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Abstract

The pseudo-Fisher linear classifier is considered as the ‘‘diagonal’’ Fisher linear classifier applied to the principal
components corresponding to non-zero eigenvalues of the sample covariance matrix. An asymptotic formula for the expected
Ž .generalization error of the Fisher classifier with the pseudo-inversion is derived which explains the peaking behaviour:
with an increasing number of learning observations from one up to the number of features, the generalization error first
decreases, and then starts to increase. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction. Fisher linear discriminant function and its modifications

A classical learning-set based statistical classifier designed to allocate an unknown p-variate vector x to one
of two multivariate Gaussian populations differing in mean vectors m , m , but sharing the same covariance1 2

Ž .matrix S, is a linear discriminant function DF
X

X1 Ž1. Ž2. y1 Ž1. Ž2. F Fg x s xy x qx S x yx sw xqw , 1Ž . Ž . Ž . Ž .o2

where
X

1F y1 Ž1. Ž2. F Ž1. Ž2.w sS x yx , w sy x qx w , 2Ž . Ž . Ž .o 2

Ž1. Ž2.and x , x , S are sample maximum likelihood estimates of mean vectors m , m and the covariance matrix1 2
Ž .S see, e.g., Anderson, 1958; Fukunaga, 1990 .

Ž . Ž .The DF 1 is a plug-in type allocation classification rule, and in a general case, it is not an optimal
sample-based decision rule. The only one approach which strictly generates the optimal allocation rules is a
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Bayes approach. It generates decision rules with the minimal classification error for a set of allocation
Ž . Ž .problems defined by a prior distribution of parameters. It is known Gupta, 1977 that the linear DF 1

coincides with the optimal Bayes predictive rule for a certain uniform prior distribution of m , m and S if1 2

prior probabilities of the pattern classes are equal among themselves, and for learning-set sizes N sN sN.2 1

When the number of learning observations nsN qN -pq2, the sample estimate of the covariance1 2

matrix S becomes singular. To enable allocation in such situations, different approaches were developed. In a
part of the approaches, some assumptions on the structure of the covariance matrices are utilised, e.g., it is

Ž 2assumed that the covariance matrix S is proportional to the identity matrix Sss I; then we have the
.Euclidean distance, or the nearest means classifier , or it is diagonal, or has a block structure. In the ‘‘diagonal’’

classifier, it is assumed that the variables are independent, i.e., S is a diagonal matrix. Then we have following
weights of the linear classifier:

X
1D y1 Ž1. Ž2. D Ž1. Ž2. Dw sD x yx , w sy x qx w , 3Ž . Ž . Ž .o 2

where D is a diagonal matrix composed of the diagonal elements of matrix S.
Another intermediate case between the Euclidean distance classifier and the linear Fisher classifier is the

Ž .regularized linear discriminant analysis DA . There, instead of the conventional sample estimate S, one uses
Ž . Ž .the shrinkage ridge estimate of the covariance matrix S sSqlI Di Pillo, 1979; McLachlan, 1992 .R

Ž .One more alternative to the Fisher linear DF is to use a pseudo-inverse S) see, e.g. Fukunaga, 1990
instead of Sy1. A possible pseudo-inverse approach consists of a singular value decomposition of matrix S:

d 0XTST s ,
0 0

where

t1
Ts

t2

is an orthogonal matrix such that

d 0XTST s ,
0 0

ds t StX is the r=r diagonal matrix composed of the rs2 Ny2 non-zero eigenvalues d ,d , . . . ,d of S.1 1 1 2 r

Then the pseudo-inverse of matrix S is

y1
X d 0)S sT T . 4Ž .

0 0

This approach to find the weight vector w of the linear discriminant function in the small learning-set case
Ž . Ž . Ž .was used by Schurmann 1977 , Malinovskij 1979 , Duin 1995 .¨

The existence of several alternative classification rules raises a problem to choose one of them in each
particular practical problem. The choice of the best type of the classifier depends on the data, complexity of the
classifier and the learning-set size. Usually in the small learning-set case, the generalization error of a simple
structured classification rule is lower than that of a complex classifier. Vice versa, in large learning-set cases,
the generalization error of the simple structured classification rule is higher than that of complex classifiers.
Typically, learning curves – plots of the generalization error with the learning-set size – of two classifiers of

Ždifferent complexity intersect and portray scissors Raudys, 1970; Kanal and Chandrasekaran, 1971; Duin,
.1978; Jain and Chandrasekaran, 1982; Raudys and Jain, 1991 . This phenomenon is called a ‘‘scissors effect’’.

