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Abstract: The Receiver Operator Characteristic (ROC) plot allows a classifier to be evaluated and
optimised over all possible operating points. The Area Under the ROC (AUC) has become a standard
performance evaluation criterion in two-class pattern recognition problems, used to compare different
classification algorithms independently of operating points, priors, and costs. Extending the AUC
to the multiclass case is considered in this paper, called the volume under the ROC hypersurface
(VUS). A simplified VUS measure is derived that ignores specific intra-class dimensions, and regards
inter-class performances only. It is shown that the VUS measure generalises from the 2-class case, but
the bounds between random and perfect classification differ, with the lower bound tending towards
zero as the dimensionality increases. A number of experiments with known distributions are used
to verify the bounds, and to investigate a numerical integration approach to estimating the VUS.
Experiments on real data compare several competing classifiers in terms of both error-rate and VUS.
It was found that some classifiers compete in terms of error-rate, but have significantly different VUS

scores, illustrating the importance of the VUS approach.
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1. INTRODUCTION

A very active area in pattern recognition has been the
consideration of classifier design and evaluation in less
well-defined environments e.g. undefined or varying
prior probabilities [1], or poorly defined costs [2]. A
primary analysis tool developed for this domain is Re-
ceiver Operator Characteristic (ROC) analysis (3], al-
lowing a classifier to be inspected over a range of possi-
ble conditions. A popular scalar performance measure
that has emerged is the Area Under the ROC (AUC)
[4], allowing classifiers to be evaluated independent of
priors, costs, and operating points. The AUC measure
is however only applicable to the 2-class case. Consider-
ing the multiclass extension of this measure has become
a topic of interest more recently, often referred to as the
Volume Under the ROC hyper-Surface (VUS). Formal-
isation and computational aspects are more complex,
but nevertheless a number of steps have been taken
to generalise the AUC. In [5], a simplified VUS is es-
timated from a multiclass classifier by considering the
AUC between each class, and all other classes (a one vs
all approach), resulting in a computationally tractable
algorithm O(C'), where there are C' classes. This mea-
sure is however inherently dependent on class priors
and costs, and ignores higher-order interactions. In [6],
a similar estimation of the VUS is proposed that aver-
ages the AUC between all pairs of classes, which has
a higher complexity of O((C' — 1)(C —3)(C —5)...1).
The exact theoretical extension to the VUS in the 3-
class case has been considered in [7] and [8]. In [9]
the generalised VUS has been studied, providing cal-

culations/estimations of the performance bounds of the
VUS as a function of an increasing number of classes C'.
This involved comparing performance between perfect
(separable) classifiers and random classifiers (random
performance). This non-trivial study provides an im-
portant step in understanding the VUS performance
measure. A related paper was presented in [10], which
argued that since the VUS of a random classifier ap-
proaches that of a perfect classifier as C' increases, the
VUS may not in fact be a very useful performance mea-
sure.

Previous works have not gone into detail as to how the
VUS can practically be applied to an arbitrary set of
classifiers in realistic scenarios. In this paper we con-
sider the practical implementation of the VUS, applied
to the simplified scenario in which the overall class per-
formances are considered, ignoring specific intra- and
inter-class errors. This type of simplification restricts
the VUS analysis, but nevertheless may be suitable for
some problems e.g. where we are still interested in all
operating points in terms of overall class performance,
but the class to which an erroneous object is assigned is
arbitrary (hand-written digit recognition/ face recogni-
tion are two possible applications). This simplification
ensures that good classifiers tend to result in higher
VUS scores than poorer ones, irrespective of C' (as will
be shown), resulting in an alternative measure in line
with the argument in [10]. The approach presented
here provides a practical methodology for computing
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the VUS for problems with low C*!, demonstrated via
a number of experiments. In Section 2 the notation is
presented, followed by a brief formalisation of multi-
class ROC analysis, and the well-known AUC in Sec-
tion 3. In Section 4 the simplified VUS is presented.
First performance bounds are derived as a function of
C. A numerical integration procedure is then proposed
in order to resample the irregularly-spaced multiclass
ROC, allowing for accurate estimations of the VUS. A
number of problems involving known distributions are
used to verify the bounds and the methodology. In Sec-
tion 5 a number of experiments involving real data are
presented, demonstrating practical usage of the VUS
measure in 3- and 4-class problems. Finally conclu-
sions are presented in Section 6.

