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Abstract

This paper shows the use of a data domain description method, inspired by the support vector machine by Vapnik,

called the support vector domain description (SVDD). This data description can be used for novelty or outlier de-

tection. A spherically shaped decision boundary around a set of objects is constructed by a set of support vectors

describing the sphere boundary. It has the possibility of transforming the data to new feature spaces without much extra

computational cost. By using the transformed data, this SVDD can obtain more ¯exible and more accurate data de-

scriptions. The error of the ®rst kind, the fraction of the training objects which will be rejected, can be estimated

immediately from the description without the use of an independent test set, which makes this method data e�cient.

The support vector domain description is compared with other outlier detection methods on real data. Ó 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Most pattern recognition tasks deal with clas-
si®cation or regression problems. But there is a
third, less well-known extension of the classi®ca-
tion problem, the data domain description prob-
lem (also called one-class classi®cation). In domain
description the task is not to distinguish between
classes of objects like in classi®cation problems or
to produce a desired outcome for each input object
like in regression problems, but to give a descrip-
tion of a set of objects. This description should

cover the class of objects represented by the
training set, and ideally should reject all other
possible objects in the object space. The data do-
main description is used for outlier detection or
novelty detection, the detection of objects which
di�er in some sense signi®cantly from the rest of
the dataset.

Di�erent methods for data domain description
or outlier detection have been developed. When an
underlying statistical law for the outlying patterns
is assumed, this underlying distribution should be
estimated (Ritter and Gallegos, 1997). When
nothing about the outlier distribution can be as-
sumed (or if an insu�cient number of outlier ex-
amples is available), only a description of (the
boundary of) the target class can be made. Most
often a probability density of the data is estimated
and new test objects which are under some prob-
ability threshold will be rejected. For instance, in
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the paper of Tarassenko et al. (To appear), ano-
malities in mammographs are detected by applying
Parzen density estimation and a mixture of
Gaussians on the normal class. A drawback of
these density methods is that they often require a
large dataset, especially when high dimensional
feature vectors are used. Also problems may arise
when large di�erences in density exist: objects in
low density areas will be rejected although they are
legitimate objects.

In this paper, another method for data domain
description is presented and analyzed (the idea was
®rst presented in (Tax and Duin, 1999)). The
method is inspired by the support vector machines
by Vapnik (1995). For data domain description
not the optimal separating hyperplane has to be
found, but the sphere with minimal volume (or
minimal radius) containing all objects. First we
give a theoretical derivation of the basic method in
Section 2. In Sections 3 and 4 we focus on choices
for the parameters which are still free and look at
some characteristics of the methods. Experimental
results will be shown in Section 5, and we give
conclusions in Section 6.

2. Theory

Of a data set containing N data objects,
fxi; i � 1; . . . ;Ng, a description is required. We try
to ®nd a sphere with minimum volume, containing
all (or most of) the data objects. This is very sen-
sitive to the most outlying object in the target data
set. When one or a few very remote objects are in
the training set, a very large sphere is obtained
which will not represent the data very well.
Therefore, we allow for some data points outside
the sphere and introduce slack variables ni (anal-
ogous to (Vapnik, 1995)).

Of the sphere, described by center a and radius
R, we minimize the radius

F �R; a; ni� � R2 � C
X

i

ni; �1�

where the variable C gives the trade-o� between
simplicity (or volume of the sphere) and the
number of errors (number of target objects re-
jected).

This has to be minimized under the constraints

�xi ÿ a�T�xi ÿ a�6R2 � ni 8i; ni P 0: �2�
Incorporating these constraints in (1), we con-
struct the Lagrangian,

L�R; a; ai; ni� � R2 � C
X

i

ni

ÿ
X

i

aifR2 � ni ÿ �x2
i ÿ 2axi � a2�g ÿ

X
i

cini;

�3�
with Lagrange multipliers ai P 0 and ci P 0. Set-
ting the partial derivatives to 0, new constraints
are obtained:X

i

ai � 1; a �
P

i aixiP
i ai
�
X

i

aixi;

C ÿ ai ÿ ci � 0 8i: �4�
Since ai P 0 and ci P 0 we can remove the vari-
ables ci from the third equation in (4) and use the
constraints 06 ai6C 8i.

