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ABSTRACT

If the proper dissimilarity measures are provided, some sets
of objects, e.g. curves or blobs, may be better described by
using representation sets instead of features. The dissimi-
larity matrix of such a set is the base for further analysis.
The question arises how from a given dissimilarity matrix
can be judged whether the size of the training set is suffi-
cient to describe the peculiarities of the set. In this paper the
problem is defined, some approaches are discussed and
illustrated by the analysis of dissimilarity matrices defined
by the modified Hausdorff distances between sets of hand-
written digits.

Keywords: problem complexity, representation set, dis-
similarity representation, sample size.

1. INTRODUCTION

In pattern recognition objects are traditionally represented
by features. Features preferably have to be defined on the
basis of expert knowledge on the application domain. Each
object thereby corresponds with a vector in a feature space.
The dimensionality of this space equals the number of fea-
tures. Alternatively, objects may be represented by their
similarities or dissimilarities to a set of prototype objects,
which we will call therepresentation set[1, 2, 3]. Conse-
quently, objects can now be represented as vectors in arep-
resentation space. The dimensionality of this space equals
the number of objects (prototypes) in the representation set.
Like features, the dissimilarity measure has to be defined
on the basis of expert knowledge.

Until now, pattern classification on the basis of (dis)sim-
ilarities has been mainly performed by the nearest neighbor
rule (1-NN rule): a new object is assigned to the class of the
most similar object in the representation set; also the k-NN
rule can be used. Important application areas are those for
which no natural features can be defined, e.g. the recogni-
tion of curves or blobs using various approaches of deform-
able template matching [7, 8]. However, the representation
space, as defined above, is not used as such. Recently, we
have proposed [3, 4] to apply the traditional feature based
classifiers like the Fisher discriminant inthis space. We
found that such linear functions of dissimilarities can be
more efficient (need less prototypes) and/or more accurate
than their direct use by the NN rules.

In this paper we will study some issues related to the u
of dissimilarity representations. Initially, all given training
objects are candidates for the representation set. An an
sis thereby starts with ann x n matrix of dissimilarities. An
ever returning question is whether the size of the trainin
set, i.e.n, is sufficiently large, i.e. whether much can b
gained by increasing the number of training examples. Th
question is related to the complexity of the classificatio
problem [5, 12], a still ill-defined concept. Here, we wil
restrict ourselves to the more simple issue of the size of
unlabeled set of objects, possibly belonging to a sing
class. We will investigate the possibilities to judge wheth
the representation set is sufficiently sampled or not.

In the next section the basis of our approach will b
defined, starting from an assumption on the continuity
dissimilarities. From that a number of statistics will be pro
posed that may be used for judging the size of the repres
tation set. In the following section these criteria are inve
tigated experimentally on artificial and real world datase
Results are discussed in the final section and some o
questions are defined.

2. APPROACHES

Assume that a dissimilarity measure d(r,s) is given
between two real world objectsr ands. Let d(r,s) = 0 if and
only if r ands are identical and d(r,s) > 0 if r ands differ.
Define the representation set R to be a finite set of re
world objects {r1, r2, ..., rn}. A new objectr is now repre-
sented by a row vectord defined by the dissimilarities of
the objectr to all objects in the representation set, i.e
d = [d(r,r1) d(r,r2) .... d(r,rn)]. The entire set itself is now
represented by a dissimilarity matrix D (or D(R,R) indica
ing the dependence on the representation set R), consis
of the row vectorsdi, i=1,...,n. D is therefore a set ofn vec-
tors in then-dimensional representation space.

The research question now refers to a criterion defin
on D judging how well the dataset is sampled. Phrased
other words: can we expect that new objects are understo
in terms of the given ones or not? In the next subsectio
we will describe some possible statistics that might be us
as such a criterion. They are all based on the so-calledcom-
pactness hypothesis[5, 9] which states that real world
objects that are similar are also close in their represen
tion. Effectively, this puts a constraint on the dissimilarit
measure. It has to be such that d(r,s) is small if r ands are
1
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very similar, i.e. it should be much smaller for similar
objects than for objects that are very different.

