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Abstract. Co-occurrence matrices are proved to be useful tool for the
purpose of texture recognition. However, they are sensitive to the change
of the illumination conditions. There are standard preprocessing ap-
proaches to this problem. However, they are lacking certain qualities.
We studied the tangent kernel SVM approach as an alternative way of
building illumination-robust texture classifier. Testing on the standard
texture data has shown promising results.

1 Introduction

Often, it is impractical to keep experimental conditions strictly constant or redo
full sensor recalibration. Imprecisions in calibration causes poorer generaliza-
tion of the recognition system. Such effects can be compensated by increasing
of learning sets sizes or by special data treatment: preprocessing or (which is
somewhat similar to that) building robust recognition systems.

In this work we focus on building a texture classification system robust to
the variability in illumination conditions. The common procedure to deal with
this problem is to perform the full equalization of image histogram or mere
the contrast stretching. Applying these techniques, one must decide what is the
standard histogram form. It is not easy to figure out if the chosen one suits well
for the purpose of the discrimination between different types of textures. Also,
these methods may still leave some amount of illumination fluctuations because
of the variability in data.

We propose an alternative approach which consists in a modification of a
similarity measure between textures which is robust to the changes in the il-
lumination. As a texture description we use co-occurrence matrices [1, 2] and
employ tangent kernel SVM [3, 4] in order to built a robust classifier.

Our approach can be applied to any histogram-like type of data: biomedical
data (histograms of DNA content), and normalized spectra. Basically, it may
be used with any data represented by non-negative features with fixed sum of
elements and suffering from the imprecise (linear) calibration.

The rest of the paper is structured as follows. The next section contains short
review of tangent kernel SVM. Then, in section 3 it is shown how this approach
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can be applied to the illumination-robust texture recognition. Section 4 contains
the description of data set and discussion of the results of numerical experiments.
In section 5 we conclude our work.

2 Tangent Kernel SVM Technique

For reader convenience we provide a short account of ideas from [3, 4]. Suppose
that two-class classification problem has to be solved: having an object x ∈ R

d, a
label y ∈ {−1,+1} should be assigned, defining, to which one of the two classes
it belongs. In other words, the task consists of building a classification function

y = f(x) : R
d −→ {−1,+1}

Here we assume that f(x) = sign(g(x)), and g : R
d → R is the smooth discrim-

inant function.
Suppose also that we have a prior knowledge that a one-parametric trans-

formation Lt : R
d −→ R

d, t ∈ R does not change the class membership of the
object. To simplify the task one can demand more stronger condition: an invari-
ance of discriminant function g

g(Ltx) − g(x) = 0

Assuming that Lt satisfies

L0x = x (1)
Lt1Lt2 = Lt1+t2

invariance property can be reformulated in a differential form

∂g(Ltx)
∂t

∣
∣
∣
∣
t=0

= 0

which transforms after some algebra into

∂T
x g(x) Mx = 0 (2)

M ≡ ∂Lt

∂t

∣
∣
∣
∣
t=0

∂x ≡
(

∂

∂x(1)
, . . . ,

∂

∂x(d)

)T

The condition (2) is supposed to be valid for all x from the data domain. Thus,
it puts constraint on the possible choice of g.

Another approximate approach of taking into account Eq. (2) consists in the
adding a penalty term

r(g;X) ≡ 1
2

∑

i

[

∂T
xi

g(xi)Mxi

]2
=

∑

i

∂T
xi

g(xi)Ci∂xi
g(xi)

Ci ≡ (Mxi)(Mxi)T



The Tangent Kernel Approach to Illumination-Robust Texture Classification 1011

to the original learning criterion by which minimization g meant to be found (e.g.
inverse margin, noise to signal ratio, etc.). This transforms original minimization
task into

g∗ = arg min
g

Rγ(g;X,y)

Rγ(g;X,y) = (1 − γ)R(g;X,y) + γr(g;X) (3)
γ ∈ [0, 1)

where R is the original learning criterion, X = (x1, . . . ,xN )T is the training
data set, y = (y1, . . . , yN )T contains labels of training objects and parameter γ
defines how is the penalty term important with regard to the R.

