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Abstract

Relational discriminant analysis is based on a proximity description of the data. Instead of features, the similarities

to a subset of the objects in the training data are used for representation. In this paper we will show that this subset

might be small and that its exact choice is of minor importance. Moreover, it is shown that linear or non-linear methods

for feature extraction based on multi-dimensional scaling are not, or just hardly better than subsets. Selection dras-

tically simpli®es the problem of dimension reduction. Relational discriminant analysis may thus be a valuable pattern

recognition tool for applications in which the choice of the features is uncertain. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

In statistical pattern recognition, objects are
traditionally represented by features. Recently
(Duin et al., 1997) we argued that formally objects
might also be represented by a proximity measure
(distances, similarities) to a set of prototypes or
support objects. This leads to a featureless ap-
proach to pattern recognition in which the appli-
cation expert expresses the domain knowledge by
de®ning the proximity measure instead of by de-
®ning a set of features. Finding classi®ers between
classes represented in this way is called relational
discriminant analysis.

This approach has some resemblance with one
of the early methods for pattern recognition called

template matching. That method is also featureless
and is also based on some proximity measure.
What is discussed here goes much further as we
will build discriminant functions on similarities
and try to reduce the complexity of the represen-
tation. In this study the similarity to particular
objects in the training set will take over the role of
features of the traditional feature based methods.

The starting point of this analysis is an m� m
matrix D between all m training objects and a
corresponding set of m labels K. We can relate
them uniquely by a weight vector w as

Dw � K; so w � Dÿ1K; �1�
if rank�D� � m. For a new object x, represented as
a set of similarities to the m training objects, the
label can now be estimated as

kx � xTw: �2�
The problem with this discriminant is that it

may have a small generalization power as it has no
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noise averaging possibilities. If a smaller repre-
sentation set R is used, having n� m objects, then
the corresponding Dr has size m� n and the weight
vector has a reduced size of n weights. Eq. (1) can
now be based on a mean square error procedure
(FisherÕs Linear Discriminant), but also other
discriminant functions may be used.

A dimension reduction is important for two
reasons. First, the accuracy of a classi®er improves
if it is trained by m objects but represented in a
space with dimensionality n� m, due to the curse
of dimensionality (Jain and Chandrasekaran,
1987). Secondly, it reduces the complexity of
measurements and computations in classifying
new objects as they have just to be represented by
their similarities to the objects in R only. In this
way, the representation set replaces the traditional
feature set.

In this paper we will show that in a practical
application the selection of objects is (almost) as
good as feature extraction by linear as well as non-
linear methods for multi-dimensional scaling. Next
we will analyze how critical the choice of the re-
duction R is. We will show that it is hard to im-
prove the performance based on just a random
selection. This makes relational discriminant
analysis a very simple procedure.

2. Dimension reduction by the selection of objects

As stated, the reduction of the number of col-
umns in D from m to n by selecting a representa-
tion set is almost identical to the feature selection
problem. There is, however, one important di�er-
ence between the similarities to a representation set
and a feature set: features can di�er largely; some
features may even be unique. The similarities to
the objects in the representation set, on the other
hand, have a uniform interpretation. They can be
very similar, as they arise from the same training
set. Unless the training set is very small, each ob-
ject has some neighbors that are rather similar.
Consequently, not only their mutual similarities
are large, but also their relations with the other
training objects will be alike.

We will discuss the following possibilities to
select a representation set from the training set.

2.1. Random selection

In this case we do not take any precautions that
the representation set is really representative for
the training set. It is an easy and fast method.
Without a�ecting that, we distribute the random
choices evenly over the classes. We already ex-
perimented with this method in (Duin, 1998).

2.2. Systematic selection

By using the k-centers method (Ypma and
Duin, 1998), the objects are distributed evenly
over the training set. This method selects the
objects in such a way that the smallest similarity
is maximized. In our procedure we do this class
by class.

