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Abstract

The pseudo-Fisher linear classifier is considered as the ‘‘diagona’’ Fisher linear classifier applied to the principal
components corresponding to non-zero eigenvalues of the sample covariance matrix. An asymptotic formulafor the expected
(generalization) error of the Fisher classifier with the pseudo-inversion is derived which explains the peaking behaviour:
with an increasing number of learning observations from one up to the number of features, the generalization error first
decreases, and then starts to increase. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction. Fisher linear discriminant function and its modifications

A classical learning-set based statistical classifier designed to allocate an unknown p-variate vector x to one
of two multivariate Gaussian populations differing in mean vectors u,, w,, but sharing the same covariance
matrix %, is alinear discriminant function (DF)

g(x) =[x = (XD +%@)|'STH( XD — x@) =w"x + W, (1)
where
WF =S 1(X® —x@), W= —1(X® +x®)w, (2)

and X, X®, S are sample maximum likelihood estimates of mean vectors u,, w, and the covariance matrix
3 (see, e.g., Anderson, 1958; Fukunaga, 1990).

The DF (1) is a plug-in type alocation (classification) rule, and in a general case, it is not an optimal
sample-based decision rule. The only one approach which strictly generates the optimal allocation rules is a
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Bayes approach. It generates decision rules with the minimal classification error for a set of allocation
problems defined by a prior distribution of parameters. It is known (Gupta, 1977) that the linear DF (1)
coincides with the optimal Bayes predictive rule for a certain uniform prior distribution of w,, u, and ¥ if
prior probabilities of the pattern classes are equal among themselves, and for learning-set sizes N, = N, = N.

When the number of learning observations n=N; + N, <p+ 2, the sample estimate of the covariance
matrix S becomes singular. To enable allocation in such situations, different approaches were developed. In a
part of the approaches, some assumptions on the structure of the covariance matrices are utilised, e.g., it is
assumed that the covariance matrix 3 is proportional to the identity matrix (3 = ¢ 2l; then we have the
Euclidean distance, or the nearest means classifier), or it is diagonal, or has a block structure. In the ‘‘ diagonal’’
classifier, it is assumed that the variables are independent, i.e., 3 is a diagonal matrix. Then we have following
weights of the linear classifier:

WP =D (XD —x@) WP = — I(XD 4 @Y wP, (3)

where D is a diagonal matrix composed of the diagonal elements of matrix S.

Another intermediate case between the Euclidean distance classifier and the linear Fisher classifier is the
regularized linear discriminant analysis (DA). There, instead of the conventional sample estimate S, one uses
the shrinkage (ridge) estimate of the covariance matrix Sz = S+ Al (Di Pillo, 1979; McLachlan, 1992).

One more alternative to the Fisher linear DF is to use a pseudo-inverse S= (see, e.g. Fukunaga, 1990)
instead of S™1. A possible pseudo-inverse approach consists of a singular value decomposition of matrix S:

,_[d o
TST' = o 0],
where
t, |
T= t,
is an orthogona matrix such that
,_|d O
TST _[0 0],

d=1t,St] isthe r X r diagonal matrix composed of the r = 2N — 2 non-zero eigenvalues d,,d,,...,d, of S.
Then the pseudo-inverse of matrix S is

* ! d_l 0
S*=T [ 0 O]T. (4

This approach to find the weight vector w of the linear discriminant function in the small learning-set case
was used by Schiirmann (1977), Malinovskij (1979), Duin (1995).

The existence of several alternative classification rules raises a problem to choose one of them in each
particular practical problem. The choice of the best type of the classifier depends on the data, complexity of the
classifier and the learning-set size. Usually in the small learning-set case, the generalization error of a simple
structured classification rule is lower than that of a complex classifier. Vice versa, in large learning-set cases,
the generalization error of the simple structured classification rule is higher than that of complex classifiers.
Typically, learning curves — plots of the generalization error with the learning-set size — of two classifiers of
different complexity intersect and portray scissors (Raudys, 1970; Kana and Chandrasekaran, 1971; Duin,
1978; Jain and Chandrasekaran, 1982; Raudys and Jain, 1991). This phenomenon is called a ‘* scissors effect’’.