In the literature, a number of research papers has been published concerning the learning curves of the
standard Fisher linear DF, the Euclidean distance classifiers, the ‘‘diagonal’’ classifiers, regularized linear

Ždiscriminant analysis and other allocation rules Deev, 1970, 1972; Raudys, 1972; Raudys and Jain, 1991;
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Ž . ŽRaudys and Skurichina, 1994; Amari et al., 1992; see also Wyman et al. 1990 and Chap. 4 in McLachlan,
..1992 . Unfortunately we do not have such results for the pseudo-Fisher linear classifier.

The importance of the analysis of the pseudo-Fisher linear classifier arises also in connection with an
extensive use of artificial neural networks. It was shown that under certain conditions, the nonlinear single layer

Ž .perceptron SLP can realise decision boundaries of the Euclidean distance classifier, the regularized linear DA,
the standard Fisher classifier and the Fisher linear classifier with pseudo-inversion of the sample covariance

Ž .matrix Raudys, 1998 . For the latter classifier an unexpected behaÕiour was noticed: with an increase in N, the
Žgeneralization error first decreases, then increases, has a maximum at Nspr2 and then decreases again Duin,

.1995; Skurichina and Duin, 1996 . An understanding of the reasons for this ‘‘strange’’ behaviour of the
pseudo-Fisher classifier can help to choose proper parameters in the neural network training algorithms. An
objective of the present paper is to explain this behaviour theoretically, and to obtain an equation for the
generalization error of the pseudo-Fisher linear classifier.

The remaining of the paper is organised as follows. In the next section, we derive an asymptotic formula for
the expected error of the Fisher DF with the pseudo-inverse which explains the peaking behaviour. The third
section contains simulation results and a discussion.

2. The expected error of the pseudo-Fisher linear classifier

Ž1. Ž2. Ž .When the number of learning observations is small, the estimates x , x and S S) become inexact and
result in an increase in the classification error of observation vectors which do not participate in the design of
the classification rule. We call this error rate an expected probability of misclassification or simply – a mean
generalization error.

We consider the pseudo-Fisher linear classifier as the ‘‘diagonal’’ Fisher linear classifier applied to the
principal components corresponding to r non-zero eigenvalues of the sample covariance matrix S. In the other
pyr directions it is orthogonal to the subspace of principal r directions. Note, when nsN qN -pq2, then1 2

rsN qN y2. This means that the dimensionality of the new feature space changes with n, the learning-set1 2

size. Therefore, in the analysis of the learning curve ‘‘the generalization error versus the learning-set size’’, the
increasing dimensionality plays an important role.

To simplify analytical work we consider the case in which N sN sN, the prior probabilities of the pattern2 1
Ž .classes are equal to 1r2, and true covariance matrix SsI p=p identity matrix . When n-pq2, the rank

of the sample covariance matrix S is rsny2. Denote
XŽ i. Ž i.ys t x , y s t x , ds t St ,1 1 1 1

where t is a random r=p orthonormal matrix as defined above. Then the discriminant function in the new1

r-variate space is
X

1 Ž1. Ž2. y1 Ž1. Ž2.g y s yy y qy d y yy , 5Ž . Ž .Ž . Ž .2

where according to the above definition, d is the diagonal r=r matrix with the eigenvalues d ,d , . . . ,d in its1 2 r
Ž .diagonal. If the learning-set vectors are considered to be random, then the discriminant function 1 should be

Ž1. Ž2.considered as a random variable which depends on the 3 independent p-variate random vectors x, x , x and
the random p=p matrix, S).

