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ABSTRACT In this paper we will study some issues related to the use

o } of dissimilarity representations. Initially, all given training
Ifthe.proper dissimilarity measures are provided, SOme sets gpjects are candidates for the representation set. An analy-
of objects, e.g. curves or blobs, may be better described by s thereby starts with amx n matrix of dissimilarities. An
using representation sets instead of features. The dissimi- oyer returning question is whether the size of the training
larity matrix of such a set is the base for further analysis. get je.n is sufficiently large, i.e. whether much can be
The question arises how from a given dissimilarity matrix  gained by increasing the number of training examples. This
can be judged whether the size of the training set is suffi- qyestion is related to the complexity of the classification
cient to describe the peculiarities of the set. In this paper the problem [5, 12], a still ill-defined concept. Here, we will
problem is defined, some approaches are discussed andestrict ourselves to the more simple issue of the size of an

illustrated by the analysis of dissimilarity matrices defined njapeled set of objects, possibly belonging to a single
by the modified Hausdorff distances between sets of hand- ¢|55s. We will investigate the possibilities to judge whether

written digits. the representation set is sufficiently sampled or not.
Keywords: problem complexity, representation set, dis- In the next section the basis of our approach will be
similarity representation, sample size. defined, starting from an assumption on the continuity of
dissimilarities. From that a number of statistics will be pro-
1. INTRODUCTION posed that may be used for judging the size of the represen-

tation set. In the following section these criteria are inves-

tigated experimentally on artificial and real world datasets.

Results are discussed in the final section and some open
guestions are defined.

In pattern recognition objects are traditionally represented

by features. Features preferably have to be defined on the
basis of expert knowledge on the application domain. Each
object thereby corresponds with a vector in a feature space
The dimensionality of this space equals the number of fea- 2. APPROACHES

tgre_s. Alternati\_/ely, (_)bj_e_cts may be represented b)_/ their Assume that a dissimilarity measurer,df is given
smylarmes or dissimilarities to a_set of prototype objects, perween two real world objectsands. Let d¢,s) = 0 if and
which we will call therepresentation s, 2, 3]. Conse- only if r ands are identical and dfs) > 0 if r ands differ.
quently, objects can now be represented as vectoresip-a Define the representation set R to be a finite set of real
resentation spachhe d|menS|onaI|_ty of this space equals world objects f1, ry, ..., }. A new objectr is now repre-
the number of objects (prototypes) in the representation set. gented by a row vectat defined by the dissimilarities of
Like featur_es, the dissimilarity measure has to be defined o objectr to all objects in the representation set, i.e.
on the basis of expert knowledge. d =[d(r,ry) d(r.ry) .... df,ry)]. The entire set itself is now
Until now, pattern classification on the basis of (dis)sim- represented by a dissimilarity matrix D (or D(R,R) indicat-
ilarities has been mainly performed by the nearest neighbor ing the dependence on the representation set R), consisting
rule (1-NN rule): a new object is assigned to the class of the of the row vectorsl;, i=1,...n. D is therefore a set af vec-
most similar object in the representation set; also the k-NN tors in then-dimensional representation space.
rule can be used. Important application areas are those for ~ The research question now refers to a criterion defined
which no natural features can be defined, e.g. the recogni- on D judging how well the dataset is sampled. Phrased in
tion of curves or blobs using various approaches of deform- other words: can we expect that new objects are understood
able template matching [7, 8]. However, the representation in terms of the given ones or not? In the next subsections
space, as defined above, is not used as such. Recently, wewe will describe some possible statistics that might be used
have proposed [3, 4] to apply the traditional feature based as such a criterion. They are all based on the so-catet
classifiers like the Fisher discriminant this space. We pactness hypothesi®, 9] which states that real world
found that such linear functions of dissimilarities can be objects that are similar are also close in their representa-
more efficient (need less prototypes) and/or more accurate tion. Effectively, this puts a constraint on the dissimilarity
than their direct use by the NN rules. measure. It has to be such that,gy(is small ifr ands are



very similar, i.e. it should be much smaller for similar
objects than for objects that are very different.