For feature representations the above does not hold the
other way around: two entirely different objects may have
the same feature representation. This does not cause a prob-
lem if these feature values are improbable for all or for all
but one of the classes. For a dissimilarity representation,
however, the reverse of the compactness hypothesis also
holds if it can be assumed that some continuity is valid for
the dissimilarity measure d(r,s). Since d(r,s) = 0 if and only
if r ands are identical, this implies that they belong to the
same class. This can be extended somewhat by assuming
that all objects for which d(r, ) < δ (δ > 0), are so similar
to r (if δ is sufficiently small) that they belong to the same
class asr. Consequently, the dissimilarities ofr and to all
objects in the representation set should be about the same,
i.e. d(r,ri) ≈ d( ,ri), with ri ∈R, by which their representa-
tionsd and are also almost the same, i.e.d ≈ . We con-
clude that for dissimilarity representations that satisfy the
above continuity, the reverse of the compactness hypothe-
sis holds: objects that are similar in their representation are
also similar in reality and belong thereby to the same class.

A representation set R can now be judged as to be suffi-
ciently large if an arbitrary new objectof the same class is
not totally different from all given objects.This can be
expected if R already contains many objects that are very
similar, i.e. that they have a small dissimilarity to at least
one other object.

All the below statistics are based in one way or another
on this observation. They will be illustrated by an artificial
example based on an Euclidean distance matrix betweenn
Gaussian distributed points in ak-dimensional space. We
will vary both, n andk, between 5 and 500. Ifn < k the
points are in ann-1 dimensional subspace and we have cer-
tainly an undersampled, difficult problem. Ifn >> k the
dataset may be judged as to be sufficiently sampled. Large
values ofk generate difficult (complex) problems as they
demand large sample sizesn. The results we present on
these problems are averages over 20 experiments, each
time based on a new, randomly generated dataset.

2.1 Principal Component Analysis

A sufficiently large representation set will contain at least
some objects that are very similar, i.e. their representations
are very similar, which suggests that the rank of D will be
less than its size, i.e. rank(D) <n. In practice, this will usu-
ally not be true exactly, since the objects are not completely
similar. A more robust criterion will, therefore, be whether
Nα, the number of eigenvectors of D for which the sum of
the corresponding eigenvalues equals a fractionα (e.g.
0.99) of the total sum of eigenvalues, is small in compari-
son ton. As a criterion we propose:

Jpca,α = Nα/n (1)

with Nα such that

(2)

In practice, there is usually no integerNα for which (2)
holds exactly. In our experiments,Nα, and thereby Jpca,α
are therefore determined by interpolation. In fig. 1 the valu
of Jpca,0.99 is shown for the artificial Gaussian example, a
a function of the size of the representation set for vario
dimensionalitiesk. From this graph it can be concluded tha
sets with more than 100 objects may be sufficiently larg
for small dimensionalities (e.g.k = 5 or 10), but that this is
certainly too small for Gaussian datasets of larger dime
sionality. These generate problems of a too high comple
ity for the given data size.

2.2 Skewness
A new object added to a set of objects that is still incom
plete (not sufficiently sampled) will generate many larg
dissimilarities and just a few small ones. After it become
saturated, however, for new objects there will be more a
more very similar objects. As a result, the distribution o
dissimilarities will peak for small values and show a lon
tail in the direction of large dissimilarities. Consequently
its skewness grows for increasing size of the representat
set. The value to which it grows, however, is problem
dependent. As a criterion we propose the skewness of
distribution of all single, non-diagonal valuesd in D:

(3)

In fig. 2 the skewness of the artificial example is shown. F
small representation sets this appears to be insuffici
here, as can be concluded from the noisy behavior of t
graphs in that area. For large representation sets the cu
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Fig. 1. The PCA (99%) criterion (1) for normal distribution
based Euclidean distances for various sizes of the
representation set and for various dimensionalities.
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for different dimensionalities asymptotically increase to
different values for the skewness. The final values may be
reached earlier for the more simple problems in low dimen-
sions (k = 5 or 10). This is, however, certainly not clearly
observable. It has to be concluded that the skewness, as
such, is not an informative, stable criterion.