In the literature, a number of research papers has been published concerning the learning curves of the
standard Fisher linear DF, the Euclidean distance classifiers, the ‘‘diagona’’ classifiers, regularized linear
discriminant analysis and other alocation rules (Deev, 1970, 1972; Raudys, 1972; Raudys and Jain, 1991;
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Raudys and Skurichina, 1994; Amari et a., 1992; see also Wyman et al. (1990) and Chap. 4 in (McLachlan,
1992)). Unfortunately we do not have such results for the pseudo-Fisher linear classifier.

The importance of the analysis of the pseudo-Fisher linear classifier arises also in connection with an
extensive use of artificial neural networks. It was shown that under certain conditions, the nonlinear single layer
perceptron (SLP) can realise decision boundaries of the Euclidean distance classifier, the regularized linear DA,
the standard Fisher classifier and the Fisher linear classifier with pseudo-inversion of the sample covariance
matrix (Raudys, 1998). For the latter classifier an unexpected behaviour was noticed: with an increasein N, the
generalization error first decreases, then increases, has a maximum at N = p/2 and then decreases again (Duin,
1995; Skurichina and Duin, 1996). An understanding of the reasons for this ‘‘strange’’ behaviour of the
pseudo-Fisher classifier can help to choose proper parameters in the neural network training algorithms. An
objective of the present paper is to explain this behaviour theoretically, and to obtain an equation for the
generalization error of the pseudo-Fisher linear classifier.

The remaining of the paper is organised as follows. In the next section, we derive an asymptotic formula for
the expected error of the Fisher DF with the pseudo-inverse which explains the peaking behaviour. The third
section contains simulation results and a discussion.

2. The expected error of the pseudo-Fisher linear classifier

When the number of learning observations is small, the estimates X, X® and S (S*) become inexact and
result in an increase in the classification error of observation vectors which do not participate in the design of
the classification rule. We call this error rate an expected probability of misclassification or simply — a mean
generalization error.

We consider the pseudo-Fisher linear classifier as the ‘*diagonal’’ Fisher linear classifier applied to the
principal components corresponding to r non-zero eigenvalues of the sample covariance matrix S. In the other
p — r directionsit is orthogonal to the subspace of principal r directions. Note, when n= N, + N, < p + 2, then
r=N, + N, — 2. This means that the dimensionality of the new feature space changes with n, the learning-set
size. Therefore, in the analysis of the learning curve *‘ the generalization error versus the learning-set size'’, the
increasing dimensionality plays an important role.

To simplify analytical work we consider the case in which N, = N, = N, the prior probabilities of the pattern
classes are equal to 1/2, and true covariance matrix 3 =1 (p X p identity matrix). When n < p + 2, the rank
of the sample covariance matrix Sis r = n— 2. Denote

y=t,x, yV=t,xO  d=t,St],
where t, isa random r X p orthonormal matrix as defined above. Then the discriminant function in the new
r-variate space is

o(y) = [y=3(¥2+y2)] d- (70 - ¥2), 5
where according to the above definition, d is the diagonal r X r matrix with the eigenvalues d,,d,,...,d, inits
diagonal. If the learning-set vectors are considered to be random, then the discriminant function (1) should be
considered as a random variable which depends on the 3 independent p-variate random vectors x, X¥, x® and
the random p X p matrix, S=.

