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Abstract. An industrial rock classification system is constructed and
studied. The local texture information in many image patches is ex-
tracted and classified. The decisions made at the local level are fused
to form the high-level decision on the image/rock as a whole. The main
difficulties of this application lay in significant variability and inhomo-
geneity of local textures caused by uneven rock surfaces and intrusions.
Therefore, an emphasis is paid to the derivation of informative repre-
sentation of local texture and to robust classification algorithms. The
study focuses on the co-occurrence representation of texture comparing
the two frequently used strategies, namely the approach based on Haral-
ick features and methods utilizing directly the co-occurrence likelihoods.
Apart of maximum-likelihood (ML) classifiers also an alternative method
is studied considering the likelihoods to prototypes as feature of a new
space. Unlike the ML methods, a classifier built in this space may lever-
age all training examples. It is experimentally illustrated, that in the
rock classification setup the methods directly using the co-occurrence
estimates outperform the feature-based techniques.

1 Introduction

This study is concerned with classification of rocks in an industrial application
in which a rock is placed beneath a light source and imaged by a color camera.
Based on a high-resolution color image, the rock is as a whole assigned to a
class of interest. In our application, the association of a rock specimen to a class
depends on local texture properties of the rock surface. The nature of industrial
rock classification poses several challenges on the design of a pattern recognition
system. Because the rock surfaces are uneven the local texture information may
exhibit considerable variability over a single image. Moreover, the rocks contain
intrusions, which further increase the multi-modal nature of the class description.

In this study, we partition the design of the rock classification system into
three steps: the derivation of an informative representation of local texture,
the training of a local patch classifier and, eventually, the combination of per-
patch decisions into a single decision on the entire image/rock. We focus on an
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investigation of the first two steps and fix the combination strategy by using the
majority vote over the classification results in a set of local image patches. We
do not consider the use of color information in this study and work solely with
gray-level textures.

There exists abundant literature on the representation of texture for the
sake of classification [1, 2, 3]. In our study, we have focused on one of the most
commonly used strategies based on co-occurrence matrices [4]. A co-occurrence
matrix (CM) estimates the gray-level dependencies in a local neighborhood for a
given displacement step and angle. Two major approaches for building classifiers
using the gray-level co-occurrences are used. The majority of studies assume
that the rich texture description present in the co-occurrence matrix must be
first reduced to a set of features because the original co-occurrence distribution
is too large to be used directly for classification [4, 5]. Typically only a subset
of the original features, proposed by Haralick in [4], is used [1, 6]. Principally
different approach was adopted by Vickers and Modestino [7] who consider the
co-occurrence entries directly as features. The decision is derived by a maximum-
likelihood classifier (ML), operating on co-occurrence matrices estimated per-
class. Instead of using the class prototypes1, Ojala et.a. [8] derived separate
prototype from each image patch in the training set. Therefore, the resulting
ML classifier mimics rather the nearest neighbor approach.

It is an open question which of the two major strategies is beneficial in the
rock classification problem. Focusing more on the likelihood-based methods, we
observe that the ML-based classifiers effectively derive their decisions only from
the stored prototypes of the class or local co-occurrences. The existing abun-
dant collections of training image patches are used only for the estimation of the
class co-occurrences, or even entirely discarded apart of local prototypes in the
nearest-neighbor sense. In order to fully leverage the existing training sets, we
also adopt a recently developed strategy for building classifiers on (dis)similarity
representations (Duin et.al. [9, 10, 11]). Here the likelihoods to prototypes are
considered as dimensions of a new space, which is populated by all available
training examples. A general-purpose classifier, such as the Fisher linear discrim-
inant (FLD), built in this space may thereby exploit the correlations between the
likelihoods to prototypes. Additional advantage of this approach is that apart
of likelihoods also other dissimilarity measures for probability distributions may
be used, such as the Kullback-Leibler divergence. We illustrate, that this classi-
fication strategy is beneficial for multi-modal rock classification problems as it
facilitates derivation of non-linear classifiers.

In the next section, we introduce the rock classification system. Section 3
explains how the discussed data representation and classifiers may be built. In
Section 4 we describe a set of experiments on a dataset of rock images. Finally,
in the last section, we conclude our findings.

