1dÝ Ý i j

is1 jsiq1

Ž .Most often, the distance measure d sD x , xi j i j
< < < <used is the Euclidean distance, x yx . Note thati j

all pattern distances are weighed equally due to the
division by the original pattern distance d . Also, Ei j

is insensitive to scaling, since only relative distance
differences are used.

This error measure can be minimized using any
Ž .minimization technique. In Sammon Jr, 1969 a

technique is proposed which is known as pseudo-
Ž .Newton minimization Becker and Le Cun, 1989 ,

but which is referred to as steepest descent in other
Ž .publications, e.g. in Kohonen, 1995 ,

E E t rE xX tŽ . Ž .iX X kx tq1 sx t ya , 2Ž . Ž . Ž .i i 2Xk k 2< <E E t rE x tŽ . Ž .i k

where xX is the k th coordinate of the position ofi k

point xX in the mapped space.i
Ž .A problem with the update rule given in Eq. 2 is

the division by the second derivative. This causes
Žproblems at inflection points areas of small curva-

. Žture where the second derivative is very small de
. Ž .Ridder, 1996 . Although in Kohonen, 1995 an opti-

mal setting of 0.3–0.4 for a is given, there is no
reason to expect this range to be optimal for all
problems. However, one can also use other mini-
mization techniques, which do not possess this prob-
lem, such as normal gradient descent,

E E tŽ .
X Xx tq1 sx t ya . 3Ž . Ž . Ž .Xi ik k E x tŽ .i k

2.2. Triangulation

As explained in the Introduction, once a dataset is
mapped, Sammon’s algorithm does not give a way in
which to map new points without recalculating the
entire map. One very intuitive way of solving this is
to use the dataset neighbourhood relations in the
original set. This method is known as triangulation
Ž .Lee et al., 1977; Biswas et al., 1981 . The two
nearest neighbours in the original space are found.
Given the distances to these neighbours, one can find
a mapping in which these distances are preserved
exactly. If there is more than one point fulfilling the
requirements, a third nearest neighbour is used to

Ž .decide which of these points is chosen see Fig. 1 .

Fig. 1. Triangulation: to find the mapping X X of a point X, the
distances to points A and B in the original space, d and d ,A X B X

will have to be preserved. This gives a desired value for the
distances between candidate points X X and the mappings of A
and B, AX and BX. The requirements can result in no candidate

Ž . Žpoints if the circles do not overlap , one candidate point if the
.circles touch or two candidate points. In the first case a simple

linear interpolation weighed with d and d is used; in theA B BD

latter case a third point C decides which point is chosen, as
indicated in this figure.

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–1316 1309

2.3. SAMANN

Another approach to overcome the generalization
problem of the original Sammon’s mapping is the

Ž .use of an artificial neural network ANN to interpo-
Žlate and extrapolate the mapping. In Mao and Jain,

.1995 , a specific back-propagation-like learning rule
is developed to allow a normal feed-forward ANN to
learn Sammon’s mapping in an unsupervised way,
called SAMANN. In each learning step, the ANN is
shown two points. The outputs of each neuron are
stored for both points. The distance between the
ANN output vectors can be calculated and an error
measure can be defined in terms of this distance and
the distance between the points in the input space.
From this error measure a weight update rule can be
derived. Since no output examples are necessary, this
is an unsupervised algorithm.

A drawback of using SAMANN is that the origi-
nal dataset will have to be scaled for the ANN to be
able to find a correct mapping, since the ANN can
only map to points in the sigmoid’s output interval,
² :0,1 . This scaling is dependent on the maximum
distance in the original dataset. It is therefore possi-
ble that a new pattern shown to the ANN will be
mapped incorrectly, when its distance to a pattern in
the original dataset is larger than any of the original
inter-pattern distances. This makes testing the map-
ping qualities of SAMANN using a test set difficult:
learning set and test set would have to be scaled
using the same factor, based on the inter-pattern
distances of the combined set. Clearly, this is non-
typical of pattern recognition practice. Another ap-
proach to overcome the problem could be to use
linear output units, to allow SAMANN to perform
any R d ™ R m mapping.

2.4. Standard feed-forward ANN

As an alternative to SAMANN’s unsupervised
learning rule, one could also train a standard feed-
forward ANN using supervised back-propagation on
a previously calculated Sammon’s mapping. Al-
though this has a higher computational demand since

Žit involves two learning phases one for Sammon’s
.mapping, one for the ANN it should perform at least

as well as SAMANN.