If we decide that g has linear g(x) = wTx + b and choose as a learning algo-
rithm the SVM [5] with R = 1

2‖w‖2, then the modified minimization criterion
takes a form

Rγ =
1 − γ

2
‖w‖2 +

γ

2
wTCw

C =
∑

i

Ci

By substitution

w̃ = [(1 − γ)I + γC]1/2 w

x̃ = [(1 − γ)I + γC]−1/2 x

we recover the original form of the SVM criterion: Rγ = 1
2‖w̃‖2. So, to implement

this technique we need only to redefine the matrix of inner products (kernel
matrix)

k̃(x,y) = x̃Tỹ = xT [(1 − γ)I + γC]−1 y (4)

If there is overlap between classes, then a soft-margin version of SVM algorithm
should be used. The modifications are straightforward and do not change Eq.
(4). For the sake of brevity we will use LTK-SVM (Linear Tangent Kernel SVM)
abbreviation to name the soft margin SVM algorithm with kernel defined by Eq.
(4). The extension of this approach to the non-linear discriminant functions g is
possible [3] but it is beyond of the scope of this paper.

3 Derivation of the Tangent Kernel for n-Dimensional
Histograms

Suppose that the input of the recognition system is a continues distribution
density function of an n-dimensional random vector η such that

η = etξ(θ)
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where ξ is a measurement made on a perfectly calibrated device, t is a parameter
responsible for the imprecisions in sensor calibration and θ is a set of parameters
which defines intra- and inter-class variability.

The distribution of the ”observed” η can be expressed in terms of the distri-
bution of ”ideal” ξ as

ρη(z1, . . . , zn) = e−ntρξ(e−tz1, . . . , e
−tzn)

To achieve better classification rates we need to built classifier robust to the
data transformations caused by the operator

Lsc
t ρ(z1, . . . , zn) = e−ntρ(e−tz1, . . . , e

−tzn)

This operator satisfies conditions Eq. (1) and thus, we can employ tangent kernel
SVM. By taking the first derivative of Lsc

t ρ at t = 0, we find that

Mscρ(z1, . . . , zn) = −nρ(z1, . . . , zn) −
n∑

j=1

zj∂zj
ρ(z1, . . . , zn)

In practice one deals with histograms (e.g. co-occurrence matrices) not with
distribution densities. Assuming that P = (Pk1,...,kn

) such a multi-dimensional
histogram (properly normalized to be an estimation of a density function) we
redefine the Msc operator as

(MscP)k1,...,kn
= −nPk1,...,kn

−
n∑

j=1

z
(kj)
j (∆jP)k1,...,kn

Here, z
(kj)
j are the centers of histogram bins in the j-th direction and ∆j is the

operator taking the (smoothed) finite differences of the histogram P in the the
same direction j. Assuming that u(P) is unfolding of an n-dimensional array
into a column vector, it is possible to write down the penalty term

r = wTCscw

Csc =
∑

i

u(MscPi)u(MscPi)T

Thus, the new similarity measure reads as

k̃(x,y) = xT{(1 − γ)I + γCsc}−1y

4 Numerical Experiments

As data for our experiments we used Brodatz textures 1.3.04 and 1.3.05 from the
[6]. Each image of 1024-by-1024 size and 8-bit depth was split into 64 128-by-128
non-overlapping patches. To imitate the change in the illumination conditions
each patch as a whole was multiplied by the randomly generated number uni-
formly distributed in the region [1−α; 1]. The α values in the range from 0 to 0.5
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Fig. 1. Learning curves for 16-by-16 co-occurrence matrices data set. α = 0

were used to create a number data sets. Afterwards, for each such data set we
computed 128 (by the number of patches) 2-dimensional co-occurrence matrices
of 16-by-16 and 32-by-32 sizes which served as an input of classifiers. Neither
contrast stretching nor histogram equalization was applied to data in any way
in all experiments presented in this paper.