For feature representations the above does not hold the
other way around: two entirely different objects may have

the same feature representation. This does not cause a prob-

lem if these feature values are improbable for all or for all
but one of the classes. For a dissimilarity representation,
however, the reverse of the compactness hypothesis also
holds if it can be assumed that some continuity is valid for
the dissimilarity measure d§). Since df,s) = 0 if and only

if r ands are identical, this implies that they belong to the

same class. This can be extended somewhat by assuming

that all objects’ forwhichd(r') <o (8> 0), are so similar

tor (if &is sufficiently small) that they belong to the same
class as. Consequently, the dissimilaritiesiodndr' to all
objects in the representation set should be about the same,
i.e. dg,r;) =d(r' r;), with r; OR, by which their representa-
tionsd andd' are also almostthe same,de.d'. We con-
clude that for dissimilarity representations that satisfy the
above continuity, the reverse of the compactness hypothe-
sis holds: objects that are similar in their representation are
also similar in reality and belong thereby to the same class.

A representation set R can now be judged as to be suffi-
ciently large if an arbitrary new object of the same class is
not totally different from all given objects. This can be
expected if R already contains many objects that are very
similar, i.e. that they have a small dissimilarity to at least
one other object.

All the below statistics are based in one way or another
on this observation. They will be illustrated by an artificial
example based on an Euclidean distance matrix between
Gaussian distributed points inkadimensional space. We
will vary both, n andk, between 5 and 500. H < k the
points are in am-1 dimensional subspace and we have cer-
tainly an undersampled, difficult problem. itf >> k the

N(X

2

n
A/ z)\i =a (2)

|

In practice, there is usually no integy for which (2)

holds exactly. In our experimentl,, and thereby L4
are therefore determined by interpolation. In fig. 1 the value
of Jycap.09 IS shown for the artificial Gaussian example, as
a function of the size of the representation set for various
dimensionalitie&. From this graph it can be concluded that
sets with more than 100 objects may be sufficiently large
for small dimensionalities (e.§.= 5 or 10), but that this is
certainly too small for Gaussian datasets of larger dimen-
sionality. These generate problems of a too high complex-
ity for the given data size.
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Fig. 1. The PCA (99%) criterion (1) for normal distribution
based Euclidean distances for various sizes of the
representation set and for various dimensionalities.

dataset may be judged as to be sufficiently sampled. Large 2.2 Skewness

values ofk generate difficult (complex) problems as they A new object added to a set of objects that is still incom-
demand large sample sizes The results we present on  plete (not sufficiently sampled) will generate many large
these problems are averages over 20 experiments, eachdissimilarities and just a few small ones. After it becomes
time based on a new, randomly generated dataset. saturated, however, for new objects there will be more and
more very similar objects. As a result, the distribution of
dissimilarities will peak for small values and show a long
tail in the direction of large dissimilarities. Consequently,
its skewness grows for increasing size of the representation
set. The value to which it grows, however, is problem
dependent. As a criterion we propose the skewness of the
distribution of all single, non-diagonal valugé D:

O d— B
d-E() O

0/E(d-E(d))

In fig. 2 the skewness of the artificial example is shown. For
small representation sets this appears to be insufficient
here, as can be concluded from the noisy behavior of the
graphs in that area. For large representation sets the curves

2.1 Principal Component Analysis

A sufficiently large representation set will contain at least
some objects that are very similar, i.e. their representations
are very similar, which suggests that the rank of D will be
less than its size, i.e. rank(D)rx In practice, this will usu-

ally not be true exactly, since the objects are not completely
similar. A more robust criterion will, therefore, be whether
Ng. the number of eigenvectors of D for which the sum of
the corresponding eigenvalues equals a fractiofe.g.
0.99) of the total sum of eigenvalues, is small in compari-
son ton. As a criterion we propose:

E (3

Jocag = Ng/n

1)
with Ny such that



Skewness for an artificial Gaussian example
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Fig. 2. The skewness criterion (3) for normal distribution

based Euclidean distances for various sizes of the
representation set and for various dimensionalities.

for different dimensionalities asymptotically increase to
different values for the skewness. The final values may be
reached earlier for the more simple problems in low dimen-
sions k=5 or 10). This is, however, certainly not clearly

observable. It has to be concluded that the skewness, as Jy = Zm(') 1

such, is not an informative, stable criterion.