2. NOTATION

We use a framework similar to [11], in which obser-
vations x are to be classified into one of C classes,
wi,ws,...,we. HBach class w; has a class-conditional
distribution p(x|w;), and prior probability P(w;). Class
assignment is based on Bayes rule, which assigns mem-
bership to the highest posterior output:

P(wilx) =

P(wi)p(x|w;) (1)

P(w1)p(x|w1)+P(w2)p(x|w2)+... P(wo)p(x|we)

Thus x is assigned according to:

argmaz$_| P(w;|x) (2)
In the practical case in which class conditional distri-
butions are usually unknown, these are typically esti-
mated from representative examples that are assumed
to be randomly drawn from the true distribution, and
the same framework can be used. A given classifier
is analysed in detail via the C' x C' dimensional nor-
malised confusion matrix =, in which diagonal elements
represent the overall performance of each class, and off-
diagonal elements the errors related to each class. Each
element (4, j) of = is denoted §; ;. = can be written as:

estimated
| w1 w2 . wc
wi | &1 &2 .. &c

true wy | &1 &2 ... &o

we | e Eoe2 IJeXe,
Table 1: Defining the multi-class normalised confusion
matrix =.

Each element &; ; is computed as follows:

T / Do) Iy (x)d 3)

1 Extension to the high C' case remains computationally infeasi-
ble, and thus our approach is restricted to low C problems e.g.
C = 3 to 6. Simpler approaches such as [6] are the only candi-
dates for high C.

The indicator function I;;(x) specifies the relevant do-
main (with the second line specifying performances on
the diagonal elements):

1 ifp(w]“x) > p(wk|x) Vk, k 7é Js %j
Lif p(wilx) > pleplx) Vh, k £, i = j

0 otherwise

Lij(x) =

(4)
In the practical case, &; ; is estimated via representative
test sets, counting the number of objects classified to
each element, normalised by the number of objects in
that class.

3. MULTI-CLASS ROC ANALYSIS

It is important to understand that the confusion matrix
actually only indicates the performance of a trained
classifier at a single operating point i.e. different
operating points result in different confusion matri-
ces. The operating point is varied by weighting the
posterior output of the classifier by the vector & =
[01, P2, ..., dc], d; > 0,Vi, which is analogous to clas-
sifier thresholds. Thus Equation 2 is modified as
argmaz$_,¢; P(w;|x). All combinations of ® result in
all possible operating points of the classifier, which is
the multiclass ROC. Note that there are in fact only
(C — 1) degrees of freedom for a trained classifier, so
one weight can be held constant, or normalised by
the others. After applying all combinations of ®, a
C?—dimensional operating characteristic results, with
each confusion matrix element attributed to a new di-
mension. Note that only (C? — C) dimensions are re-

quired, since:
j=C
Ei,i =1- Z Ei,j (5)
j=1,j#i

The two class case is very well known, with two off-
diagonal elements resulting (£1,2 and 21, popularly
known as the false negative- and false positive-rates),
and two diagonal elements (£11 and &2 2, the true pos-
itive and true negative-rates). This operating charac-
teristic has well understood characteristics and bounds
[4], [1]. Varying the classifier threshold results in a 1D
ROC curve. Figure 1 show ROC plots for three differ-
ent scenarios, ranging from a perfect/separable classi-
fier (A), to a classifier with some overlap (B), and fi-
nally to the random classification case (C). Considering
the area consumed by each classifier allows performance
to be inspected independent of priors, costs, and oper-
ating points. In this 2-class case, perfect classification
results in a larger area, bounded by 1, and poor clas-
sification in a smaller area, bounded by 0.5 (since the
random classifier bisects the unit square). This area
is known as the Area Under the ROC (AUC). Note
that traditionally the ROC is plotted between £; ; and
2.1, but Figure 1 results in an equivalent performance