It is a known fact, that for independent learning-set observations also XV, @ and S (S*) are statistically
independent. Thus, the transformation matrix t, and the vectors XV, x@ are statistically independent too.
Consequently, for a model of the spherical Gaussian distribution N( w;,1) of x, for any fixed orthonormal t,
the vectors ¥V =t, XV, have a spherical Gaussian distribution N(t, «;,(1/N)1). Moreover, when N, = N, for
any fixed orthonorma t,

2 1 1
u=()7(1)—§/(2))—m~N(O,NI), v=y—§(y<1>+y<2>)—§m~N(o,(1+ m)| )
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and both vectors, u and v, are statistically independent. In the above equations, we denoted m = t,( w, — p,) =
(my,m,,...,m)). Thus, g(y) =(1/2m+vYd™*(m+ u) is a function of two independent r-variate Gaussian
random vectors u, v, and of the r X r diagonal random matrix d.

To obtain an asymptotic expression for the mean generalization error of the pseudo-Fisher classifier we go
about in the same way as in the analysis of the diagonal classifier (Raudys, 1972). A key point in this analysis
is the assumption that p, the dimensionality, and n, the sample size, are large. When r, the number of
dimensions, is high, the distribution of the linear discriminant function (5) — the sum of r components —
approaches the Gaussian distribution. Therefore the mean generalization error approaches the following
expression:

1(15 E[g(u,v,dIx € m,] }+1(p{ E[g(u,v,d)Ix € m,] )

2 WV[g(uv,d)xem] 2 | \V[g(uwrd)xem,]
where the function @{a} = [*_(27)~*/2exp{ —t?/2}dt is a standard cumulative Gaussian distribution function,
E and V denote expectation and variance of the discriminant function with respect to the random vectors u, v,
and the random matrix d.

In order to calculate the moments we make the following remarks and assumptions:

(1) We take into account that for n<p+ 2, the transformation y=t,x, is a random one. Thus, it is
reasonable to assume that in the new r-variate space, the components of the vector t,( u; — u,) = (my,...,my)
are random Gaussian zero mean variables: m; ~N(0,6%/p), where §%=(pu; — u) 3 *(uy — u,) is the
Mahalanobis distance in the original p-variate space. From this assumptions it follows that a real Mahaanobis
distance 87 = ¥{_,m? in the r-variate space is a scaled chi-square random variable with a mean value &°r /p,
and a standard deviation 52(2r)/(p). For large p and r we ignore the standard deviation and assume
8% = 82%r/p. The expectation and the standard deviation of the fourth statistica moment of the Gaussian
random variable are w, = Xj_,m'=38r/p? and 8*(/7r)/(p?. Again, for large p and r we ignore the
standard deviation, and assume u, = 38“r /p?.

(2) When x is multivariate spherical Gaussian N( 4, 1), N( u,,1), then the sample covariance matrix S has
the Wishart W(n — 2,1) density (see, e.g., Anderson (1958)) with n — 2 degrees of freedom. We consider that,
in the transformed r-variate space, the variables d,,d,,...,d,, the components of the matrix d, are chosen at
random with respect to the components m;,m,,...,m,. In this context, it follows that randomly chosen
eigenvalues d,,d,, ...,d, are statistically independent and identically distributed. Later in our analysis we use
Ey and V;, the expectation and the variance of the arbitrarily chosen component 1/d;.

Taking into account the above estimates of d;, 8¢ and u, we have

1 i+1 1 1 i+1q2 1 i+1 2r
Eg(u,v,dlxerri)=§(—1) m Ed m=E(—l) BdEd=§(_1) é BEd, (7)
vg(u,p,dixe m)=E[g(up,dixem)]’~[Eg(u,r.dixe m)]?