2.3 Nearest Neighbor relationships

An element; in D represents the dissimilarity between
the objects; andr;. The minimum ofd; over all values of
j, points to the nearest neighbor pf NN(r;) = r(i) if p=
argminj (d;). So,rpis the most similar object t in the
representation set R. We now state that a representdtion
of objectr; is good if the representation of(i), i.e.dyis
close tod; in the representation space. This can be mea-
sured by ordering the neighborsdfin the representation
space (using the Euclidean distance) and determining the

Mean relative rank for an artificial Gaussian example
0.4 " ‘ . : :

0.35
0.3

0.25

Mean relative rank

20 50 100 200
Size of the representation set

5 10 500
Fig. 3. The mean relative rank criterion (4) for normal
distribution based Euclidean distances for various sizes of
the representation set and for various dimensionalities.

Correlation criterion for an artificial Gaussian example
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Fig. 4. The correlation criterion (5) for normal distribution
based Euclidean distances for various sizes of the
representation set and for various dimensionalities.

rank number mi{ of dy, in the list of neighbors od;. For a
good representation we expect that, tiean relative rank

n
4

i
is close to 0. In fig. 3 the results for the artificial Gaussian
example are shown. Like for the PCA criterion it can be
concluded that sizes of the representation set larger than
100 are sufficient for distributions in 5 and 10 dimensions.

2.4 Correlations

We will also use the correlations between the objects in the
representation space. Similar objects show similar dissimi-
larities to other objects and are thereby positively corre-
lated. As a consequence, the average of positive
correlationsp, (d;, d, ) to the average of absolute values of
negative correlatlonsp (d;, d )

% z p.(d;, d; )D/Eﬂ.+ 2 p.(d;, d; )\D ®)

i, #i i,j#i

whereN = 1/(n2—n) , will increase for larger sample
sizes. The constant 1 added in the denominator prevgnts J
from becoming very large for the case of only small nega-
tive correlations. For a well-sampled representation get, J
will be relatively large and it will increase only slightly
when new objects are added (new objects should not signif-
icantly influence the averages of either positive or negative
correlations). Fig. 4 shows that this criterion works well for
the artificial Gaussian example: for less complex problems
Jp reaches higher values and shows flatten behavior for the
representation sets of at least 100 objects.

2.5 Intrinsic dimensionality
Another possibility to judge whether a representation set
is sufficiently sampled is to estimate the intrinsic dimen-



sionality of the problem. Here, by the intrinsic dimension-
ality we understand the dimensionality of the underlying
feature space found in such a way that the distances origi-
nally given are preserved. This can be achieved by a linear
embedding, i.e. a distance preserving linear mapping, (pro-
vided that D is symmetric) onto an Euclidean or a pseudo-
Euclidean space (see references [13] and [14] for details).
The embedded data X is such that the squared (pseudo-)
Euclidean distances are equal to the originally given
squared dissimilarities, thus:

Digeuci(X.X) = D’(R, R) ©6)

The representation X, consisting @f<= n features, is
determined to have uncorrelated features and be centered in
the origin. If there are some features with large variances
(i.e. taking large values), then the features with small vari-
ances are expected to reveal just noisy information [14].
Since only features with significant variances contribute to
the distance values, the features with small variances can be
skipped. (Note, that when all features have small variances,
the intrinsic dimensionality is approximatety) Let ny be
the number of features with significant variances for which
the sum of the corresponding variance magnitudes equals a
fractiona (e.g. 0.95) of the total sum. Of coursg, may
not be found exactly, so it is interpolated. Singedeter-
mines the intrinsic dimensionality, as a criterion we pro-
pose the following fraction:

()

For low intrinsic dimensionalities, smaller representa-
tion sets are needed to describe the data characteristics. Fig.
5 presents the behavior of our criterion as a function of the
size of the representation set for various dimensionalities of
the Gaussian data. The curves clearly reveal different
intrinsic dimensionalities. If the representation set is suffi-
ciently large, the fraction criterion should become rela-
tively constant or decrease very slowly. We can then con-
clude that sets with more than 100 objects are satisfactorily
sampled for originally low dimensionality, i.&.<= 20. In
other cases, the data is still too complex.