measure, and is extensible to the multiclass case.
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Figure 1: Comparing 3 different 2-class ROC plots.
A’ depicts perfect classification, 'B’ is a classifier with
some overlap, and ’C’ is a random classifier.

The AUC can be written as:

AUC = /52,26151,1 (6)

The AUC can be applied to the realistic scenario by
a numerical integration scheme. This work uses the
trapezoidal integration rule. The AUC can also be es-
timated by counting the number of times two arbitrary
objects in the test set from both classes are correctly
ranked by the classifier, and normalising.

4. SIMPLIFIED VOLUME UNDER THE ROC

Extending the AUC to the multiclass case, i.e. the vol-
ume under the ROC hypersurface, can be achieved by
measuring the volume bounded by the operating char-
acteristic. In this case we consider only ROC dimen-
sions pertaining to diagonal elements of the confusion
matrix. The simplified VUS can be written as:

VUS:/...//gc,cdgc_l,c_ldgc_z,c_g...dgl,l
(7)

Thus the simplified measure considers the C'—dimensional

operating characteristic of a C'—dimensional problem.
This measure allows a classifier to be evaluated over
all operating points responsible for the ROC dimen-
sions corresponding to the diagonal confusion matrix
elements. If these performances only are considered,
the VUS is similar to the AUC in that better classi-
fiers will result in a high VUS, and poorer classifiers
in a lower score. However, before the VUS is blindly
applied, it is important to characterise and understand
the performance bounds between random and perfect
classifiers.

4.1. Bounds as a function of dimensionality

Considering the 3-class case first, the simplified ROC
dimensionality is 3, between the dimensions &;1,&2,2,
and £33. A random classifier produces the ROC de-
picted in Figure 2. A more effective classifier (or more
separable problem) is depicted in Figure 3, showing
how the VUS increases.

ROC plot

Figure 2: Random classification performance of the
simplified 3-class ROC.

ROC plot

Figure 3: ROC plot for a 3-class problem with partially
overlapping distributions.

In fact, the VUS approaches 1.0 as the classification
becomes perfect. The VUS occupied by the random
classifier can be found geometrically by computing the
volume of the tri-rectangular tetrahedron formed under
the surface, which is simply 151,152’253’3 = %. Thus
the bound has altered from 3 in the two-class case,
to % = 0.16666 in the 3-class case. Generalising the
bounds to C classes is more difficult geometrically. A
more extensible approach is to formalise the random
ROC as a hyper-polyhedron, as proposed in [9]. Each
vertex v; of the hyper-polyhedron can easily be defined
as (note that the origin is always included as a vertex,



and there are C' points per vertex):

vy, 0 0 0 0
va 1 0 0 0
v3 0 1 0 0
va 0 0 1 0 (8)
VCc+1 00 0 ... 1

As in [9], the optimised QHull [12] algorithm is used to
estimate the volume occupied by the hyper-polyhedron.
The following lower bounds result, up to C' = 12, show-
ing how the lower bound approaches zero with an in-
creasing C. In fact, it can be seen that the lower bound
is é, which is proven in Appendix A2:

Estimated VUS
0.50000000001826
0.16666666668765
0.04166666667598
0.00833333333563
0.00138888888932 ©)
0.00019841269853

0.00002480158732
0.00000275573193
10 | 0.00000027557319
11 | 0.00000002505211
12 | 0.00000000208768