1 In order to emphasize that the co-occurrence models are estimated from the train-
ing data, we adopt the pattern recognition terminology in this paper and refer to
prototypes.
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2 The Rock Classification System

The rock classification system is trained using a set of labeled images. Because
the classification is performed on the basis of local textures, the set of local image
patches must be first extracted from the training images. Each image patch is
accompanied with the information on the class of rock it represents. The set
of all labeled image patches is processed so that the local texture information
captured in each patch is properly represented. In this paper, we represent the
local textures by the co-occurrence estimates. For the sake of classification, this
intermediate texture representation must be transformed accordingly. It is either
further reduced to a set of feature values or represented by a set of likelihoods
to prototype co-occurrences. In this representation, the classifier is finally built
using the training set of labeled local patches.

When processing of a new image by the trained rock classification system,
a set of image regions is first extracted. The texture within each patch is rep-
resented by the co-occurrence matrix and the classifier-aware representation is
derived similarly to the training stage. The trained patch classifier is invoked
on each of the image patches and its decisions are fused by the majority voting
combiner to a decision on the level of the complete image/rock.

3 Likelihood-Based Classification of Local Textures

The co-occurrence matrix P, estimated from the image patch r given the dis-
placements ∆x and ∆y is defined as:

P (g1, g2) = {pairs(g1, g2)|r(x, y) = g1 and r(x + ∆x, y + ∆y) = g2}, (1)

where g1 and g2 denote the gray-levels, r(x, y) represents the gray-level at co-
ordinates x and y in the image patch r and the functional pairs returns the
number of situations.

The likelihood of a co-occurrence estimate P with respect to the prototype
co-occurrence Q may be expressed as:

L(P,Q) =
∑

g1,g2

P (g1, g2)ln
Q(g1, g2)∑

g1,g2
Q(g1, g2)

(2)

The C-class maximum-likelihood classifier assigns a new observation P to the
class of the closest prototype:

ω(P) = arg max
c

max
k

{L(P,Qc
k)}, (3)

where ω(P) denotes the class of the observation P and Qc
k represents the k-th

prototype of the class ωc, c = 1, ..., C.
Traditionally, the ML classifier represents each class by a single prototype.

This is estimated by averaging the training population of the local co-occurrences
for each class [7]. This approach is analogous to the nearest mean classification.
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The ML classifier may also utilize more prototypes per class each of them directly
selected from the training set [8]. This strategy resembles the nearest-neighbor
classifier.

3.1 Training the Classifier on the Likelihood Representation

The alternative classification scheme considers the likelihoods computed with
respect to a set of M prototypes as dimensions of a new M -dimensional feature
space where a co-occurrence estimate P may be represented by the vector:

xL = {L(P,Qm)}M
m=1, xL ∈ RM . (4)

In order to train a classifier in this representation, the space is populated using
a set of likelihoods corresponding to Np training image patches. The training set
will, therefore, contain Np labeled feature vectors xL in the M -dimensional space.
We propose to train the Fisher linear discriminant (FLD) in this new space. For
the two-class situation it becomes:

ω(P) = sign

(
M∑

m

wkL(P,Qm) + b

)
. (5)

In the multi-class situation the minimum least square solution may be used,
based on regression [12]. Note that the class membership of prototypes is not
directly used by this classification rule, on contrary to the ML classifier (3).

The Equations (2) and (5) may be rearranged to show that the linear dis-
criminant built in the space spanned by likelihoods delivers linear solution with
respect to the original space defined by the bins of the co-occurrence distribution.
The proposed linear discriminant yields, in fact, a weighted-likelihood solution
as opposed to the maximum-likelihood classifier (3). A non-linear classifier may
be constructed by leveraging a different distance measure for probability distri-
butions, such as the Kullback-Leibler divergence (KL) [13]:

dKL(P,Q) =
∑

g1,g2

P (g1, g2)ln
P (g1, g2)
Q(g1, g2)

+
∑

g1,g2

Q(g1, g2)ln
Q(g1, g2)
P (g1, g2)

. (6)

By comparing the Equations (6) and (2) we can observe the close relation be-
tween both measures. Each of the sums in the Kullback-Leibler divergence (6)
may be decomposed into entropy and likelihood terms.