3. Experiments

3.1. A comparison

Although SAMANN has been applied to a large
number of datasets and compared to several other

Ž .mapping techniques Mao and Jain, 1995 , there has
been no comparison between the SAMANN ap-
proach and the original Sammon mapping. An im-
portant question is how SAMANN performs com-
pared to Sammon’s mapping in conjunction with
triangulation, or compared to a standard feed-for-
ward ANN.

To judge the different approaches, in our experi-
ments we used the following.
Ø Triangulation on Sammon’s mapping;
Ø SAMANN with sigmoid output units, trained on a

scaled dataset;
Ø SAMANN with linear output units, trained on the

original dataset;
Ø an identical ANN with sigmoid output units,

trained using back-propagation on a scaled Sam-
mon’s mapping;

Ø an identical ANN with linear output units, trained
using back-propagation on Sammon’s mapping.
All techniques were tested using distinct learning

and tests sets. Furthermore, for ANNs an indepen-
dent validation set was used to stop training. All
ANNs had one hidden layer of 20 units and an
output layer of two units, i.e. all mappings were onto
two dimensions.

Since here we are just interested in the capabili-
ties of these methods to perform and extend Sam-
mon’s mapping, the only error measure we use is

Ž .Sammon’s stress as given in Eq. 1 . Often other
measures are used, such as the performance of some

Žclassifier trained on the mapped data see, for exam-
Žple, Lerner et al., 1996; Mao and Jain, 1995; Kraaij-

..veld et al., 1995 ; however, these measure quantities
do not necessarily say anything about the quality of
the methods in terms of mapping performance.

3.2. Datasets

We used eight datasets in our experiments; they
are listed in Table 1. Note that, although the set sizes

1 Ž .themselves are rather small, they contain n ny12

inter-pattern distances for n points.
Most of the sets are artificial. Two sets, Hyper-

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–13161310

Table 1
An overview of the datasets used in the experiments. Note that, for the Hypercube and Sphere datasets, the test set is on purpose chosen
from another part of the distribution than the learning set. For the Hypercube set, the training set is used as a validation set

Name Description Source Dimension Learning Validation Test
set size set size set size

Ž .Hypercube Vertices learning set and half-way edge Artificial 4 32 - 16
Ž .points test set of a hypercube

Ž < < .Sphere Two caps z)0.5: learning set and points from Artificial 3 100 100 100
Ž < < .the remaining area z (0.5: test set of a unit sphere

CurÕes Two elongated clusters as described in Artificial 3 100 100 100
Ž .Kraaijveld et al., 1995 ; intrinsically

Ž .two-dimensional see Fig. 2
Gauss Two normally distributed clusters: Artificial 3 100 100 100

TŽ .S sS s I, m sm s 1,1, . . . ,11 2 1 2

Random Uniformly distributed data in a unit hypercube Artificial 10 100 100 100
Ž .Iris Measurements on 3 classes of flowers Fisher, 1936 Real 4 100 25 25

Chromosomes Chromosome banding profiles from 24 classes, Real 30 120 120 120
a subset of the routine dataset described

Ž .in Lundsteen et al., 1986
Ž .Digits Handwritten digits 10 classes in a 16 = 16 grid, Real 256 100 100 100

w xrange y1,1 from the NIST database
Ž .Wilson and Garris, 1990; de Ridder, 1996

cube and Sphere, serve a special purpose: to investi-
gate the interpolation qualities of the mapping mech-
anisms. In both these cases, the test set is taken from
a different area of the distribution than the learning
set. In the Hypercube set, test points lie on the edges
of the hypercube, always on a straight line between

vertices. We would expect a linear interpolation
routine to perform quite well here. In the Sphere set,
in which the test set is chosen from the equator of a
sphere and the learning set from the two remaining
caps, the interpolation should be non-linear. This is

Ž .illustrated in Fig. 2 a .

Ž . Ž .Fig. 2. The Sphere a and CurÕes b datasets. For the Sphere dataset, the learning set is taken from a uniform distribution on the caps
Ž . Ž .light grey , the test set from the equatorial band dark grey .