2.3. Feature selection

Recalling that the problem is similar to fea-
ture selection we choose for the forward selec-
tion, using the Mahalanobis distance as a
criterion. So now the elements of D are used as
feature values and its rows are interpreted as
points in a feature space. Although we used class
information in the ®rst two methods, only in this
method it is used in such a way that class sep-
arability is optimized.

3. Feature extraction by multi-dimensional scaling

Instead of selecting objects, a dimension re-
duction in the relational representation can be
achieved by mapping the original set of objects on
a feature space of a given reduced dimensionality.
In order to preserve the original structure de®ned
by a proximity matrix, we will demand that the
distances in the new space re¯ect these proximities
as well as possible. This technique is called multi-
dimensional scaling (Borg and Groenen, 1997).
Because this technique is based on proximity
measurements, it is well applicable to our fea-
tureless approach.

The idea behind multi-dimensional scaling is
simple. A con®guration of points in a low-dimen-
sional space is sought such that their proximities
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re¯ect as well as possible the original ones. The
classi®ers between classes are then determined for
the lower-dimensional representation instead of
for the original set.

As the starting point, an m� m distance matrix
D is considered. The multi-dimensional scaling
technique maps the original set into a lower-di-
mensional space, imposing that all interpoint dis-
tances are preserved as well as possible. As a
result, a faithful, lower-dimensional representation
of the geometrical relations between the objects is
obtained. We use the Euclidean metric. It is im-
portant to emphasize that the multi-dimensional
scaling results, the extracted set of features, can be
interpreted as linear or non-linear combinations of
the, possibly virtual, original set of features on
which D is based.

We investigated the following possibilities.

3.1. Classical scaling

This is a linear technique, similar to the Kar-
hunen±Lo�eve reduction method. Suppose that the
coordinate matrix X 2 Rm�k is given. Let D2 be the
square distance matrix. Knowing that distances do
not change under translations, it can be assumed
that X has column means equal to 0.

Let us consider the matrix BD � XX T. The ma-
trix BD can be expressed in another way (Borg and
Groenen, 1997) as

BD � ÿ 1

2
JD2J ; J � I ÿ 1

m
11T;

1T � �1 . . . 1� 2 R1�m: �3�
The matrix BD, as a scalar product of ma-

trices BD � XX T, is symmetric and has non-
negative eigenvalues. Then the factorization of
BD by its eigenvector decomposition can be
found:

BD � QKQT � QK0:5
ÿ �

QK0:5
ÿ �T

; �4�
where Q is an orthogonal matrix (which means
that the eigenvectors are normalized) and K0:5 is
a diagonal matrix with the diagonal elements
equal to the square roots of the eigenvalues ta-
ken in descending order. Hence, we have the
equation

XX T � BD � QK0:5
ÿ �

QK0:5
ÿ �T

: �5�

It is not enough to show that X � QK0:5, but it
can be proved (Borg and Groenen, 1997) that X
and QK0:5 di�er only by rotation. From this fact, X
can be retrieved from Q and K by

X � QK0:5; �6�

which is correct except for possible rotations in the
projected space.

This analysis shows that having the square
distance matrix D2, a data matrix X can be re-
trieved under condition that the distances are
preserved.

In the method of classical scaling, the square
distance matrix D2 (for the original data X in a k-
dimensional space) is given. It is not necessary that
we know X. A con®guration of points in a d-di-
mensional space is sought, for which all the dis-
tances are possibly well preserved. Following the
above reasoning, the matrix BD � ÿ1

2
JD2J is

computed, which allows to determine the data
matrix X 2 Rm�k by using formula (3). This is an
exact, k-dimensional result, except for a rotation.
However, our interest is not in X, but in a lower-
dimensional representation. Therefore, the matrix
Y 2 Rm�d can be expressed as

Yd � QdK
0:5
d ; �7�

where the matrix Kd is the same as the matrix K,
but with the ®rst d eigenvalues greater than zero,
and Qd stands for the ®rst d columns of the
matrix Q corresponding to these d eigenvalues.
By incorporating only partial information, our
result is not perfect. However, by taking the
largest d eigenvalues and corresponding eigen-
vectors, we assure that for the d-dimensional
con®guration Y, the square distance matrix re-
sembles the original matrix D2 in a sense of the
largest variance.