2.3 Nearest Neighbor relationships

An elementdij in D represents the dissimilarity between
the objectsri andrj. The minimum ofdij over all values of
j, points to the nearest neighbor ofri: NN(ri) = rp(i) if p=
argmin_j (dij). So,rp is the most similar object tori in the
representation set R. We now state that a representationdi
of objectri is good if the representation ofrp(i), i.e. dp is
close todi in the representation space. This can be mea-
sured by ordering the neighbors ofdi in the representation
space (using the Euclidean distance) and determining the

rank number m(i) of dp in the list of neighbors ordi. For a
good representation we expect that, themean relative rank:

Jn = (4)

is close to 0. In fig. 3 the results for the artificial Gaussia
example are shown. Like for the PCA criterion it can b
concluded that sizes of the representation set larger th
100 are sufficient for distributions in 5 and 10 dimension

2.4 Correlations
We will also use the correlations between the objects in t
representation space. Similar objects show similar dissim
larities to other objects and are thereby positively corr
lated. As a consequence, the average of posit
correlations to the average of absolute values
negative correlations :

Jρ = (5)

where , will increase for larger sample
sizes. The constant 1 added in the denominator preventρ
from becoming very large for the case of only small neg
tive correlations. For a well-sampled representation set,ρ
will be relatively large and it will increase only slightly
when new objects are added (new objects should not sign
icantly influence the averages of either positive or negati
correlations). Fig. 4 shows that this criterion works well fo
the artificial Gaussian example: for less complex problem
Jρ reaches higher values and shows flatten behavior for
representation sets of at least 100 objects.

2.5 Intrinsic dimensionality
Another possibility to judge whether a representation s

is sufficiently sampled is to estimate the intrinsic dimen

Fig. 2. The skewness criterion (3) for normal distribution
based Euclidean distances for various sizes of the
representation set and for various dimensionalities.
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Fig. 3. The mean relative rank criterion (4) for normal
distribution based Euclidean distances for various sizes of
the representation set and for various dimensionalities.
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Fig. 4. The correlation criterion (5) for normal distribution
based Euclidean distances for various sizes of the
representation set and for various dimensionalities.
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sionality of the problem. Here, by the intrinsic dimension-
ality we understand the dimensionality of the underlying
feature space found in such a way that the distances origi-
nally given are preserved. This can be achieved by a linear
embedding, i.e. a distance preserving linear mapping, (pro-
vided that D is symmetric) onto an Euclidean or a pseudo-
Euclidean space (see references [13] and [14] for details).
The embedded data X is such that the squared (pseudo-)
Euclidean distances are equal to the originally given
squared dissimilarities, thus:

(6)

The representation X, consisting ofq <= n features, is
determined to have uncorrelated features and be centered in
the origin. If there are some features with large variances
(i.e. taking large values), then the features with small vari-
ances are expected to reveal just noisy information [14].
Since only features with significant variances contribute to
the distance values, the features with small variances can be
skipped. (Note, that when all features have small variances,
the intrinsic dimensionality is approximatelyn.) Let nα be
the number of features with significant variances for which
the sum of the corresponding variance magnitudes equals a
fraction α (e.g. 0.95) of the total sum. Of course,nα may
not be found exactly, so it is interpolated. Sincenα deter-
mines the intrinsic dimensionality, as a criterion we pro-
pose the following fraction:

(7)

For low intrinsic dimensionalities, smaller representa-
tion sets are needed to describe the data characteristics. Fig.
5 presents the behavior of our criterion as a function of the
size of the representation set for various dimensionalities of
the Gaussian data. The curves clearly reveal different
intrinsic dimensionalities. If the representation set is suffi-
ciently large, the fraction criterion should become rela-
tively constant or decrease very slowly. We can then con-
clude that sets with more than 100 objects are satisfactorily
sampled for originally low dimensionality, i.e.k <= 20. In
other cases, the data is still too complex.