Rewriting Eq. (3) and resubstituting Eqs. (4)
give to maximize with respect to ai:

L �
X

i

ai�xi � xi� ÿ
X

i;j

aiaj�xi � xj�; �5�

with constraints 06 ai6C;
P

i ai � 1.
The second equation in (4) states that the center

of the sphere is a linear combination of data ob-
jects, with weight factors ai which are obtained by
optimizing Eq. (5). Only for a small set of objects
the equality in Eq. (2) is satis®ed: these are the
objects which are on the boundary of the sphere
itself. For those objects the coe�cients ai will be
non-zero and are called the support objects. Only
these objects are needed in the description of the
sphere. The radius R of the sphere can be obtained
by calculating the distance from the center of the
sphere to a support vector with a weight smaller
than C. Objects for which ai � C have hit the
upper bound in (4) and are outside the sphere.
These support vectors are considered to be out-
liers. We will discuss the parameter C in more
detail in the next section.

To determine whether a test point z is within the
sphere, the distance to the center of the sphere has
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to be calculated. A test object z is accepted when
this distance is smaller than the radius, i.e., when
�zÿ a�T�zÿ a�6R2. Expressing the center of the
sphere in terms of the support vectors, we accept
objects when

�z � z� ÿ 2
X

i

ai�z � xi� �
X

i;j

aiaj�xi � xj�6R2: �6�

3. Generalizing to other kernels

The method just presented only computes a
sphere around the data in the input space. Nor-
mally, data are not spherically distributed, even
when the most outlying objects are ignored. So, in
general, we cannot expect to obtain a very tight
description. Since the problem is stated completely
in terms of inner products between vectors (Eqs. (5)
and (6)), the method can be made more ¯exible,
analogous to (Vapnik, 1995). Inner products of
objects �xi � xj� can be replaced by a kernel func-
tion K�xi; xj�, when this kernel K�xi; xj� satis®es
Mercer's theorem. This implicitly maps the objects
xi into some feature space and when a suitable
feature space is chosen, a better, more tight de-
scription can be obtained. No explicit mapping is
required, the problem is expressed completely in
terms of K�xi; xj�.

Therefore, we replace all inner products (xi � xj)
by a proper K�xi; xj� and the problem of ®nding a
data domain description is now given by (see (5))

L �
X

i

aiK�xi; xi� ÿ
X

i;j

aiajK�xi; xj�; �7�

with constraints 06 ai6C;
P

i ai � 1. A test ob-
ject z is accepted when (see (6))

K�z; z� ÿ 2
X

i

aiK�z; xi� �
X

i;j

aiajK�xi; xj�6R2:

�8�

Di�erent kernel functions K result in di�erent de-
scription boundaries in the original input space.
The problem is to ®nd a suitable kernel function
K�xi; xj�. We discuss two choices: a polynomial
kernel and a Gaussian kernel.

The ®rst choice for kernel K�xi � xj� is the ex-
tended inner product: K�xi; xj� � �xi � xj � 1�d ,
where the free parameter d is the degree of the
polynomial kernel. As argued by Vapnik (1995),
this kernel maps the objects into the high dimen-
sional feature space by adding products of the
original features, up to degree d. (For example, a
2D vector �x1; x2� is mapped to �x1; x2; x1x2; x2

1; x
2
2�

when a polynomial kernel with d � 2 is used.)
This kernel does, in general, not result in good

tight descriptions. For higher degrees d, the in¯u-
ence of objects most remote from the origin of the
coordinate system increases and overwhelms all
other inner products. This e�ect is shown in Fig. 1
with a two-dimensional dataset containing 10
objects. For di�erent values of the degree
(d � 1; 10; 25) a sphere description is computed.

Fig. 1. Distance to the center of the hypersphere, mapped back on the input space for a polynomial kernel. The darker the color, the

smaller the distance. The white dashed line indicates the surface of the hypersphere. The small circles indicate support objects.
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The distance to the center of the sphere is plotted
in the original input space. The dashed white line
crossing the support vectors (indicated by the
small circles) is the boundary of the description.
The objects in the upper part are most distant from
the origin and although these objects are not the
most outlying objects in the data in two dimen-
sions, they become the support vectors when
higher degrees are used. Note that a large part of
the input space becomes accepted. This description
results in a very large and sparse sphere in the
original two-dimensional input space.