We studied the difference in the performance of the conventional linear SVM
classifier and its tangent kernel version. To see how useful the usage of prior
knowledge can be for different sizes of training set the learning curves were
computed. The results were obtained by averaging over 30 hold-out experiments:
for each experiment we randomly took out 20% of all objects, the rest 80%
objects were used as the training pool. The learning curves were obtained for
each hold-out experiment by training classifiers on the sequence of the nested
training sets generated from the training pool.

In all experiments the ν regularization parameter [7] of SVM/LTK-SVM
classifier was optimized by grid search over the set of predefined values. For each
candidate value the preliminary classifier was trained on 75% data randomly
selected for the training procedure. The other 25% were used to measure the
performance and select the actual ν value. Using this value, the final classifier
was trained on the whole currently available training data set. Linear tangent
kernel SVM was trained at a number of γ values (no internal optimization). For
the smoothing of finite differences we used Savitsky-Golay filter of the first order.
The size of the filter window w was always set to 3.
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Fig. 2. Learning curves for 16-by-16 co-occurrence matrices data set. α = 0.1
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Fig. 3. Learning curves for 16-by-16 co-occurrence matrices data set. α = 0.5
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Fig. 4. Learning curves for 32-by-32 co-occurrence matrices data set. α = 0.5

Figures 1, 2 and 3 show the learning curves of the conventional linear SVM
and LTK-SVM (γ = 0.95) on the 16-by-16 co-occurrence matrices. It can be seen
that even at α = 0 (original illumination of images) the applying of modified
similarity leads to the better classification rates. The effect is more recognizable
at α = 0.1. However, larger variability in the illumination (α = 0.5) cannot be
compensated by the use of LTK-SVM.

On the other hand, LTK-SVM can cope with the such an amount of illumi-
nation variability being applied to the 32-by-32 co-occurrence matrices (Fig. 4).
Probably, this effect can be explained by the fact that the similarity measure
being derived for continues distributions gives better results for histograms with
finer bins.

5 Conclusions

We studied the possibility of application of the tangent kernel approach to the
stabilization of illumination conditions for better texture classification. The tan-
gent kernel approach shows significant advantages at smaller sample sizes com-
paring to the conventional SVM. Unlike the preprocessing methods, proposed
technique can be applied directly to the co-occurrence matrices even when raw
images are unavailable. The use of the tangent kernel approach does not require
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to select invariant features or select standard form of image histogram. All this
makes it to be a promising tool in many practical situations. However, there are
open questions: e.g. what is the optimal strategy to select the tradeoff parameter
γ or how necessary and convenient may be the exploitation of nonlinear kernels.
Definitely, more study is needed including testing on the real-world data.

Acknowledgments

This research was supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology program of the Ministry of Economic
Affairs.

References

1. R.M. Haralick, K. Shanmugam, and I. Dinstein. Textural Features for Image Clas-
sification. 3(6):610–621, November 1973.

2. R.M. Haralick. Statistical and Structural Approaches to Texture. Proceedings of
the IEEE, 67:786–804, 1979.

3. B. Schölkopf. Support Vector Learning. PhD thesis, Munich, 1997.
4. B. Schölkopf, P. Y. Simard, A. J. Smola, and V. N. Vapnik. Prior knowledge in

support vector kernels. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors,
Advances in Neural Information Processing Systems 10, pages 640–646, Cambridge,
MA, 1998. MIT Press.

5. V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, USA,
2000.

6. USC-SIPI Image Database.
7. B. Schölkopf, A. Smola, R.C. Williamson, and P.L. Bartlett. New support vector

algorithms. Neural Computation, 12:1207–1245, 2000.


	Introduction
	Tangent Kernel SVM Technique
	Derivation of the Tangent Kernel for n-Dimensional Histograms
	Numerical Experiments
	Conclusions