Ž1. Ž2. Ž .It is a known fact, that for independent learning-set observations also x , x and S S) are statistically
Ž1. Ž2.independent. Thus, the transformation matrix t and the vectors x , x are statistically independent too.1

Ž .Consequently, for a model of the spherical Gaussian distribution N m , I of x, for any fixed orthonormal ti 1
Ž i. Ž i. Ž Ž . .the vectors y s t x , have a spherical Gaussian distribution N t m , 1rN I . Moreover, when N sN for1 1 i 2 1

any fixed orthonormal t1

2 1 1
1Ž1. Ž2. Ž1. Ž2.us y yy ym;N 0, I , zsyy y qy y m;N 0, 1q I ,Ž . Ž . 2ž / ž /ž /N 2 2 N
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Ž .and both vectors, u and z, are statistically independent. In the above equations, we denoted ms t m ym s1 1 2
Ž .X Ž . Ž .X y1Ž .m ,m , . . . ,m . Thus, g y s 1r2mqz d mqu is a function of two independent r-variate Gaussian1 2 p

random vectors u, z, and of the r=r diagonal random matrix d.
To obtain an asymptotic expression for the mean generalization error of the pseudo-Fisher classifier we go

Ž .about in the same way as in the analysis of the diagonal classifier Raudys, 1972 . A key point in this analysis
is the assumption that p, the dimensionality, and n, the sample size, are large. When r, the number of

Ž .dimensions, is high, the distribution of the linear discriminant function 5 – the sum of r components –
approaches the Gaussian distribution. Therefore the mean generalization error approaches the following
expression:

< <1 E g u ,z,d xgp 1 E g u ,z,d xgpŽ Ž .1 2
F y q F . 6Ž .½ 5 ½ 52 2< <V g u ,z,d xgp V g u ,z,d xgp( (Ž . Ž .1 2

� 4 a Ž .y1r2 � 2 4where the function F a sH 2p exp yt r2 d t is a standard cumulative Gaussian distribution function,y`

E and V denote expectation and variance of the discriminant function with respect to the random vectors u, z,
and the random matrix d.

In order to calculate the moments we make the following remarks and assumptions:
Ž .1 We take into account that for n-pq2, the transformation ys t x, is a random one. Thus, it is1

Ž . Ž .Xreasonable to assume that in the new r-variate space, the components of the vector t m ym s m , . . . ,m1 1 2 1 p
Ž 2 . 2 Ž . y1Ž .are random Gaussian zero mean variables: m ;N 0,d rp , where d s m ym S m ym is thej 1 2 1 2

Mahalanobis distance in the original p-variate space. From this assumptions it follows that a real Mahalanobis
distance d 2 sÝr m2 in the r-variate space is a scaled chi-square random variable with a mean value d 2 rrp,d js1 j

2 'Ž . Ž .and a standard deviation d 2 r r p . For large p and r we ignore the standard deÕiation and assume
d 2 fd 2 rrp. The expectation and the standard deviation of the fourth statistical moment of the Gaussiand

r 4 4 2 4 2'Ž . Ž .random variable are m sÝ m s3d rrp , and d 7r r p . Again, for large p and r we ignore the4 js1 j

standard deÕiation, and assume m f3d 4 rrp2.4
Ž . Ž . Ž .2 When x is multivariate spherical Gaussian N m , I , N m , I , then the sample covariance matrix S has1 2

Ž . Ž Ž ..the Wishart W ny2, I density see, e.g., Anderson 1958 with ny2 degrees of freedom. We consider that,
in the transformed r-variate space, the variables d ,d , . . . ,d , the components of the matrix d, are chosen at1 2 r

random with respect to the components m ,m , . . . ,m . In this context, it follows that randomly chosen1 2 r

eigenvalues d ,d , . . . ,d are statistically independent and identically distributed. Later in our analysis we use1 2 r

E and V , the expectation and the variance of the arbitrarily chosen component 1rd .d d j

Taking into account the above estimates of d , d 2 and m we havej d 4

1 1 1 riq1 iq1 iq1X y1 2 2<Eg u ,z,d xgp s y1 m Ed ms y1 d E s y1 d E , 7Ž . Ž . Ž . Ž .Ž .i d d d2 2 2 p

2 2
< < <Vg u ,z,d xgp sE g u ,z,d xgp y Eg u ,z,d xgpŽ . Ž . Ž .i i i

1
X X X X X Xy1 y1 y1 y1 y1 y1w xs m Ed mm d mym Ed mm Ed m qm Ed zz d m

4

1
X X X Xy1 y1 y1 y1w xq m Ed uu d mqEtr d zz d uu

4

1 1 2 p p
2 2s m V q d 1q q q V qE . 8Ž .Ž .4 d d d d2ž /ž /4 N N N
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Ž . Ž . Ž .Substitution of Eq. 7 and 8 into Eq. 6 results in