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–1316 1311

3.3. Training

Both the ANNs and the original Sammon’s map-
ping were initialized with random values from a

w xuniform distribution with range y0.01,0.01 . We
trained all ANNs using the conjugate gradient de-
scent method. The learning rate was set to 0.5 for the
ANNs having sigmoid outputs and to 0.05 for ANNs
with linear output units. No momentum was used.
All ANNs were trained for 1 000 000 cycles or until
the stress on the validation set began to rise,
whichever came first. Results are given in Table 2.

The traditional Sammon’s mapping was trained
Ž Ž ..with normal gradient descent Eq. 3 , with a learn-

ing rate a of 0.5, and with the pseudo-Newton
Ž Ž ..method Eq. 2 with as0.05. In several cases, the

latter method did not converge even with this modest
setting of the learning rate. Therefore, for training
the normal ANNs, Sammon’s mapping calculated
with the gradient descent method was used.

We also tried pretraining SAMANNs with Princi-
Ž .pal Component Analysis PCA , as suggested in

Ž .Mao and Jain, 1995 . To this end, the SAMANN
Žwas first trained for 20 000 cycles using the same

.learning parameters by normal supervised back-

propagation with, for each sample, its PCA mapping
onto two dimensions as targets.

Another proposed initialization consists of setting
the weights between the input layer and the first
hidden layer of SAMANN to the h eigenvectors
corresponding to the h largest eigenvalues of the

Ž .PCA where h is the number of hidden units as
Ž .proposed in Lerner et al., 1996 . This initialization

will only work in cases where the number of hidden
units is less than or equal to the number of input
units, imposing a serious limitation on the networks
flexibility. We have not used this initialization mech-
anism.

4. Discussion

4.1. ConÕergence

In our experience, the SAMANNs were rather
hard to train and converged slowly when compared
to normal ANNs. This can be understood from the
fact that one cycle means showing one pair of sam-
ples. Therefore, for a 100 sample dataset, it takes on

1Ž Ž ..average 5000 i.e. n ny1 cycles for SAMANN2

Table 2
Residual stress of various mapping methods on a number of datasets. E denotes the residual stress on the learning set, E on the test set.L T

‘Sammon’ means the original Sammon’s mapping; ‘sigmoid’ and ‘linear’ indicate the transfer function in the output layer of the ANN used

Dataset

Hypercube Sphere Curves Gauss

Method E E E E E E E EL T L T L T L T

Sammon, triangulation 0.0952 0.1674 0.0254 0.2635 0.0001 0.0056 0.0607 0.1833
SAMANN, sigmoid 0.1005 0.1123 0.0596 0.0489 0.0050 0.0053 0.1581 0.1785
SAMANN, linear 0.2679 0.2288 0.4485 0.6403 0.4229 0.4190 0.8645 0.8697
SAMANNrPCA, sigmoid 0.1023 0.1131 0.0364 0.1054 0.0015 0.0015 0.0850 0.1004
SAMANNrPCA, linear 0.2598 0.2234 0.3426 0.4409 0.1652 0.1620 0.7766 0.7958
Sammon, ANN, sigmoid 0.0952 0.1181 0.0268 0.1224 0.0002 0.0002 0.0641 0.1224
Sammon, ANN, linear 0.0952 0.1081 0.0256 0.1234 0.0002 0.0002 0.0611 0.1342

Random Iris Chromosomes Digits

Method E E E E E E E EL T L T L T L T

Sammon, triangulation 0.1176 0.2286 0.0078 0.0340 0.0680 0.1695 0.1307 0.2602
SAMANN, sigmoid 0.1424 0.1740 0.0359 0.0373 0.1144 0.1096 0.1451 0.1635
SAMANN, linear 0.8154 0.8264 0.9790 0.9820 0.8852 0.8854 0.9699 0.9646
SAMANNrPCA, sigmoid 0.1361 0.1940 0.0517 0.0429 0.2864 0.2915 0.1379 0.1437
SAMANNrPCA, linear 0.4953 0.6881 0.5718 0.6025 0.5069 0.5035 0.9075 0.9111
Sammon, ANN, sigmoid 0.1308 0.1817 0.0103 0.0184 0.0703 0.0820 0.1379 0.1673
Sammon, ANN, linear 0.1305 0.2006 0.0141 0.0303 0.0860 0.0970 0.1884 0.1915

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–13161312

to see the entire set of inter-pattern distances once.
SAMANNs with linear outputs did not train well at
all. Although they showed convergence, it was ex-

tremely slow; the results shown are all reached after
1 000 000 cycles.