Jid’ a = na/n

2.6 Compactness

As mentioned in the previous section, given a symmetric
distance matrix D, a configuration X is found in a (pseudo)
Euclidean space, such that the distances are preserved.
When the representation set is sufficiently large, it is to be
expected that the intrinsic dimensionality will remain con-
stant. The constant intrinsic dimensionality can be only
observed when the number of points is significantly large.
Consequently, the centroid of the data should remain
approximately the same and the average distance to this
mean should decrease or be constant. The larger the aver-

1

0.9r

o
©
:

I
Y

o
o)

Intrinsic dimensionality of an artificial Gaussian example
. .

T
e
s

e

5

10 A

20

50 |

100

200 |

o
a +
:

°
~
T

o
()
:

Fraction of significant features

© o
=
:

N
T

0 L L L L
5 10 20 50 100
Size of the representation set

200 500

Fig. 5. The intrinsic dimensionality criterion (7) for normal
distribution based Euclidean distances for various sizes of
the representation set and for various dimensionalities.
n

j=117%]
wherexi(J) is a vector representation of théh object in the
(pseudo-) Euclidean space determined by all objects but the
j-th object andm{ is the mean of such a configuration.
Fig. 6 shows the behavior of this criterion, clearly indicat-
ing the high compactness of originally low-dimensional
Gaussian data. The caselef500 is judged as a not very
compact decription.

Compactness of an embedded artificial Gaussian example
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Fig. 6. The compactness criterion (8) for normal distribution
based Euclidean distances for various sizes of the

representation set and a for various dimensionalities.

3. EXPERIMENTS WITH REAL DATA

age distance, the less compact the class is, requiring more Representation sets can be applied for shape recognition. A
samples for its description. Therefore, we propose a com- training set of shapes may constitute a representation set
pactness criterion as the leave-one-out estimator of the for which an appropriate dissimilarity measure is used.

average distance to the mean vector in an embedded space:New shapes are recognized on the basis of their dissimilar-



ity representation. Here, we will study the representation
sets for 4 classes (0, 1, 2, 3) of handwritten digits from the
NIST database [11]. For each class a set 8f200 objects

is taken. We used subsampled characters of the 128x128
size. As the dissimilarity measure the Modified Hausdorff
Distance L [10] is used. We studied three variants of this
distance measure.a), D,, and EfA . These power trans-
formations do not change the order of the dissimilarities,
but they change the representation space, and thereby the
criterion values, in a non-linear way. This will give some
impression to what extent the final definition of a distance
measure may influence the resulting representation.

In the figures 7-13 the results are shown for the six cri-
teria introduced in the previous section. The following
observations can be made:

- The four characters ‘0’-'3’ show slightly different behav-
ior. In general, the set of ‘1's is the most simple one and
the set of ‘3’-s is the most difficult one.

It makes a significant difference if the dissimilarities are
nonlinearly transformed by using some powers. Note that
a power of 0.2 has some normalizing effect as it removes
the tails of the distribution of dissimilarities, see fig. 14.
The PCA criterion (1) indicates that the sample size for
D&z is far from being sufficient, it even shows some yet
unexplained peaking phenomenon. For the set of ‘1's
sufficiently sampled according to (1) and foi‘,I @l four
character sets are large enough, see fig. 7.

The skewness criterion (3) is noisy and not very informa-
tive, see fig. 8.

The mean relative rank (4) shows, fig. 9, that tffﬁzliset
builds a good representation space in which distances
correspond very well to the original dissimilarities. This
can be explained by the linearizing effect of the small
power << 1. At the same time the difference in complex-
ity between the character sets has vanished.

The strongly nonlinear ﬁ? set appears to be difficult ac-
cording to the mean relative rank (5), see fig. 9.

The correlation criterion (6) shows interesting results, see
fig. 11. It indicates that the set of ‘1'-s is sufficiently sam-
pled and that the other sets still need more observations.
The intrinsic dimensionality (7) of the set of ‘1'-s is rela-
tively low and much smaller than for other data sets; see
fig. 12. The largest intrinsic dimensionality has the set of
‘0’s. Remarkably, the dimensionality of the combined set
seems to be relatively low, indicating that all classes share
some descriptions.