It can be proved (Borg and Groenen, 1997) that
in case of the Euclidean distance, the classical
scaling solution is the same as the solution given
by the Karhunen±Lo�eve projection. This implies
that classical scaling is a linear projection tech-
nique.

R.P.W. Duin et al. / Pattern Recognition Letters 20 (1999) 1175±1181 1177



3.2. Sammon mapping

The well-known Sammon mapping (Sammon,
1969) is a non-linear projection technique. It looks
for such a representation in a lower-dimensional
space that the distances between the objects are as
close as possible to the corresponding distances in
the original (high-dimensional) space. In order to
judge whether one con®guration of points is better
than another, an error function (also called stress)
is considered. It measures the di�erence between
the present con®guration and the original con®g-
uration via the distances. Let us de®ne:
· dij for i; j � 1; 2; . . . ;m, the distance between

two points in a k-dimensional space,
· dij for i; j � 1; 2; . . . ;m, the distance between

two points in a d-dimensional space.
The stress function is then given as follows:

ES � 1Pmÿ1
i�1

Pm
j�i�1 dij

Xmÿ1

i�1

Xm

j�i�1

�dij ÿ dij�2
dij

; �8�

and yields in fact a badness-of-®t measure for the
entire representation. It is a sort of the normalized
error, incorporating all the di�erences between the
original dij and mapped dij distances. The problem
of ®nding the right representation in a lower-di-
mensional space is then an optimization problem.
The con®guration of points is sought for which the
stress is minimum. In general, this is a complex
problem due to the operation on O(m2) distances.

To perform Sammon mapping, one starts from
an initial con®guration (e.g., randomly chosen).
The stress is then computed. Next, the points are
adjusted so that the stress decreases. The whole
process is reiterated until the map corresponding
to the (local) minimum of the stress function is
obtained. The optimum is found by using e.g. the
Pseudo-Newton or Conjugate Gradients tech-
niques.

3.3. Niemann mapping

The idea of Niemann mapping (Niemann, 1980)
is similar to Sammon mapping but computation-
ally more attractive. Having a k-dimensional
con®guration of points, represented by the dis-
tance matrix, the objective is to ®nd its lower-di-

mensional representation, which preserves all the
original distances. The distance between the points
is de®ned to be the square one. The following
stress function is used:

EN � 1Pmÿ1
i�1

Pm
j�i�1 d2

ij

Xmÿ1

i�1

Xm

j�i�1

�d2
ij ÿ d2

ij�2
d2

ij

; �9�

where the meaning of symbols dij and dij remains
the same.

This stress function is presented by a similar
formula as the Sammon stress. The di�erence is
hidden in the distances: squared Euclidean instead
of Euclidean. Again, the problem of ®nding the
proper con®guration in the low-dimensional space
becomes a minimization problem. However, in this
case, the optimization is conveniently done now by
a coordinate descent algorithm (Niemann, 1980).

This method tries to preserve the squared dis-
tances and by doing this re¯ects more the global
structure of the data. The classical scaling tech-
nique makes use of the squared distance matrix,
imposing that these distances are re¯ected in the
lower-dimensional representation. The classical
scaling method is a linear approach. Consequently,
also Niemann mapping, which operates on the
squared distances, has a more linear aspect. Our
experience con®rms that fact.