° ¶
d 1dŽPF . ~ •EP fF y . 9Ž .N 2 V 1 2 p p m V¢ ßd 4 d

1q 1q 1q q q) 2 2 2 2 2 2ž / ž /ž /NE d d N 4d Ed d d d d

In order to apply this result to evaluate the expected error of the Fisher linear classifier with the
pseudo-inverse covariance matrix we need to know theoretical values of the coefficient of variation gs V rE( d d

of the random variable 1rd . With an increase in the learning-set size n from 1 to p, the smallest eigenvaluesj

become underestimated: some of them become extremely small. Therefore, the coefficient of variation g

increases with an increase in the learning-set size n from 1 to p. Unfortunately, analytical expressions of g are
Ž .very complex. Therefore, in the present paper, values for g when S has a Wishart W n, I distribution have

been found using numerical methods. In effect, we use table values obtained by means of statistical modelling
Ž .of the Wishart density and its moments Table 1 .

2 Ž .Use of d , m and gsE V rE in Eq. 9 leads to theoretical values of the generalization error(d 4 d d

° ¶
d N 1

ŽPF . ~ •EP fF y , 10Ž .N ( 2 2 22 2 p 1 4 p 1 2 p 1 3d¢ ß2 21qg 1q q q qg NŽ .( 2 2 2 3 2ž /N d N d N 8 p

Ž .In Eq. 10 , the term

1 4 p2 1 2 p2 1
T s1q q qm 2 2 2 3N d N d N

(arises from inexact sample estimation of the mean vectors of the classes, the term T s Nr 2 p arises fromŽ .r
2 2Ž .the reduction in the number of features, and the terms gs V rE and T s3d Nr 8 p arise from the( d d eig

inexact estimation of the eigenvalues d ,d , . . . ,d .1 2 r

Note that with an increase in the learning set size n from 1 up to p, the terms T , and T tend to decrease them r

generalization error – the number of the dimensions used for the classification increases. The terms g , and Teig

tend to increase the generalization error – the smallest eigenvalues become underestimated. Consequently, large
Ž .weighting factors 1rd in Eq. 5 increase, underestimating important directions. The smallest eigenvaluesj

overestimate useless directions. Numerical calculations show an interesting and unexpected behaviour of the
classification error: with an increase of the learning-set size N, the generalization error first decreases, reaches a

Ž .minimum and afterwards begins to increase see theoretical graphs 2 in Fig. 1a–b . The minimal error is
Ž . Ž .obtained when Nspr4 nspr2 , and the maximal errors are obtained when Nspr2 nsp . For n)p, we

Table 1
Coefficient of variation g s V rE of the inverse eigenvalues of the Wishart W matrix' d d p,n

p nr p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

30 0.38 0.54 0.71 0.89 1.12 1.40 1.74 2.41 4.15 54.8
50 0.37 0.53 0.70 0.86 1.09 1.31 1.66 2.35 3.70 37.7

100 0.36 0.52 0.69 0.84 1.02 1.25 1.60 2.20 3.15 11.5
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Ž . ŽF. Ž .Fig. 1. Generalization error versus N, the number of learning samples. a Spherical uncorrelated data, ps50, P s0.01. b Gaussian`
ŽF. Ž . Žcorrelated data, with common S, ps50, rs0.45, P s0.0238. 1 pseudo-Fisher linear DF average of 25 or 50 simulation`

. Ž . Ž Ž .. Ž . Ž . ŽF. Ž .experiments ; 2 pseudo-Fisher DF asymptotic Eq. 13 ; 3 Euclidean distance classifier; 4 asymptotic error P ; 5 regularized linear`

DA for optimal l, the regularization parameter.