There is no reason to expect SAMANN to train

Fig. 3. Maps of the Hypercube dataset, generated by different methods. The training set is indicated by ‘o’, the test set by ‘)’.

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–1316 1313

Ž .Fig. 3 continued .

Fig. 4. Maps of the Sphere dataset, generated by different methods. The training set is indicated by ‘o’, the test set by ‘)’.

Fig. 5. Maps of the Iris dataset, generated by different methods. SAMANN seems to be stuck in a local minimum. Classes: ‘o’ is Iris
setosa, ‘q’ is Iris Õersicolor and ‘)’ is Iris Õirginica.

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–13161314

any faster than traditional Sammon’s mapping, as in
both cases the same error criterion is minimized, the
only difference being the number of parameters in
the model. If SAMANN shows a speed improve-
ment, it is only because of the fact that the method
uses fewer than the m=n parameters Sammon’s
mapping uses for mapping n points to m-dimen-
sions, which diminishes the mapping power.

Another way to speed up Sammon’s mapping
may be to train a normal feed-forward ANN on a
small but representative subset of the data to be
mapped, and mapping the rest of the data using the

Ž .trained ANN the so-called frame method . This
allows the network to be more complicated than
SAMANN, since the time complexity depends
quadratically on the number of points in the set to be
mapped, but only linearly on the number of weights
in the ANN.

The ANNs trained on Sammon’s mapping data
Ž .calculated using normal gradient descent trained
quite well, both with sigmoid and linear output units.

4.2. Initialization

Pretraining on a PCA mapping did not improve
performance in all cases; although it speeded up the
training process on most datasets, we found that
pretraining can get SAMANN stuck in bad local
minima. This happened for the case of the Iris and
Chromosomes data and, to a lesser extent, for the
Hypercube set.

4.3. Mapping differences

Figs. 3–5 illustrate the fact that the different
methods can give quite different results. This is due
to the different underlying minimization mecha-
nisms. For example, the pseudo-Newton method may
take large steps through the error space when the
second derivative is small, reaching an entirely dif-
ferent region and therefore resulting in a different
solution. The SAMANN method updates ‘‘per sam-
ple’’ and will therefore most likely take a different
path than Sammon’s mapping.

4.4. Mapping performance and generalization

In general, the linear output SAMANNs do not
perform very well since training was stopped, before

the error converged, after 1 000 000 cycles. All other
ANNs converged quite well.

Triangulation is the next worst method. It only
performs well in situations where the mapping of
neighbouring points does say something about the
local mapping. This is for example the case in the
Hypercube dataset, where all test points lie on a line
between two learning points. In other cases, such as
the sparse Digit dataset, performance is poor.

SAMANNs with sigmoid output units show
somewhat better generalization properties than the
ANNs trained on Sammon’s mapping, since the rela-
tive difference between the error on the learning and
the error on the test set is smaller. However, in

Žnearly all cases except Random, Digits and espe-
.cially Sphere a normal ANN trained on Sammon’s

mapping outperforms SAMANN. The reason for the
difference on Sphere can be seen in Fig. 4:

Ž .SAMANN has suboptimally mapped the training
set onto the xy plane while Sammon’s mapping has

Žmapped the dataset onto the xz plane for the distri-
.bution of the original data, see Fig. 2 . The first

situation makes it easier to map the test data than the
latter.

5. Conclusions

Although SAMANN is a step forward compared
to traditional Sammon’s mapping, there is a problem:
the need to scale the dataset. This can degrade
performance on hitherto unknown samples, since
they will have to be scaled too with a possibly
suboptimal factor. If we use linear output units to
avoid this problem, training does not converge well.
Initialization based on the PCA mapping does not
solve the latter problem.

When a standard feed-forward ANN is trained on
Sammon’s mapping using back-propagation, conver-
gence is fast and performance seems to be somewhat
better than that of SAMANN. Also, ANNs with
linear transfer functions train well, circumventing the
scaling problem.

In terms of computing requirements, it is our
experience that SAMANN needs a large number of
training cycles before converging. Although Sam-
mon’s mapping is computationally very demanding,
training SAMANN is too. This is to be expected,

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–1316 1315

since both methods will have to be shown a large
number of inter-pattern distances.

In conclusion, it would seem that SAMANNs
unsupervised learning rule is not necessarily the best
choice for training an ANN on Sammon’s mapping.
The only advantage over original Sammon’s map-
ping seems to be the easy way to restrict the number

Ž .of parameters used by choosing the network layout ,
thereby reducing the time needed for the training
process.