To suppress the growing distances for larger
feature spaces, a Gaussian kernel
KG�xi; xj� � exp�ÿ�xi ÿ xj�2=s2� is more appropri-
ate. Eq. (7) then becomes

L � 1ÿ
X

i

a2
i ÿ

X
i6�j

aiajKG�xi; xj�; �9�

and the acception rule, Eq. (8), becomes

ÿ2
X

i

aiKG�z; xi�6R2 ÿ CX ÿ 1; �10�

where CX only depends on the support vectors and
the ai and not on the test object z.

In Fig. 2, again a 2D arti®cial dataset contain-
ing 10 objects is shown. Now a support vector
domain description with a Gaussian kernel for
di�erent values of s is used. The width parameter s
ranges from very small (s � 1:0 in the leftmost
®gure) to large (s � 25:0 in the rightmost ®gure).
Note that the number of support vectors decreases
and that the description becomes more sphere-like.

We can derive explicit solutions for Eq. (7) for
the two di�erent extreme situations, one for very
small values and one for very large values of s.
For very small s, KG�xi; xj� ' 0; i 6� j and L �
1ÿPi a

2
i . This is maximized when ai � 1=N and L

becomes 1ÿ 1=N . This is similar to the Parzen
density estimation, where each object supports a
kernel (see Eq. (10)). All distances to the center of
the sphere become 1ÿ 1=N .

For very large s, KG�xi; xj� � 1 and L �
1ÿPi a

2
i ÿ

P
i6�j aiaj. This is maximized when all

ai � 0 except for one aj � 1 and all distances to the
sphere center become 0. This in®nitely large sphere
will not be obtained in practice and s will not be
large enough to give equal KG�xi; xj� for all pairs
i; j. In the rightmost subplot of Fig. 2 a realistic
limit situation is plotted. The data description is
again the smallest sphere which covers the com-
plete dataset, without outliers. A Taylor expansion
of Eq. (9) shows that when higher orders are ig-
nored, Eq. (5) is obtained (up to a scaling and
o�set factor).

In the case of moderate values of s (middle plot
in Fig. 2) just a fraction of the objects become
support objects. Eq. (10) shows that in this case an
edited and weighted Parzen density estimation is
obtained. This does not estimate the total density
of the data, but tries to describe just the boundary
of the dataset.

The parameter C gives the upper boundary for
the parameters ai and thus limits the in¯uence of
the individual support vectors on the description,
Eq. (10). When an object x1 obtains ai � C, the
description will not be adapted any further

Fig. 2. Distance to the center of the hypersphere, mapped back on the input space for a Gaussian kernel. The darker the color, the

smaller the distance. The white dashed line indicates the surface of the hypersphere. The small circles indicate the support objects.
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towards this object and it will stay outside the
sphere. Because of the constraints

P
i ai � 1 and

ai P 0, only the choices for which C can have any
in¯uence on the solution of Eq. (9) is when
1=N 6C6 1. For C < 1=N no solution can be
found because then the constraint

P
i ai � 1 can

never be met, while for C > 1 one can always ®nd
a solution (ai's are always less or equal to 1).

When C is restricted to small values, the cost of
being outside the sphere is not very large and a
larger fraction of the objects is allowed to be
outside the sphere. In practice the value of C is not
very critical. In the experiments of this paper,
C � 0:25 is chosen and in none of the cases an
outlier is detected in the target class. When a
smaller C � 0:2 or a larger C � 0:4 is used, the
same results are obtained.

4. Generalization

To get an indication of the generalization or the
over®tting characteristics of the SVDD, we have to
get an indication of (1) the number of target pat-
terns that will be rejected (errors of the ®rst kind)
by this description and (2) of the number of out-
lying patterns that will be accepted (errors of the
second kind).