The set of ‘0’-s is the most compact class according to
the criterion (8), see fig. 12. The sets of ‘1’-s and ‘2’-s are
much less compact, indicating possible subclasses or
elongated distributions. Not surprisingly, (8) judges the
combined set of all characters as more complicated.
Finally, we performed some classification experiments in
the representation space and compared these with the near-
est neighbor classifier directly applied to the dissimilari-
ties, see fig. 13. The results of this classifier do not depend
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Skewness for Modified Hausdorff Distances
12 ; T . !

Skewness

04 10 20 50 100 200
Size of the representation set

Fig. 8. The skewness criterion (3) as a function of the size

of the representation set for four sets of handwritten digits

represented by their Modified Hausdorff Distances DM-

on the nonlinear transformations of the modified Hausdorff
dissimilarities, as they are monotonic. The representation
space was built using 50 objects per class. These objects,
combined with another 50 objects (per class) were used for
training in the representation space three classifiers: again
a 1-NN classifier, a linear classifier assuming normal distri-
butions with equal covariance matrices and a quadratic
classifier based also on normal distributions. The indepen-
dent test set consists of 100 objects per class. Results are
averaged over 20 experiments, each time based on another
randomly drawn distribution of the objects over the three
sets used for representation, training and testing.

The results show that the representation space built by
the set is the best for building classifiers. This corre-
sponds with the observations made by the mean relative
rank criterion. The normal based classifiers perform well,
supporting the supposition that the transformation normal-
izes the distributions. Finally, it is remarkable that even the
1-NN rule in the representation space performs here better
(for small sizes of the representation set) than the original
1-NN rule. Recall, however, that the latter just uses the rep-
resentation set and no additional training objects.

4. DISCUSSION AND CONCLUSIONS

We considered six statistics that may be used for examining
whether a representation set contains sufficient objects to
describe the problem. This is still work in progress. The
problem itself is ill-defined as it is application dependent
what ‘sufficient’ is for a single class. For that reason we
showed here some classification results for comparison.
Still, one might imagine that classes are well sampled but
in such a complicated way positioned with respect to each
other that for most classifiers the problem is difficult. As a
consequence the size of the training set should be judged
from an evaluation of the classification result using a test
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represented by their Modified Hausdorff Distances DM.
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Intrinsic dimensionality of Modified Hausdorff Distances
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Fig. 10. The intrinsic dimensionality (7) as a function of the

size of the representation set for four sets of handwritten

digits represented by their Modified Hausdorff Distances.

Also the results for the combined set are shown.

Correlation criterion for Modified Hausdorff Distances
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Fig. 11. The correlation criterion (5) as a function of the
size of the representation set for four sets of handwritten
digits represented by their Modified Hausdorff Distances.

Also the results for the combined set are shown.

set. The attempt of the presented study is to find out
whether it is possible to judge from a single dissimilarity
matrix its sampling density.

With respect to the criteria under study the following
may be concluded. The PCA criterion works for distances
computed for Gaussian distributed data. In the real world
example in which a completely other dissimilarity measure
was used, this criterion appeared to be much less useful.

The skewness is a noise sensitive statistic. Moreover, it
did not appear to be very useful in our experiments. Still,
we suspect that the distribution of the dissimilarity values
may be indicative for the complexity of the problem in one
way or another.
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Fig. 12. The compactness criterion (8) for four sets of
handwritten digits represented by their Modified
Hausdorff Distances D). Also the results for the
combined set are shown.
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Fig. 14. Histograms for the set of handwritten ‘0’ repre-

sented by their modified Hausdorff distanceg.szo different
transformations are used: Dy (top) and D,,” (bottom).

The nearest neighbor relationships on which the mean
relative rank criterion is used appeared to be useful in both,
the artificial problem, as well as for the real data.

Both the estimation of intrinsic dimensionality and com-
pactness of the data description are found to be informa-
tive, especially when treated as complement information.
They give an indication of the problem complexity.

The correlation criterion performed very well, both in
the artificial problem as well as on the real data.

Our four favorite criteria, the mean relative rank, the
correlation, intrinsic dimensionality and the compactness
(explored together) should be tested further on atrtificial
datasets and in real applications. Other criteria using label
information may be considered as well in relation with
classification problems.
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