2.6 Compactness
As mentioned in the previous section, given a symmetric

distance matrix D, a configuration X is found in a (pseudo)
Euclidean space, such that the distances are preserved.
When the representation set is sufficiently large, it is to be
expected that the intrinsic dimensionality will remain con-
stant. The constant intrinsic dimensionality can be only
observed when the number of points is significantly large.
Consequently, the centroid of the data should remain
approximately the same and the average distance to this
mean should decrease or be constant. The larger the aver-
age distance, the less compact the class is, requiring more
samples for its description. Therefore, we propose a com-
pactness criterion as the leave-one-out estimator of the
average distance to the mean vector in an embedded space:

(8)

wherexi
(j) is a vector representation of thei-th object in the

(pseudo-) Euclidean space determined by all objects but
j-th object andm(j) is the mean of such a configuration
Fig. 6 shows the behavior of this criterion, clearly indica
ing the high compactness of originally low-dimensiona
Gaussian data. The case ofk=500 is judged as a not very
compact decription.

3. EXPERIMENTS WITH REAL DATA

Representation sets can be applied for shape recognition
training set of shapes may constitute a representation
for which an appropriate dissimilarity measure is use
New shapes are recognized on the basis of their dissimil

D Ps( )Eucl
2

X X,( ) D
2

R R,( )=

Jid α, nα n⁄=

Fig. 5. The intrinsic dimensionality criterion (7) for normal
distribution based Euclidean distances for various sizes of
the representation set and for various dimensionalities.
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Fig. 6. The compactness criterion (8) for normal distribution
based Euclidean distances for various sizes of the
representation set and a for various dimensionalities.
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ity representation. Here, we will study the representation
sets for 4 classes (0, 1, 2, 3) of handwritten digits from the
NIST database [11]. For each class a set ofn = 200 objects
is taken. We used subsampled characters of the 128x128
size. As the dissimilarity measure the Modified Hausdorff
Distance DM [10] is used. We studied three variants of this
distance measure: DM

5 , DM and DM
0.2 . These power trans-

formations do not change the order of the dissimilarities,
but they change the representation space, and thereby the
criterion values, in a non-linear way. This will give some
impression to what extent the final definition of a distance
measure may influence the resulting representation.

In the figures 7-13 the results are shown for the six cri-
teria introduced in the previous section. The following
observations can be made:
- The four characters ‘0’-’3’ show slightly different behav-

ior. In general, the set of ‘1’s is the most simple one and
the set of ‘3’-s is the most difficult one.

- It makes a significant difference if the dissimilarities are
nonlinearly transformed by using some powers. Note that
a power of 0.2 has some normalizing effect as it removes
the tails of the distribution of dissimilarities, see fig. 14.

- The PCA criterion (1) indicates that the sample size for
DM

0.2 is far from being sufficient, it even shows some yet
unexplained peaking phenomenon. For DM the set of ‘1’s
sufficiently sampled according to (1) and for DM

5 all four
character sets are large enough, see fig. 7.

- The skewness criterion (3) is noisy and not very informa-
tive, see fig. 8.

- The mean relative rank (4) shows, fig. 9, that the DM
0.2 set

builds a good representation space in which distances
correspond very well to the original dissimilarities. This
can be explained by the linearizing effect of the small
power << 1. At the same time the difference in complex-
ity between the character sets has vanished.

- The strongly nonlinear DM
5 set appears to be difficult ac-

cording to the mean relative rank (5), see fig. 9.
- The correlation criterion (6) shows interesting results, see

fig. 11. It indicates that the set of ‘1’-s is sufficiently sam-
pled and that the other sets still need more observations.

- The intrinsic dimensionality (7) of the set of ‘1’-s is rela-
tively low and much smaller than for other data sets; see
fig. 12. The largest intrinsic dimensionality has the set of
‘0’s. Remarkably, the dimensionality of the combined set
seems to be relatively low, indicating that all classes share
some descriptions.

- The set of ‘0’-s is the most compact class according to
the criterion (8), see fig. 12. The sets of ‘1’-s and ‘2’-s are
much less compact, indicating possible subclasses or
elongated distributions. Not surprisingly, (8) judges the
combined set of all characters as more complicated.