We can estimate the error of the ®rst kind by
applying the leave-one-out method on the training
set containing the target class (Vapnik, 1995).
When we leave out an object from the training set
which is not a support object, the original solution
is found and all training objects will be found.
When a support object is left out, the optimal
sphere description can be made smaller, because
this support object is on the boundary of the
sphere. This left-out object will then be rejected,
while the rest of the training objects will still be
accepted (because the method is trained on these
data). Thus, the error can be estimated by

E�P �error�� � #SV
N

; �11�

where #SV is the number of support vectors.
When we use a Gaussian kernel, we can regu-

late the number of support vectors by changing the
width parameter s. Therefore, we can also set the

error of the ®rst kind. When the number of sup-
port vectors is too large, we have to increase s,
while when the number is too low, we have to
decrease s. To check how well the estimate of
Eq. (11) is, we plotted in Fig. 3 the estimation of
the errors of the ®rst kind as a function of the
width parameter s. The method was applied to a
two-dimensional dataset containing 10 objects.
Also the error, estimated on an independent test
set of 100 objects, is shown. We can conclude that
this estimate works well.

So when a description of a dataset is required,
we can set beforehand a bound on the expected
rejection rate of the target data. The Lagrangian
from Eq. (9) is solved and the expected error for
this solution is obtained via Eq. (11). When this
error is too large, the width parameter s is in-
creased, or when this error can still increase, the
width parameter s is decreased. This guarantees
that the width parameter in the SVDD is adapted
for the problem at hand, given the error.

The chance that outlying objects will be ac-
cepted by the sphere description, the error of the
second kind, cannot be estimated by this measure.
In general, only a good description of the target
class in the form of a training set is available. All
other patterns are considered outliers. To get an
estimate for the error of the second kind, data

Fig. 3. Comparison between the fraction of objects which are

support objects and the fraction of test points which is rejected,

with respect to the parameter s. The target class consists of the

10 objects shown in Figs. 1 and 2.
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around the original data set should be created and
tested. This method then requires a way of ob-
taining or creating data around the training data,
but not in the training set. Also the number of test
patterns should be su�ciently high for a reason-
able estimate, which can be a problem in higher
dimensional feature spaces.

In the experiments in this paper we circumvent
this problem by using classi®cation problems for
testing the method. From the classi®cation tasks
we take one class as being the outlier class, and all
other classes will be used as the target class. In this
way arti®cial outliers can be constructed. This
means that a performance bias is introduced.
These classi®cation problems often contain over-
lapping classes and by using the classi®cation
problems in this way, the performance of the
outlier methods will be lower than that of normal
classi®cation methods for the classi®cation task.
Still, it gives an indication of the performances
when di�erent outlier methods are compared.

5. Experiments

The SVDD method is compared with four other
outlier detection methods: normal density estima-
tion, Parzen windows, a k-nearest-neighbor dis-
tance comparison and an instability method.
These methods are described in more detail in (Tax
and Duin, 1998). The ®rst two methods rely on a
density estimation of the data. The third method
compares the distance from a test object x to its
nearest neighbor NNtr�x) in the training set with
the distance from this nearest neighbor NNtr�x� to
its nearest neighbor NNtr�NNtr�x�� in the trainset.
The instability method is specially designed for
outlier detection in classi®cation tasks. By training
several simple classi®ers, such as linear classi®ers,

on bootstrapped versions of the training set, one
obtains variations in the classi®er outputs. Objects
which experience large variations in these outputs
are likely to reside in low density or low con®dence
areas and will be rejected.

These methods will be compared to the SVDD
method with a Gaussian kernel. The width pa-
rameter s is found by using the procedure men-
tioned in Section 4. The variable C is set to 0:25.
On the basis of the performance on the training set
samples, we set a target rejection threshold value
of 10% on the di�erent measures. This relatively
large value is chosen, because some datasets con-
tain a small number of objects, and using a 10%
rejection rate ensures that some of the target ob-
jects will indeed be rejected. After that the per-
formance on a test set containing the target class
and one containing the outlier class is measured.
This means that the optimal performance is
reached when all outlying objects are rejected and
90% of the target class is accepted.

All methods are applied to a set of standard
datasets taken from the UCI Machine Learning
Dataset Repository (Blake et al., 1998). The da-
tasets considered are listed in Table 1. As ex-
plained in the previous section, one of the classes is
considered as the outlier class, the rest is target
class. To estimate the errors (of the ®rst and the
second kind) n-fold cross-validation with n � 5 is
used.