© oo ok w0

4.2. Estimating the VUS for general classifiers

In the practical situation in which a sparse set of points
are given, representing the multiclass ROC, a different
approach is required. Since the ROC surface is derived
by the nature of the problem and classifier, it cannot be
computed analytically. A more appropriate approach
to estimating the VUS is to use a numerical integra-
tion approach. The inherent uneven sampling of the
ROC is converted to an even form via linear resam-
pling and interpolation. The trapezoidal rule is then
used to estimate the volume (in C'—dimensions), with
the following results as a function of r, the number of
ROC steps used:

2 The bounds of the simplified VUS suggest this method is a good
alternative to the true unsimplified VUS (regarding the argument
given in [10] pertaining to poor resolution between perfect and
random classifiers for high dimensions, bringing the validity of
the VUS into question). This is because in the simplified case
for high C, good classifiers tend to 1, and poor ones tend to 0.

C r | VUS estimation | Actual VUS
3 50 0.1667014 0.1666666
3 | 100 0.1666752 0.1666666
4 |1 50 0.0417014 0.0416667
4 1100 0.0416752 0.0416667
5| 50 0.0083507 0.0083333
5 1 100 0.0083376 0.0083333
6 20 0.0014275 0.0013889
6 40 0.0013980 0.0013889

These results show that the numerical integration ap-
proach provides a good approximation of the true VUS,
and that as expected a higher step size results in higher
accuracy.

4.3. Ezperiments with known distributions

In order to judge the numerical VUS approach and
verify the bounds, a number of controlled experiments
are conducted, consisting of generated Gaussian classes
with known parameters. The first set of experiments
consist of 3-class Gaussian problems with classes w1,
wo, and ws, in which the means are varied, and the
variances held at unity. The means are varied such that
the problems range from near-separable problems, to
near-random. Similarly the second set of experiments
involve varying the means of 4 Gaussian classes. Ta-
bles 2 and 3 depict the results for the 3- and 4-class
cases respectively, also showing r (a higher resolution
was required as the distributions approached complete
overlap). In Figure 4, the distributions used in the 2nd
and 4th 4-class experiments are shown, demonstrating
how class overlap was increased.

Means r | VUS est.
—0.05;0.0;0.05 | 200 | 0.16876
—0.3;0.0;0.3 100 | 0.24140
—0.5;0.0;0.5 100 | 0.31428 (10)
—1.0;0.0;1.0 100 | 0.51214
—1.5;0.0;1.5 100 | 0.70597
—4.0;0.0;4.0 100 | 0.98582

Table 2: Results for 3-class experiments with known
distributions.

Means r | VUS est.

—0.15; —0.05;0.05;0.15 | 70 | 0.05688
—0.75;—0.25;0.25;0.75 | 50 | 0.07782

—1.00; —0.33;0.33;1.00 | 50 | 0.19972 (11)
—1.50; —0.50;0.50; 1.5 | 50 | 0.33097
—2.25;—0.75;0.75;2.25 | 50 | 0.57990

—3.00; —1.00;1.00;3.0 | 50 | 0.75451

Table 3: Results for 4-class experiments with known
distributions.

These experiments verify that the VUS approach used
does make intuitive sense, since it can be seen that as
the problems vary from the separable to the random
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Figure 4: Demonstrating the 2nd and 4th experiment
in the 4-class case.

case, the VUS decreases accordingly. For highly over-
lapping cases, the two sets of experiments demonstrate
a VUS that approaches the predicted lower bounds.