4 Experiments

4.1 Dataset Description

The dataset used in our experiments contains 72 color images from two classes of
rocks, each represented by 36 images with resolution of 1392 times 1040 pixels.
Images were acquired under controlled lighting conditions. Apart from cleaning,
the rocks remain untreated with no cutting or polishing applied. Each image,
therefore, views a multi-faceted rock surface. The Figure 1 shows several patches
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extracted from the images. Patches in each row were extracted from images of the
same class. Note that the patches exhibit significant inhomogeneity and intensity
variation caused by uneven rock surfaces and frequent intrusions.

Fig. 1. Examples of image patches for each of the two classes. Each row corresponds
to examples of one class

4.2 Texture Descriptions

We consider the following texture descriptions based on co-occurrence:

– Co-occurrence bins are directly considered as features.
– 14 Haralick features computed from the co-occurrence matrix.
– Likelihoods with respect to co-occurrence prototypes considering either mean

class prototypes or local prototypes as discussed in Section 3.
– Kullback-Leibler (KL) divergences to local co-occurrence prototypes.

For the sake of comparison, we also include two base methods widely used for
texture classification:
Local Binary Pattern features (LBP). describe a distribution of binary patterns
constructed by thresholding a micro-region and accumulating this information
over an entire image patch [14]. The LBP features were found to be considerably
more robust to varying illumination than the techniques using the gray-levels
directly. Three types of LBP features are computed with 50 features in total.

Gabor filters. A bank of 24 Gabor filters is designed according to [15]. A total set
of 48 features is formed by means and standard deviations of the filter responses
computed over an image patch.

4.3 Data Representation and Classification

Prototype selection. For the sake of simplicity, we employ the random selection
of prototypes. This allows us to estimate the classifier performance for a growing
number of prototypes.

Regularization of the similarity measures. While the class co-occurrence proto-
types are derived from thousands of observations, each of the local co-occurrences
is estimated from a single image patch. Due to the limited amount of data, some
bins of the local co-occurrence histogram may remain empty. As it can be seen
from Equation (2), the likelihood of any observation to the prototype with an
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empty bin becomes infinitely small. In order to avoid situations where a test ob-
ject cannot be classified because the likelihoods to all prototypes are infinitely
small, we introduce the regularized likelihood measure using prototypes:

Qreg = Q(1 − δ) + δG−1
∑

g1,g2

Q(g1, g2), (7)

where G denotes the total number of co-occurrence bins and δ stands for the
regularization parameter. For the Kullback-Leibler divergence (6), both the ob-
served and prototype co-occurrences P and Q are regularized. The regularization
parameter was fixed to δ = 10−6 in all the experiments.

Principal Component Analysis. In several experiments, the supervised version
of PCA was employed which estimates the pooled covariance matrix using the
per-class covariances [12]. In all cases 0.99 of variance was preserved.

Classifiers. In the experiments, standard classifiers were used such as the nearest
neighbor classifier (1-NN), Fisher linear discriminant (FLD) or quadratic classi-
fier assuming normal densities (QDC) [12]. We refer to the maximum-likelihood
classifier with class prototypes as NMC (nearest mean classifier).

4.4 Experimental Setup

Cross-validation. In order to estimate the performance of the rock classification
system utilizing different texture characterization and classifiers we have adopted
a 10-fold cross-validation procedure over images. Thereby, all the local patches
originating from one image, appear always together either in training set or in
the test set. All the steps required for training of the image classifier i.e. the
estimation of the co-occurrences, computation of likelihoods or dissimilarities,
extraction of texture features and the training of the patch classifiers is carried
only on the images in the training set.

Preprocessing. Vickers [7] and Valkealahti [16] propose to equalize the histograms
of local image patches. This procedure assumes that the first-order statistics of
the local histogram are not informative and thus may be removed. Experiments
on our dataset show that the mean and standard deviation of the gray-level com-
puted over local neighborhoods carry important discriminatory information. We
have, therefore, decided not to perform any histogram equalization and rather
maintain as constant illumination as possible during the acquisition process.

The original color images were converted to gray-level. All the methods used
image patches of 64×64 pixels. The patches are extracted without mutual overlap
so that each image is represented by cca 330 image regions. In each fold of
the cross-validation procedure, about 20 000 local patches are used for training
and about 2 600 image patches during testing. Prior to the estimation of co-
occurrence matrices, the histograms of the local regions are reduced from 256 to
8 levels. All co-occurrence matrices are estimated for one pixel displacement in
the vertical direction [4].
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4.5 Results and Discussion

The Table 1 summarizes our rock classification experiments. For each method,
three error measure are given, namely the classification error over image patches,
the error over images obtained by majority voting and the total number of test
images (e), misclassified during the cross-validation.