In Table 2, the performances of the outlier de-
tection methods on all UCI datasets are shown.
For each method, the performance on a target
validation set (left) and an outlier test set (right) is
shown. Each of the classes is outlier class once
(indicated in the ®rst column). Results on the
balance-dataset already show that the estimation
of the errors of type 1 on the training set is not
very precise for the Parzen density estimation and

Table 1

UCI datasets used for the evaluation of the data description methods

Name # Objects # Classes # Features

Balance-scale 625 3 4

Breast-cancer-Wisconsin 699 2 9

Ionosphere 351 2 34

Iris 150 3 4

1196 D.M.J. Tax, R.P.W. Duin / Pattern Recognition Letters 20 (1999) 1191±1199



the kNN method. In both cases the error on the
`target' class is far larger than the prede®ned 0:1.
All methods perform poorly on the case in which
the second class is considered outlier. This can be
understood by looking at the distribution of the
data, where class 2 is between classes 1 and 3. Only
the instability method is able to reject objects from
the second class.

In the breast-cancer data set, the second class is
clearly easier to distinguish than the ®rst class.
Looking at the origin of the data, this means that
by describing the benign class, the malignant class
can be rejected quite well. All methods perform
well in describing class 1, except for the instability
method. Since the original dataset contains only
two classes, the instability method could not be
used. When one class is considered as the outlier
class, the instability method cannot train simple
classi®ers on the remaining class. Also visible is
that the Parzen method overtrains heavily and
performs poorly when class 1 is the outlier class.
The SVDD performs best overall.

In the ionosphere dataset, the Parzen density
estimation again overtrains and the instability
method cannot be used because only two classes
are available. From the results we see that class 1 is
almost Gaussian distributed and class 2 is scat-

tered around it. The SVDD cannot distinguish one
class 2 object from class 1.

Finally, the performance of the outlier methods
are applied on the iris dataset. Here, all methods
work reasonably well, which indicates that the
data distributions of the classes are well clustered.
Only the Parzen density estimation slightly over-
trains.

From these results we can conclude that the
SVDD works comparably and often better than
the other outlier methods, from the simple
Gaussian distribution to the nearest neighbor
method. Another advantage of the SVDD is that
an estimate of the error on the target set can be
obtained immediately by looking at the fraction of
support vectors. This guarantees that the scale of
the SVDD, set by the width parameter s, is ad-
justed to the data and no extra leave-one-out es-
timation is required (like in the Parzen estimation).

6. Conclusions

Data domain description is an important tool
for robust and con®dent classi®cation. Data which
do not resemble a target class should be rejected.
In this paper we propose a sphere shaped data

Table 2

Outlier detection performances on the UCI datasetsa

Class no. Set size Gauss Parzen kNN Instab SVDD

Balance data

1 337, 288 0.13, 0.74 0.46, 1.00 0.00, 0.65 0.12, 0.73 0.14, 0.89

2 576, 49 0.11, 0.30 0.40, 0.51 0.00, 0.00 0.08, 0.76 0.12, 0.13

3 337, 288 0.12, 0.74 0.40, 1.00 0.00, 0.65 0.12, 0.76 0.11, 0.88

Breast cancer data

1 241, 458 0.14, 0.46 0.91, 1.00 0.10, 0.17 0.00, 0.00 0.09, 0.94

2 458, 241 0.11, 0.99 0.28, 1.00 0.07, 0.45 0.00, 0.00 0.10, 0.99

Ionosphere data

1 126, 225 0.36, 0.06 0.91, 0.98 0.11, 0.03 0.00, 0.00 0.13, 0.00

2 225, 126 0.11, 0.90 0.94, 1.00 0.09, 0.67 0.00, 0.00 0.11, 0.90

Iris data

1 100, 50 0.13, 1.00 0.33, 1.00 0.12, 1.00 0.11, 0.46 0.11, 1.00

2 100, 50 0.13, 0.93 0.30, 0.97 0.09, 0.49 0.12, 0.15 0.11, 0.40

3 100, 50 0.12, 0.91 0.43, 1.00 0.09, 0.51 0.14, 0.58 0.09, 0.90

a The ®rst column gives the class which is considered as outlier. In the second column, the target (left) and outlier (right) set sizes are