Discussion

Mao: I have a comment on the convergence problem.
I found that the reason why the convergence of the
Sammon mapping is very slow is because you have a
nonlinear function. I found that for most data sets
Sammon’s mapping configurations are similar to the
principal component analysis maps. That means that
linear components are very important. But the stan-
dard network is a highly nonlinear function. So it is
very inefficient to approximate linear components
using a nonlinear architecture. I have some idea to
overcome this problem by introducing connections
between the input and output layer.

De Ridder: So you can implement linear functions
directly?

Mao: That would make the network faster. But I
haven’t done the experiment.

Raghavan: I first have a question and then later a
comment. I wanted to ask you about the stress
function. Why is that particular function being used,
and are there other, similar functions that could be
used?

De Ridder: It is the most natural stress measure that
you can think of, at least if you want to retain all
distances as well as possible. You could take out the
normalization factor. Normalization is just to ensure
that the measure is between one and zero. There are
other measures; I believe Andrew Webb has written

Ž .a paper last year Proc. 13-th ICPR, D-635, 1996 in
which he used all kinds of measures, for example
with exponential weighing, so that small distances
have larger weights than larger distances. They seem

to be useful, but each of them in specific applica-
tions.

Raghavan: My comment is just to relate this work to
the work that my co-author Choubey presented yes-
terday. The work that we did was in the context of
image retrieval, based on work done a number of
years ago by Lev Goldfarb of the University of New
Brunswick, Canada. Of course the particular method
is not related to the use of neural networks, but it
still has the idea of mapping from original space to a
new space and in that context, for retrieval purposes
we used this evaluation measure called R-norm,
short for normalized recall. Other people who are
planning work in this direction might be interested in
looking at that measure. I also think that Goldfarb’s
approach to get this kind of mapping is very power-
ful.

Acknowledgements

This research is partly supported by the Founda-
Ž .tion for Computer Science in the Netherlands SION

and the Dutch Organization for Scientific Research
Ž .NWO .

References

Becker, S., Le Cun, Y., 1989. Improving the convergence of
back-propagation learning with second order methods. In:

Ž .Touretzky, D., Hinton, G., Sejnowski, T. Eds. , Proc. of the
1988 Connectionists Models Summer School, Carnegie-Mel-
lon University. Morgan Kauffmann, Los Altos, CA.

Biswas, G., Jain, A.K., Dubes, R.C., 1981. Evaluation of projec-
tion algorithms. IEEE Trans. Pattern Anal. Machine Intell. 3
Ž .6 , 701–708.

Fisher, R.A., 1936. The use of multiple measurements in taxo-
nomic problems. Ann. Eugen. 7, 178–188.

Kohonen, T., 1995. Self-organizing maps. Springer Series in
Information Sciences. Springer, Berlin.

Kraaijveld, M.A., Mao, J., Jain, A.K., 1995. A nonlinear projec-
tion method based on Kohonen’s topology preserving maps.

Ž .IEEE Trans. Neural Networks 6 3 , 548–559.
Lee, R.C.T., Slagle, J.R., Blum, H., 1977. A triangulation method

for the sequential mapping of points from n-space to two-space.
IEEE Transactions on Computers C-27, 288–292.

Lerner, B., Guterman, H., Aladjem, M., Dinstein, I., Romem, Y.,
1996. Feature extraction by neural network nonlinear mapping
for pattern classification. In: Proc. ICPR ’96, vol. D. IEEE, pp.
320–324.

()D. de Ridder, R.P.W. DuinrPattern Recognition Letters 18 1997 1307–13161316

Lundsteen, C., Gerdes, T., Maahr, J., 1986. Automatic classifica-
tion of chromosomes as part of a routine system for clinical
analysis. Cytometry 7, 1–7.

Mao, J., Jain, A.K., 1995. Artificial neural networks for feature
extraction and multivariate data projection. IEEE Trans. Neu-

Ž .ral Networks 6 2 , 296–317.
Ridder, D. de, 1996. Shared weights neural networks in image

analysis. Master’s Thesis. Delft University of Technology.

Sammon Jr, J.W., 1969. A nonlinear mapping for data structure
analysis. IEEE Trans. Comput. 18, 401–409.

Wilson, C.L., Garris, M.D., 1990. Handprinted character database
2. National Institute of Standards and Technology; Advanced
Systems division.