Table 1. Results of the rock classification experiment with 72 images. Estimated mean
errors over image patches and over images are given with the respective standard
deviations of the mean estimators. The last columns e denotes the total number of
erroneously classified images in the cross-validation experiment

method texture description classifier
error (patches)

µ̂ (σ̂µ)
error (images)

µ̂ (σ̂µ)
e

1 CM, ML, class proto. NMC 0.327 (0.023) 0.258 (0.040) 19
2 CM, ML, regul., 10 proto. 1-NN 0.416 (0.035) 0.371 (0.044) 27
3 CM, ML, regul., 50 proto. 1-NN 0.380 (0.020) 0.238 (0.052) 17
4 CM, ML, regul., 200 proto. 1-NN 0.362 (0.012) 0.188 (0.045) 14

5 CM, likelihood, class proto. FLD 0.328 (0.022) 0.258 (0.032) 19
6 CM, likelihood, regul., 10 proto. FLD 0.314 (0.021) 0.217 (0.043) 16
7 CM, likelihood, regul., 50 proto. FLD 0.306 (0.020) 0.229 (0.049) 17
8 CM, likelihood, regul., 200 proto. FLD 0.305 (0.020) 0.217 (0.043) 16

9 CM, KL, regul., 200 proto. 1-NN 0.354 (0.012) 0.167 (0.029) 12
10 CM, KL, regul., 10 proto. FLD 0.304 (0.022) 0.167 (0.039) 12
11 CM, KL, regul., 50 proto. FLD 0.269 (0.018) 0.125 (0.039) 9
12 CM, KL, regul., 200 proto. FLD 0.271 (0.017) 0.125 (0.039) 9

13 CM, directly used as features FLD 0.305 (0.021) 0.229 (0.049) 17
14 CM, 14 Haralick features FLD 0.316 (0.024) 0.221 (0.045) 16
15 CM, 14 Haralick features, PCA QDC 0.378 (0.018) 0.354 (0.032) 26

16 LBP, 50 features FLD 0.371 (0.021) 0.196 (0.047) 14
17 LBP, 50 features, PCA 0.99 QDC 0.363 (0.018) 0.225 (0.047) 16

18 Gabor filers, 48 features FLD 0.345 (0.029) 0.283 (0.053) 21
19 Gabor filers, 48 features, QDC 0.355 (0.024) 0.271 (0.052) 20

PCA 0.99

First part of the table corresponds to the likelihood-based methods. The per-
image performance of the traditionally-used ML classifier with class prototypes
(row 1) can be improved by utilizing the local co-occurrence prototypes in the
nearest neighbor fashion (rows 2-4). Note, that while the method 4 reaches lower
per-image error than the classifier 1, its error over patches remains higher.

In order to understand this behaviour, one needs to focus on the voting
combiner based on the ratio of correctly classified patches within an test image.
The distribution of this ratio computed for all the test images is depicted in
Figure 2 for the ML classifier 1 (on the left) and the nearest neighbor rule 4 (on
the right). Although exhibiting lower error over patches, the model-based ML
classifier 1 suffers (on the image level) from the problem heterogeneity i.e. from
the existence of images that are very different from the model but still belong
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to the same class. On the contrary, the nearest neighbor rule 4 is able to cope
with the problem multi-modality.

This point is illustrated again on the performance of the FLD classifiers
trained on the likelihood representation (methods 6-8). Compared to the near-
est neighbor rules based on the same prototypes (rows 2-4) the classifiers 6-8
exhibit significantly better per-patch performances. This is understandable as
the methods 6-8 utilize all available 20 000 training examples in the 200D spaces
while the methods 2-4 use only the 200 training examples. The per-image error
of the nearest-neighbor classifiers 2-4, however, decreases significantly faster and,
eventually, the method 4 even outperforms the FLD classifier 8. As mentioned in
Section 3.1, the FLD classifier based on likelihoods is still a linear discriminant,
similarly to the ML classifier 1. Therefore, we attribute the better performance
of the weaker nearest neighbor classifier 4 to its non-linear nature.