In case of a high-dimensional data set, the task
of ®nding the classi®ers between the classes is often
not easy. Therefore, it is a reasonable approach to
map this data into a lower-dimensional space so
that the inherent structure is preserved. (One
problem that had to be solved is how new data
should be mapped into the extracted feature
spaces. We found a good and simple method called
Distance Mapping which is reported elsewhere
(Pekalska et al., 1999). Finding classi®ers should
then become more simple. For this reason, the
multi-dimensional techniques are of interest here.

The use of them allows also for a fair compar-
ison with relational discriminant analysis. In our
featureless approach, ®rst the distance matrix is
considered. We study then two ways of dimension
reduction. The ®rst one relates to the selection of
certain distances, creating a representation set, in
order to reduce the problem size. Therefore, some
information is disregarded. The second way of
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dimension reduction, discussed in this section is to
project the data on a feature space of lower di-
mensionality by a multi-dimensional scaling
method. A lower-dimensional representation is
found, but again some information is lost, as the
distances are distorted as they approximate the
original ones.

4. Experiments

We used a character database consisting of
200� 10 handwritten numerals, each originally
represented by 30� 48 binary pixels. Out of this
dataset, 5 di�erent feature sets are derived: pixel
(240 averages of 2� 3 pixels), face (216 face dis-
tances), Fourier (76 Fourier shape descriptors),
Karhumen±Lo�eve (64 weights) and Zernike (47
rotational invariant moments plus 6 morphologi-
cal features). So in total there are 649 features. See
also (van Breukelen et al., 1997).

For each feature set a 2000� 2000 Euclidean
distance matrix was computed. At random 1000
(100� 10) objects were selected for training and
1000 (100� 10) objects for testing. This was re-

peated ®ve items. Then we used the three selection
methods described in Section 2 and the three
methods for feature extraction described in Section
3 to select 5 and 10 dimensions for each of the ®ve
datasets. This implies that for each dataset and
each class just one or even no object was selected
in case of the random selection and the k-centers
method. The object distances were combined into
a single representation of 25 and 50 distances per
object. The relational matrices Dr for the training
set are thus 1000� 25 and 1000� 50, respectively.

Finally, three classi®ers were trained on the
relational representations (treating them as feature
spaces): the Bayes classi®er assuming normal
densities with equal covariance matrices (a linear
classi®er), the Bayes classi®er assuming normal
densities with unequal covariance matrices (a
quadratic classi®er) and the 1-Nearest Neighbor
rule (1-NN). It appeared that the scaled version of
this rule performed much better, so we used it for
the selection methods. For the extraction methods
this makes no sense, as multi-dimensional scaling
already tries to optimize the distances. All classi-
®ers were tested and results were averaged over the
®ve random experiments, see Tables 1 and 2.

Table 1

Averaged error for a representation set of 50 objects

Linear classi®er Quadratic classi®er 1-NN rule

Dimension reduction Train Test Train Test Train Test

Random selection 0.013 0.019 0.000 0.026 0 0.029

K-centers method 0.009 0.019 0.000 0.026 0 0.027

Forward selection 0.011 0.017 0.000 0.026 0 0.027

Classical scaling 0.009 0.019 0.000 0.029 0 0.068

Sammon mapping 0.012 0.021 0.000 0.029 0 0.068

Niemann mapping 0.011 0.016 0.000 0.028 0 0.060

Table 2

Averaged error for a representation set of 25 objects

Linear classi®er Quadratic classi®er 1-NN rule

Dimension reduction Train Test Train Test Train Test

Random selection 0.028 0.037 0.002 0.031 0 0.037

K-centers method 0.027 0.032 0.003 0.030 0 0.037

Forward selection 0.021 0.032 0.001 0.031 0 0.038

Classical scaling 0.019 0.023 0.001 0.027 0 0.106

Sammon mapping 0.025 0.032 0.002 0.028 0 0.088

Niemann mapping 0.021 0.025 0.001 0.029 0 0.088
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5. Discussion

Table 1 shows that if all classes and all datasets
are represented in the subset, a random selection
yields almost the same performance as any of the
more advanced selection methods and mapping
techniques. The bad results for the NN classi®er
for the feature extraction methods may be ex-
plained by the fact that multi-dimensional scaling
optimizes the set of distances globally, in¯uencing
the NN relations.