Žhave the Fisher linear DF. Then the expected error regularly decreases with an increase in N Deev, 1970, 1972;
.Raudys, 1972; Wyman et al., 1990

d 1
ŽF .EP fF y , 11Ž .N ½ 52 T T( m S

Ž 2 .where the term T s1q2 pr d N arises from the inexact sample estimation of the mean vectors of them

Ž .pattern classes and the term T s1qpr 2 Nyp from the inexact sample estimation of the covariance matrix.S

3. Numerical analysis and discussion

To evaluate the accuracy of the asymptotic analytical formula derived to calculate the expected classification
error of the Fisher classifier with the pseudo-inverse, we performed a number of simulation experiments with
artificial Gaussian data. In a first series of experiments, we used two pattern classes of 50-variate spherical
Gaussian data. While generating the data, the mean vectors of the separate features were generated by a

Ž ŽF. .Gaussian distribution and were normalised in such a way that the Mahalanobis distance ds4.65 P s0.01 .`

The pseudo-Fisher classifier was trained 50 times on 50 independent randomly chosen learning-sets composed
Ž .of N samples from each class. For each learning-set, the generalization error a ‘‘test-set error’’ was calculated

analytically

1 w qwX
m 1 w qwX

m0 1 0 2
P s F y q F , 12Ž .N ½ 5 ½ 5X Xy1 y1' '2 2wS w wS w

where w , and w are the weights of the linear classifier.0

The average values of 50 experiments are presented in Fig. 1a.
The second series of experiments differs in the correlation between the features, which was chosen rs0.45.

Mean values from 25 independent experiments are presented in Fig. 1b. In order to demonstrate potential
possibilities of opposing algorithms of the linear discriminant analysis in this experiment, we tested the
regularized discriminant analysis too. Graph 5 in Fig. 1b corresponds to the generalization error of the linear
regularized DA when we used the optimal value l of the smoothing parameter for each particularopt
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Ž . Ž .learning-set. To find l we examined a number of values of l, and on the basis of Eq. 12 estimates theopt

best one was selected.
Ž Ž ..Simulation experiments indicate that in spite of the assumptions, our simple asymptotic formula Eq. 10 is

comparatively accurate to describe the small sample behaviour of the pseudo-Fisher linear classifier. With an
increase in the learning-set size N, the expected classification error first decreases. This is caused by the fact
that the ‘‘effective’’ Mahalanobis distance d 2 smX msrrd 2 increases with an increase in rs2 Ny2, thed

number of directions used to perform the classification procedure.
When the total number of learning samples ns2 N approaches the dimensionality, p, some of the

eigenvalues of the sample covariance matrix become extremely large while the others become extremely small.
ŽA high variability of the sample estimates of the eigenvalues causes that some of the directions essentially these

.are the random directions become highly ‘‘overestimated’’ by an excessively large ‘‘weighting factor’’ 1rdj

in the new transformed space. The regularization of the covariance matrix S sSqlI reduces this ‘‘weightingR
Ž . Ž .factor’’, i.e., makes it 1r d ql , and thus reduces the generalization error dramatically curve 5 in Fig. 1b .j

Ž .Nevertheless, the influences of these directions with zero eigenvalues remain the highest. The pseudo-Fisher
classifier plainly ignores the directions with zero eigenvalues.

Both, in the pseudo-Fisher classifier and the regularized linear discriminant analysis, some ‘‘ad hoc’’
heuristical procedures are utilised in order to reduce the negative influence of zero andror smallest eigenvalues
of the sample covariance matrix S. The regularized DA can be explained mathematically by the Bayesian
statistics when instead of the uniform prior distribution of S, some other type of prior distribution is chosen.
There, the regularization constant l is a parameter of the prior distribution. Possibly, special choices of the prior
distribution for the eigenvalues of the matrix S can lead to more effective modifications of the classifier.

Our analysis shows that in standard pattern classification problems, the present version of the pseudo-Fisher
linear classifier is not a good choice in the Õery small learning-set case. We exposed the factors that cause the
multiple peaking behaviour of the learning curve: the pseudo-Fisher linear classifier is the ‘‘diagonal’’ Fisher
linear classifier in the subspace of the principal components corresponding to non-zero eigenvalues of the
sample covariance matrix S. In spite of the fact that with an increase in the learning-set size n from 1 up to p,
the number of the principal directions increases, the random weighting factors 1rd in the ‘‘diagonal’’ classifierj

increase, underestimate important directions and overestimate worthless ones. The addition of the regularization
parameter l to all eigenvalues d of the covariance matrix in the regularized DA, diminishes this latter negativej

effect. Further analysis can lead to more modifications of the pseudo-Fisher classifier and the regularized linear
DA, as well as unveil data models where a limited number of directions in the transformed feature space by the
eigenvectors of the matrix S can be favourable to perform the classification.
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