1

= Z[m’Ed‘lmm’d‘lm —mEd *mmEd *m] + mMEd™ *vv'd"'m
1
+ Zm/Ed’luu/d’lm + Etr[d™ *or'd tuu']

p
N

(Vy + E2). (8)

1 2
6d2(1+ —) + i
N N

1
= Z MgVy +
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Substitution of Eg. (7) and (8) into Eq. (6) resultsin

(PF) 04 1
EP(™ =~ ol - = . (9)
Vy 1 2p p Mg Vg
1+—2 1+ — 1+—2 + T +—2—2
E2 NTT 82 ) T saN | T 482 E2

In order to apply this result to evaluate the expected error of the Fisher linear classifier with the
pseudo-inverse covariance matrix we need to know theoretical values of the coefficient of variation y = M /E4
of the random variable 1,/d;. With an increase in the learning-set size n from 1 to p, the smallest eigenvalues
become underestimated: some of them become extremely small. Therefore, the coefficient of variation y
increases with an increase in the learning-set size n from 1 to p. Unfortunately, analytical expressions of y are
very complex. Therefore, in the present paper, values for y when S has a Wishart W(n, | ) distribution have
been found using numerical methods. In effect, we use table values obtained by means of statistical modelling
of the Wishart density and its moments (Table 1).

Use of 67, u, and y= EM/E,, in Eq. (9) leads to theoretical values of the generalization error

5 [N 1
EPPY = d{ — =1/ — , (10)
2y 2p 1 4p*> 1 2p* 1 352
(1+7%) ?

14—+ ——5+ ——= | + y2>=—=N
N 82 N2 82 N3] Y gp?

In Eq. (10), the term

" N 52 N2 82 N®
arises from inexact sample estimation of the mean vectors of the classes, the term T, = /N/(2p) arises from
the reduction in the number of features, and the terms y = \/V_d/Ed and Ty, =36°N/(8p?) arise from the
inexact estimation of the eigenvalues d,,d,,...,d,.

Note that with an increase in the learning set size n from 1 up to p, theterms T, and T, tend to decrease the
generalization error — the number of the dimensions used for the classification increases. The terms vy, and Ty,
tend to increase the generalization error — the smallest eigenvalues become underestimated. Consequently, large
weighting factors 1/d, in Eq. (5) increase, underestimating important directions. The smallest eigenvalues
overestimate useless directions. Numerical calculations show an interesting and unexpected behaviour of the
classification error: with an increase of the learning-set size N, the generalization error first decreases, reaches a
minimum and afterwards begins to increase (see theoretical graphs 2 in Fig. 1a—b). The minimal error is
obtained when N = p/4 (n= p/2), and the maximal errors are obtained when N=p/2 (n=p). For n> p, we

Table 1
Coefficient of variation y = \/VT,/ Ey of the inverse eigenvalues of the Wishart W, , matrix
p n/p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00
30 0.38 0.54 0.71 0.89 112 1.40 174 241 4.15 54.8
50 0.37 0.53 0.70 0.86 1.09 131 1.66 2.35 3.70 317

100 0.36 0.52 0.69 0.84 1.02 125 1.60 2.20 3.15 115
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Fig. 1. Generalization error versus N, the number of learning samples. (a) Spherical uncorrelated data, p =50, P{P = 0.01. (b) Gaussian
correlated data, with common 3, p=50, p=0.45 P =0.0238. (1) pseudo-Fisher linear DF (average of 25 or 50 simulation
experiments); (2) pseudo-Fisher DF (asymptotic Eq. (13)); (3) Euclidean distance classifier; (4) asymptotic error PP; (5) regularized linear
DA for optimal A, the regularization parameter.

have the Fisher linear DF. Then the expected error regularly decreases with an increasein N (Deev, 1970, 1972;
Raudys, 1972; Wyman et al., 1990)

5 1 }
—— 1, (11)

EPP =~ &
2 T T

where the term T, =1+ 2p/(82N) arises from the inexact sample estimation of the mean vectors of the
pattern classes and the term Ty = 1 + p /(2N — p) from the inexact sample estimation of the covariance matrix.