5. EXPERIMENTS

The VUS methodology is demonstrated in real settings
by comparing a number of competing classifiers over a
number of different problems. The first group of exper-
iments consist of 3-class problems, with the following
datasets used: Banana is a 2-dimensional dataset con-
sisting of a Banana-shaped class [13], a Gaussian dis-
tributed class, and a bimodal Gaussian class, which are
all overlapping, with 5073 objects generated in total.
The Sign dataset [14] consists of images of 3-classes of
road-signs, with a total of 381 objects. The Sat dataset
[15] consists of 6435 multi-spectral values of a satellite
image, with 36 dimensions (4 spectral bands in a 9
pixel neighbourhood). Classes 1, 3, 5 and 6 have been
grouped together into a single class, forming a 3-class
problem together with classes 2 and 4. The second
group of experiments consist of 4-class problems. The
Vehicle dataset [16] consists of 846 objects of vehicle
silhouettes from 4 vehicle types, and the Digits dataset
consists of examples of ten handwritten digits, originat-
ing from Dutch utility maps (available from [16]). In
this dataset, Fourier components have been extracted
from the original images, resulting in a 76-dimensional
representation of each digit. Digits ’3’, ’6’, and 'Y’
have been extracted, and the remaining digits grouped
into a single class. The experimental methodology in-
volves rotation of the data using a randomised hold-

out method in which 80% of the data is used in train-
ing, and the remainder for testing, repeated 10 times.
Two performance measures are compared, namely the
well-known equal-error rate (priors inherent to dataset
used), and the simplified VUS measure. Results are
compared statistically via a 2-way ANOVA (ANalysis
Of VAriance) scheme, with significance judged via a
p— value of 0.995. In each experiment, a number of
classifiers are compared, with the following abbrevia-
tions: sc is where unit-variance scaling of the data is
used; pca is a principal component feature extraction
followed by the number of components used; fisher and
nlfisher are the Fisher and non-linear Fisher projec-
tions; nme, ldc, and gdc are nearest-mean, Bayes-linear,
and Bayes-quadratic classifiers respectively; mogc is a
Bayes mixture of Gaussians classifier followed by the
number of mixtures used per class; knnd is a 3-nearest
neighbour classifier; svc p is a support vector classifier
with a polynomial kernel, followed by the order of the
polynomial.

The 3-class table presents the first set of results. The
Banana dataset shows that the VUS scores tend to
track the equal error scores, for example the nmc clas-
sifier has a high error, and significantly lower VUS than
the other classifiers. An interesting result can be seen
for the Sat case, comparing the second and third mod-
els. In this case both classifiers have the same (statis-
tical) error-rate, but significantly different VUS scores
(F-value of 275), showing that the third model is a
better choice on average over all operating points. In
the Sign experiments, similar VUS scores result for all
classifiers.

3-class Classifier Error vUus
Banana | se-peat nme 0.329(0.004) | 0.667(0.083)
se-moge2,2,1 0.058(0.003) | 0.990(0.002)
sc-qdc 0.077(0.004) | 0.970(0.006)
se-lde 0.091(0.004) | 0.964(0.007)
Sat knn3 0.064(0.002) | 0.911(0.020)
lde 0.111(0.001) | 0.729(0.015)
qde 0.108(0.002) | 0.862(0.012)
moge2,1,2 0.099(0.002) | 0.866(0.012)
Sign sc peas sve p2 0.115(0.018) | 0.948(0.023)
se-pea10 mog2,2,2 | 0.075(0.003) | 0.946(0.025)
pead mog2,2,2 0.099(0.011) | 0.954(0.019)
peas qde 0.179(0.020) | 0.945(0.023)

Table 4: Experimental results on 3-class problems.

Next the 4-class experiments are considered. A few in-
teresting observations can again be made, for example
the first and second classifiers have competing error-
rates, but significantly different VUS scores. It appears
the linear classifier was a far better fit to the data than
the fisher-nmc model, which only performed well for
some operating points. Finally in the Digits case, the



VUS tended to track the error-rates. It can be seen
that some classifiers perform very well, approaching a
VUS of 1, whereas others are poor.