The rows 9-12 in Table 1 refer to classifiers based on the Kullback-Leibler
divergence. Based on the identical sets of prototypes as the likelihood-based
classifier 4, the nearest neighbor rule 9 yields a better performance. Further im-
provements are possible by training the FLD classifiers on the Kullback-Leibler
divergences as all the available training examples are now exploited. The algo-
rithms in rows 11 and 12 yield the best overall results in our study (12.5% of
error over images). We conclude that this improvement over the likelihood-based
methods 6-8 is caused by the non-linearity introduced by the Kullback-Leibler
divergence.
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Fig. 2. The effect of the voting combiner on two likelihood-based classifiers: the linear
ML classifier 1 (left) and the nearest neighbor rule 4 (right). For each of the test
images in cross-validation, the ratio of correctly classified patches is computed. The
figures depict the histogram of this ratio over all 72 images. Although the mean error
over all patches is lower for the classifier on the left, the fraction of images misclassified
by voting (left of the dashed line) is higher

The rows 13-15 refer to the feature-based methods utilizing directly the co-
occurrence matrices (13) or Haralick features (14,15). It is interesting to note
that the co-occurrence bins directly used as features (13) yield better result than
the traditionally used ML classifier 1. Employing the Haralick features results in
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an additional minor performance improvement. From the results, we conclude
that the use of quadratic classifier in a PCA-reduced representation (15) is not
beneficial.

The rows 16-19 represent methods based on different principles than co-
occurrence, namely the Local Binary Pattern features (Ojala et.al. [14]) and the
features derived from the bank of Gabor filters. While the Gabor features deliver
only mediocre performance, the LBP features yield better or comparable results
that the best likelihood-based approaches. The LBP features are designed to be
more resilient to variable illumination than the co-occurrence matrices. Based on
the similar performance of both approaches we conclude that the illumination
in our dataset is rather constant.

5 Conclusions

The rock classification employs a local texture description in order to classify the
high-resolution images into a set of pre-defined classes. Unlike the existing stud-
ies which deal with images of inhomogeneous but polished and cut rocks [17, 18],
the images used in this study depict rocks with uneven surfaces and intrusions.
The local textures extracted from a single image therefore exhibit significant
variability. The aim of this paper was to understand which texture representa-
tions and what types of classifiers are robust and well-performing for this type of
problem. We have focused on the family of texture representations based on the
co-occurrence matrix investigating two distinct approaches to texture character-
ization. The first derives the Haralick features from the co-occurrence matrices
and employs a conventional classifier. The second approach leverages the co-
occurrence estimates directly and is traditionally bundled with the maximum-
likelihood classifier.

The maximum-likelihood classifier operating in the nearest neighbor fashion
on the local co-occurrence estimates appears to be beneficial to the tradition-
ally employed ML classifier utilizing the class-specific co-occurrences. Although
weaker in classifying individual patches, the nearest neighbor classifier yields a
non-linear class-separation boundary. The traditional maximum-likelihood clas-
sifier operates on the nearest mean principle and, therefore, cannot cope well
with the multi-modal rock-classification problem.

The maximum-likelihood classifiers use the available training set only for esti-
mation of class prototypes (the nearest mean scenario) or even entirely discard all
the training examples apart of prototypes (the nearest neighbor approach). The
proposed alternative classifier is derived by training the Fisher linear discrimi-
nant on likelihoods to prototypes. It uses all the available training examples and
leverages correlations between the likelihoods (or dissimilarities) to prototypes.
While this method still yields a linear classifier when applied to likelihoods, the
use of other distance measures such as the Kullback-Leibler divergence results
in a non-linear decision rule. The dissimilarity-based classifiers built using the
Kullback-Leibler divergence also deliver the highest performance of all studied
approaches.
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Surprisingly, the linear classifier built on Haralick features outperforms the
state-of the art maximum-likelihood classifier operating directly on co-occurrences.
However, the more sophisticated treatment of dissimilarity representations yields
systems, performing significantly better than any of the feature-based classifiers.
We conclude that while the Haralick features are simple and provide good ac-
curacy, the dissimilarity-based classifiers offer higher flexibility and eventually
better performance.
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PR-Tools 4.0, a Matlab toolbox for pattern recognition. Technical report, ICT
Group, TU Delft, The Netherlands (2004) http://www.prtools.org.
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