Note that the random subset selection needs a
training e�ort of about 1 minute on a Sun Ultra-
10 workstation for the training set of size
1000� 649. It immediately reduces the set to
1000� 50 distances in which all original features
are represented. The systematic selection and the
multi-dimensional techniques for feature extrac-
tion need up to a few hours and much more
memory as they keep on handling 1000� 1000
matrices.

A further dimension reduction from 50 to 25
(Table 2) shows globally a decreasing perfor-
mance. So here we really loose information. This
increase of error, however, is larger for the selec-
tion methods than for the mapping techniques.
From this it can be concluded that feature ex-
traction may be better able to preserve the class
separability.

The selection methods are also much faster
from the operational point of view. They demand
the computation of just 25 or 50 distances instead
of 1000 in classifying new objects.

Our ®nal conclusion is that relational discrimi-
nant analysis based on random object selection is
computationally e�cient in both training and
testing and may have a close to optimal perfor-
mance.

For futher reading, see (Duin and de Ridder,
1997).

Discussion

Raghavan: When we were both here during the
previous conference in the ``Pattern Recognition in
Practice'' series we were talking about a paper by

Lev Goldfarb, somewhat related, I think, to multi-
dimensional scaling. (Note of the editors: see the
discussion in: R.P.W. Duin, D. de Ridder and
D.M.J. Tax. Experiments with a Featureless Ap-
proach to Pattern Recognition, Pattern Recognition
Letters, 18, 1997, pp. 1159±1166.) The results of
that paper allowed the type of distances to be more
general than Euclidean distances. In your case, do
the distances have to be Euclidean?

Duin: Not at all. I think that this is the nice
thing of this relational representation. These dis-
tances are just given. I did not say that these dis-
tances have to be Euclidean.

Raghavan: No, but for the second group of
techniques that you use, how well they can map,
while preserving the distances, depends on whether
the method itself can handle distances that are not
Euclidean.

Duin: No, the given distance matrix may be any
distance matrix. We map it in a new feature space
and there we use the Euclidean distance. But there
is no assumption about the given distances. Any
similarity measure can be used for it.

Kuncheva: You used 1000 objects and you have
over 600 features. I am wondering, have you tried
to experiment with these features to see how some
classi®ers, like linear and quadratic discriminant
classi®ers, work?

Duin: I did that, but I do not have the ®gures
available here. I think they are much worse be-
cause you have to compute covariance matrices in
a 649-dimensional feature space based on just 1000
objects.

Kuncheva: What would happen if you would
®rst reduce the feature space, to for instance 25
and then 50, and you would then use the same
methods, including random selection?

Duin: I did not do that, because my goal was
not to solve the feature space problem, but,
starting from a 1000 ´ 1000 matrix, to compare
various methods, given this relational representa-
tion.

Kanal: Are you saying that a bunch of objects is
randomly selected to represent those 1000 objects?
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Duin: Yes, the objects selected here are used for
representing all objects, to be used as a basis for
my representation. And I say that this basis for the
representation is not very sensitive to the particu-
lar method according to which these objects are
selected. It has something to do with the intrinsic
dimensionality of the original problem. In my ex-
ample, I select 50 objects if the intrinsic dimen-
sionality is something like 20. Any set of 50 objects
will represent the original set. And then all objects
are mapped into the feature space built by this set
of randomly selected objects. And thus, the train-
ing procedure of the classi®er still uses all original
objects. So it is a random selection of the repre-
sentation basis, not of the training set.

Raghavan: What is the rationale for showing
that the selected objects are in some way orthog-
onal to each other?

Duin: I treat the new feature space as a normal
feature space, to compute classi®ers. Some of the
methods are sensitive to the orthogonality of the
features, others are not.
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