given. In the other columns, the leftmost number in each column gives the performance for a test set containing the target class and the

rightmost number the performance on an outlier set containing the outlier class.
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description which does not have to make a prob-
ability density estimation. The sphere description
depends on a few target objects, the support ob-
jects and new test objects only have to be com-
pared with these support objects by an inner
product or some more general kernel function. By
adapting the kernel function, this method becomes
more ¯exible than just a sphere in the input space.
The SVDD also allows for target objects not in-
cluded in the sphere description. An extra pa-
rameter C is introduced to give the trade-o�
between the number of errors made on the training
set and the size of the sphere description. In
practice, the size of this parameter is not very
crucial for ®nding a good solution.

In this paper two kernel types are considered:
the polynomial and the Gaussian kernel. In gen-
eral, the polynomial kernel does not give tight
descriptions of the training data. On the other
hand, the Gaussian kernel seems to work very
well. In the SVDD using a Gaussian kernel, an-
other free parameter, the width of the kernel s, can
be adapted. By choosing di�erent extremes for this
width parameter, the sphere method obtains more
or less ¯exible descriptions. For very small values
for s, a Parzen density estimation is obtained. In
that case, all target objects become support ob-
jects. For very large values of s, just one prototype
for the complete data set is used and almost the
complete training set can be disregarded. Apply-
ing a moderate value for the width parameter, an
edited and weighted Parzen estimation is ob-
tained.

An extra feature of this SVDD method is that
the error on the target class can be estimated im-
mediately by calculating the fraction of target
objects which become support objects. Setting the
error on the training set beforehand, the width s
can be set such that the fraction of support objects
is equal to this error. Since the SVDD focuses on
the boundary description and not on the complete
data density, the required number of objects is
smaller than for, e.g., the Parzen density estima-
tion. We can conclude that the SVDD gives both
an e�cient and robust method for describing a
dataset.

For further reading, see (Ypma and Pajunen,
1999).

Discussion

Gimel'farb: Can you tell why the SVDD ap-
proach works so poorly ? Since it depends on your
choice of the kernel function, then if s� 0, it is
simply a nearest neighbor classi®er. And such a
nearest neighbor classi®er, in this case, cannot
perform so poorly.

Tax: No, but I said that the error on my target
set is about 10%. So, I tune my parameters in such
a way that I will reject about 10% and 10% of my
training set will be support vectors. In that case,
the description will be di�erent from the normal
Parzen estimator. It will be a more crude approx-
imation of the boundary. If I had more points, it
would be comparable, better than the Parzen es-
timator.

Gimel'farb: One more question: why do you
need to restrict yourself to single sphere approxi-
mation, because by using the earlier results of
Vapnik, you can approximate any distribution of
your training points by a minimal number of
spheres, and in that case, you have a much better
description.

Tax: First of all, if you have a multi-modal
distribution, for instance, three Gaussian distri-
butions, and if you have enough training points, it
will automatically ®nd three spheres. If you do not
have enough data and you still restrict yourself to
an error of 10% on your target set, it will still give
you just one complete blob. So it only ®nds that
solution for which it ®nds enough justi®cation in
the data. If you are very strict on the number of
errors you make, it will give very broad, very crude
approximations.

Gimel'farb: But this means that you should not
restrict yourself to a ®xed error on the target set,
because in that case, the result depends on your
data. Sometimes, if you ®x the rejection rate, then,
even for beautiful data, you intentionally obtain
bad results.

Tax: True, but if you know that you have three
clusters, I would not recommend this method. I
would then rather take three Gaussians. If that is
the prior knowledge that you have, then use it.
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Kanal: You might assume one, two, three clus-
ters, and so on, to see which assumption gives the
best results.

Tax: But then, the tricky part is always to ®nd a
good threshold value. And here, I ®nd my
threshold on the basis of the number of support
vectors, and that gives a more direct link to how
good or bad the description is. From the SVDD,
you cannot ®nd directly the number of clusters in
the data.
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