Finally, we performed some classification experiments in
the representation space and compared these with the near-
est neighbor classifier directly applied to the dissimilari-
ties, see fig. 13. The results of this classifier do not depend

Fig. 7. The PCA criterion (1) as a function of the size of the
representation set for four sets of handwritten digits
represented by their Modified Hausdorff Distances DM.
From top to bottom three different transformations of the
distances are used: DM

0.2 , DM
and DM

5.
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on the nonlinear transformations of the modified Hausdorff
dissimilarities, as they are monotonic. The representation
space was built using 50 objects per class. These objects,
combined with another 50 objects (per class) were used for
training in the representation space three classifiers: again
a 1-NN classifier, a linear classifier assuming normal distri-
butions with equal covariance matrices and a quadratic
classifier based also on normal distributions. The indepen-
dent test set consists of 100 objects per class. Results are
averaged over 20 experiments, each time based on another
randomly drawn distribution of the objects over the three
sets used for representation, training and testing.

The results show that the representation space built by
the DM

0.2 set is the best for building classifiers. This corre-
sponds with the observations made by the mean relative
rank criterion. The normal based classifiers perform well,
supporting the supposition that the transformation normal-
izes the distributions. Finally, it is remarkable that even the
1-NN rule in the representation space performs here better
(for small sizes of the representation set) than the original
1-NN rule. Recall, however, that the latter just uses the rep-
resentation set and no additional training objects.

4. DISCUSSION AND CONCLUSIONS

We considered six statistics that may be used for examining
whether a representation set contains sufficient objects to
describe the problem. This is still work in progress. The
problem itself is ill-defined as it is application dependent
what ‘sufficient’ is for a single class. For that reason we
showed here some classification results for comparison.
Still, one might imagine that classes are well sampled but
in such a complicated way positioned with respect to each
other that for most classifiers the problem is difficult. As a
consequence the size of the training set should be judged
from an evaluation of the classification result using a test

Fig. 8. The skewness criterion (3) as a function of the size
of the representation set for four sets of handwritten digits
represented by their Modified Hausdorff Distances DM..
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Fig. 9. The mean relative rank (3) as a function of the size
of the representation set for four sets of handwritten digits
represented by their Modified Hausdorff Distances DM.
From top to bottom three different transformations of the
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and DM
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set. The attempt of the presented study is to find out
whether it is possible to judge from a single dissimilarity
matrix its sampling density.

With respect to the criteria under study the following
may be concluded. The PCA criterion works for distances
computed for Gaussian distributed data. In the real world
example in which a completely other dissimilarity measure
was used, this criterion appeared to be much less useful.

The skewness is a noise sensitive statistic. Moreover, it
did not appear to be very useful in our experiments. Still,
we suspect that the distribution of the dissimilarity values
may be indicative for the complexity of the problem in one
way or another.

The nearest neighbor relationships on which the me
relative rank criterion is used appeared to be useful in bo
the artificial problem, as well as for the real data.

Both the estimation of intrinsic dimensionality and com
pactness of the data description are found to be inform
tive, especially when treated as complement informatio
They give an indication of the problem complexity.

The correlation criterion performed very well, both in
the artificial problem as well as on the real data.

Our four favorite criteria, the mean relative rank, th
correlation, intrinsic dimensionality and the compactne
(explored together) should be tested further on artifici
datasets and in real applications. Other criteria using la
information may be considered as well in relation wit
classification problems.

Fig. 10. The intrinsic dimensionality (7) as a function of the
size of the representation set for four sets of handwritten
digits represented by their Modified Hausdorff Distances.
Also the results for the combined set are shown.
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Fig. 11. The correlation criterion (5) as a function of the
size of the representation set for four sets of handwritten
digits represented by their Modified Hausdorff Distances.
Also the results for the combined set are shown.
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Fig. 12. The compactness criterion (8) for four sets of
handwritten digits represented by their Modified
Hausdorff Distances DM. Also the results for the
combined set are shown.
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Fig. 13. Classification results as a function of the size of the
representation set for four sets of handwritten digits
represented by their Modified Hausdorff Distances DM.
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