3. Numerical analysis and discussion

To evaluate the accuracy of the asymptotic analytical formula derived to calculate the expected classification
error of the Fisher classifier with the pseudo-inverse, we performed a number of simulation experiments with
artificial Gaussian data. In a first series of experiments, we used two pattern classes of 50-variate spherical
Gaussian data. While generating the data, the mean vectors of the separate features were generated by a
Gaussian distribution and were normalised in such a way that the Mahalanobis distance & = 4.65 (PP = 0.01).
The pseudo-Fisher classifier was trained 50 times on 50 independent randomly chosen learning-sets composed
of N samples from each class. For each learning-set, the generalization error (a*‘ test-set error’’) was cal cul ated
analytically

b lq) Wy + Wy +1 W, + W,
N2 { yw3 tw } 2 { Vw3 tw }
where w,, and w are the weights of the linear classifier.

The average values of 50 experiments are presented in Fig. 1la

The second series of experiments differs in the correlation between the features, which was chosen p = 0.45.
Mean vaues from 25 independent experiments are presented in Fig. 1b. In order to demonstrate potential
possibilities of opposing algorithms of the linear discriminant analysis in this experiment, we tested the

regularized discriminant analysis too. Graph 5 in Fig. 1b corresponds to the generalization error of the linear
regularized DA when we used the optimal value A, of the smoothing parameter for each particular

(12)
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learning-set. To find A
best one was selected.

Simulation experiments indicate that in spite of the assumptions, our simple asymptotic formula (Eq. (10)) is
comparatively accurate to describe the small sample behaviour of the pseudo-Fisher linear classifier. With an
increase in the learning-set size N, the expected classification error first decreases. This is caused by the fact
that the **effective’’ Mahalanobis distance 82 =mm=r/8? increases with an increase in r = 2N — 2, the
number of directions used to perform the classification procedure.

When the total number of learning samples n=2N approaches the dimensionality, p, some of the
eigenvalues of the sample covariance matrix become extremely large while the others become extremely small.
A high variability of the sample estimates of the eigenvalues causes that some of the directions (essentially these
are the random directions) become highly ‘‘overestimated’’ by an excessively large ‘‘ weighting factor’’ 1/d,
in the new transformed space. The regularization of the covariance matrix Sy = S+ Al reduces this‘* weighting
factor”, i.e., makes it 1/(d; + A), and thus reduces the generaization error dramatically (curve 5 in Fig. 1b).
Nevertheless, the influences of these directions (with zero eigenvalues) remain the highest. The pseudo-Fisher
classifier plainly ignores the directions with zero eigenvalues.

Both, in the pseudo-Fisher classifier and the regularized linear discriminant analysis, some ‘‘ad hoc’’
heuristical procedures are utilised in order to reduce the negative influence of zero and/or smallest eigenvalues
of the sample covariance matrix S. The regularized DA can be explained mathematically by the Bayesian
statistics when instead of the uniform prior distribution of 3, some other type of prior distribution is chosen.
There, the regularization constant A is a parameter of the prior distribution. Possibly, special choices of the prior
distribution for the eigenvalues of the matrix 3 can lead to more effective modifications of the classifier.

Our analysis shows that in standard pattern classification problems, the present version of the pseudo-Fisher
linear classifier is not a good choice in the very small learning-set case. We exposed the factors that cause the
multiple peaking behaviour of the learning curve: the pseudo-Fisher linear classifier is the ‘*diagonal’’ Fisher
linear classifier in the subspace of the principal components corresponding to non-zero eigenvalues of the
sample covariance matrix S. In spite of the fact that with an increase in the learning-set size n from 1 up to p,
the number of the principal directions increases, the random weighting factors 1/d; in the “*diagonal’” classifier
increase, underestimate important directions and overestimate worthless ones. The addition of the regularization
parameter A to al eigenvalues d; of the covariance matrix in the regularized DA, diminishes this |atter negative
effect. Further analysis can lead to more modifications of the pseudo-Fisher classifier and the regularized linear
DA, as well as unveil data models where a limited number of directions in the transformed feature space by the
eigenvectors of the matrix S can be favourable to perform the classification.

opt We examined a number of values of A, and on the basis of Eq. (12) (estimates) the
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