4-class | Classifier Error vUus
Vehicle | fisher nme 0.218(0.007) | 0.512(0.037)
lde 0.219(0.006) | 0.714(0.035)
ade 0.150(0.010) | 0.834(0.036)
sc-sve p2 0.164(0.007) | 0.794(0.022)
sc-sve p3 0.187(0.009) | 0.727(0.039)
nifisher qde 0.208(0.005) | 0.724(0.041)
Digits peal0 mogl,1,1,3 0.119(0.004) | 0.985(0.008)
peals mogl,1,1,3 0.114(0.003) | 0.955(0.007)
peas mogl,1,1,3 0.133(0.003) | 0.956(0.008)
peal0 qde 0.127(0.004) | 0.978(0.006)
pealo lde 0.211(0.005) | 0.704(0.041)
( )

0.158(0.003) | 0.857(0.024

nlfisher mogel,1,1,3

Table 5: Experimental results on 4-class problems.

The experiments showed the usefulness of the VUS ap-
proach in the multiclass case, clearly showing examples
where the VUS was required to perform better model
selection for classifiers that competed from an equal-
error perspective.

6. CONCLUSIONS

This paper considered the extension of the AUC
measure to the multiclass case, termed the wvolume
under the ROC hypersurface. A simplified exten-
sion was considered that evaluates the VUS over the
C—dimensional ROC surface pertaining to diagonal el-
ements of the confusion matrix only, thus ignoring spe-
cific inter- and intra-class performances. This allows
for a measure that generalises from the 2-class case, in
which high scores result for good classifiers, and low
ones for poor ones. It was seen that the VUS bounds
vary as a function of the ROC dimensionality, with the
lower bound tending to 0 with high dimensionality. A
few experiments using known distributions verified the
bounds, as well as a proposed numerical integration
approach to estimating the hyper-volumes. Finally a
set of real experiments were performed that compared
equal-errors to VUS scores for a number of compet-
ing classifiers. It was found that poor error rates often
lead to poor VUS scores, but in some cases competing
classifiers in terms of error-rate are not competing in
terms of VUS, implying that some classifiers perform
better on average over all operating points than others.
This work is considered useful to problems involving a
low number of classes, restricted by the computational
complexity of the ROC generation, but may neverthe-
less be useful for many real problems.
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A. APPENDIX: PROOF OF LOWER SIMPLIFIED
VUS BOUND

Figures 1 and 2, graphically depicted a random 2-class
and 3-class ROC plot. We refer to the volume con-
sumed by a random classifier as the lower bound. In
the 2-class case, the lower bound can be written as in
Equation 12, since &3 2 is the straight line 1 —&; 5.

AUCTandom = fo 51 1 dfl 1
= [sm - 551,1] (12)
I 0

In the 3-class case, the Voluzme can be computed an-
alytically by considering the volume under the plane
1- 51,1 - 52,21

VUSrandom = fo (L — 611 — a,2)dEn pdEr
1f 51 1)2dé1 1

3

O =0 =

13
Similarly, the 4-class case considers the volume urgdel)r
the hyperplane 1-— 5171 — 5272 — 53732
VUSrandom -
fo e TSR (] g £y — £33)dEs 3dEn 2dEr
S0 - o dndess

1-¢611

Iy {( — &1 —&22) } déi 1

0

(14)

As C increases, it can be seen that the VUS calculation

can be simplified by using the following well-known in-
tegration rule recursively:

(ax + b)nt1

= 7 -1 15

s # (15)

The bound for any C' can then be computed as follows:

VUSrandom -
f 1 11 1 1,1—82,2 ‘]‘1*51,1*52,2*--{0—2,0—2
0 - Jo
1- 51 1 §2 9o—...¢cor,0-1)déc—1.0-1 - . . d€2,2dE1 1
f 1 1,1 f1—£1,1—§2,2—---£c—3,c—3
2 Jo ttJo 9
51 L §22—...§o—2,c2)°déc—2,0-2...dE22dE1 1
f fl 51 1 fl &1,1—622—...6§c—a,c—a
511 1— 1522 - omsoms)Pdéo_somg .. daadér
1- =

e C!

(ax + b)"

—~
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