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Abstract

The literature on neural networks shows some spec-
tacular examples in which large networks are trained
by small sample sets. It is discussed how such results
relate to the insights on the complexity of pattern rec-
ognition systems. The capacity as introduced by Vap-
nik [2] is considered but found to be insufficient for
explanation. A proposal is made for the definition of
an actual capacity that gives a more clear under-
standing of the observed phenomena. Based on these
concepts situations of superlearning are defined and
explained. Finally it is discussed how networks in su-
perlearning situations might be trained such that gen-
eralization is to be expected.

1. Introduction

The application of artificial neural networks for
pattern classification shows a number of surprising
characteristics, at least from the traditional pattern
recognition point of view. Huge nonlinear classifiers,
in term of numbers of adjustable parameters, are
trained by sometimes very small sets of examples. In
many real world applications successes are reported
where one might wonder why traditional pattern rec-
ognition methods have not been tried earlier. Obvi-
ously such studies are often done by people not
familiar with the field of pattern recognition. On the
other hand, from inside this field the interest in the
neural network wave arose relatively late. Clearly a
number of prejudices had to be removed.

The purpose of this paper is to discuss as clear-
ly as possible some of the aspects of neural network
training and to explain the behavior for a readership
from the pattern recognition society. Some existing
concepts will be clarified and some new ones will be
introduced in order to be able to explain what might

be going on. It is not the purpose of this paper to
present new scientific experiments and results. We
will focus on the understanding of old ones.

A typical example is the NETtalk experiment
as reported by Sejnowski and Rosenberg [8]. One of
their experiments concerns a network with more than
25000 adjustable parameters, trained by about 5000
examples distributed over 26 classes. These are large
numbers. The striking point, however, is that the num-
ber of parameters is a multiple of the number of exam-
ples. One would expect, and we will explain that
further, that the 25000 parameters can be given such
values that all 5000 training examples are classified
correctly, resulting in an apparent error (resubstitu-
tion error) of zero: εΑ = 0. As this is to be expected re-
gardless of the distribution of classes, there is no
generalization to be expected, resulting in a high clas-
sification error (more than 50% because of the 26
classes) on a test set: ε > 0.5. Both expectations are
disproved experimentally. Sejnowski and Rosenberg
find εΑ≈ 0.05 and ε ≈ 0.10.

In the literature on neural networks many such
examples can be found. See also [5], [9] and [10], dis-
cussed below. It is not the intention of this paper to
give an extensive review.

In section 2 it will be discussed what generali-
zation capabilities might be expected from trained
classifiers in relation with the classifier capacity as in-
troduced by Vapnik [2]. This concept will be modified
as actual capacity in section 3, giving us the possibil-
ity to explain the concept of superlearning. Some ar-
tificial examples and some experiments from
literature are presented in section 4. In section 5 the
way neural networks are trained is related to the sur-
prising results. Finally some general conclusions are
presented.



2. On the expectation of generalization

Suppose a training set of m training objects is
given and a classifier is found that classifies α φραχ−
τιον εA of them incorrectly. What is the generaliza-
tion of this result?, i.e. what can be expected for the
error ε of the application of this classifier to new ob-
jects? Before considering the answers that have been
given to this question we will first try to formulate
why there should be a generalization at all.

Why is it that a classifier that classifies a set A
of m objects correctly or almost correctly, is expected
to show a similar behavior to another set B? A good
reason may be that both sets are selected in a similar
way (in statistical terms: randomly drawn from the
same universe) and that thereby a generalization of A
is valid for their common universe and consequently
also for B. However, this is not sufficient as not each
classifier is a generalization of its training set. Only
under particular conditions this holds. In the general-
ization process the specific peculiarities of A should
be deleted. A common way to do this is to limit the
flexibility of the classifier. The less alternatives that
are investigated for a classifier, the better. E.g., if the
entire set of continuous functions is inspected for the
classification of A, one can be sure that the resulting
classifier is adapted to details in A that do not hold for
B. In this context it is not a reassuring property of neu-
ral networks that they are universal approximators: if
enough hidden units are provided, they can approxi-
mate almost any function, see Hornik [14] and
Funahashi [15].

So, for generalization the training set A should
be representative for B and the set of possible classi-
fiers should be small. However, one likes to know:
how small, and moreover, how does this relate to the
size m of the training set A? A first answer has been
given in 1965 by Cover [12] for a set of linear and
polynomial classifiers: If k is the number of parame-
ters (features in case of linear classifiers), then if
k = m any randomly labeled set of objects can be clas-
sified correctly (εΑ = 0). If k = m/2 there is a probabil-
ity of 50% that a randomly labeled set of m objects
can be classified entirely correctly. As the labeling is
random an error of zero has no meaning for generali-
zation. Cover chose the 50% level for his bound k<m/
2. Later Foley [13] published Monte Carlo results by
which for a desired level of significance bounds like
k < m/5 or k < m/10 can be chosen.

The typical behavior of the classification error
ε and the apparent error εΑ as a function of k is shown
in fig. 1. This behavior is called “the peaking phenom-
enon”, see Jain and Chandrasekaran [11]. The devia-
tion ε - εΑ is a stochastic quantity depending of the
realization of the training set. The entire figure de-
pends on the application and can only be found for
very large training sets and for simulated examples.
For such an example the optimal value of k can be es-
timated. Raudys [18], [19] has published many of
these simulation studies, resulting in some practical
guidelines, see also Raudys and Jain [20]. It should be
emphasized that these studies give insight in the ex-
pected behavior over repeated sets of training objects
of classes that are at best similar to the application one
is dealing with.

A worst case approach on the deviation ε - εΑ
has been made by Vapnik [2]. He gives probabilistic
bounds for this deviation based on the concept of the
capacity of the classifier. The capacity VC (also called
the Vapnik-Chervonenkis dimension) is the size of the
largest training set for which all dichotomies can be
realized by the classifier, i.e. for each labeling of this
training set a classifier with εΑ = 0 can be found. The
idea is that the actual learning set may be the worst
one. For this set the probability of a given deviation is
maximum. Vapnik gives bounds for such probabilities
in terms of VC and m. Devroye [21] used the same the-
ory for investigating the consistency of a number of
classifiers.

It is important to understand the difference be-
tween the capacity VC and the number of free param-
eters k in a classifier. For linear and polynomial
classifier they are directly related: VC = k + 1. For
these cases Vapnik’s probability bounds are a direct
extension of the work of Cover [12]. For other classi-
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Fig. 1. The peaking phenomenon



fiers, or if not all parameters are free, no such relations
exist. For some simple examples see fig. 2 and 3. In
fig. 2 a circular classifier in R2 is shown for which just
its center and not its radius can be adjusted. By adjust-
ing these two parameters all dichotomies of the four
given points can be reached. So VC = 4, at least. For a
linear classifier in R2 with also two free parameters
VC = 3. Note that this holds for the given four points,
and not for an arbitrary set of four points.

In fig. 3 the classifiers in R1, S1(x) = w1 x + w0
and S2(x) = sin(ωx) are compared. S1(x) can separate
two points at most, so VC = 2. However, for almost

any finite set of points and for each desired labeling a
value of ω can be found such that S2(x) separates
them, so for this classifier with just one parameter
holds VC → ∞.

It is now of interest what the capacity is for a
neural network. Baum and Haussler [3] give the upper
bound VC ≤ 2W log(eN) for a neural network with W
weights and N units. Whether this bound can be
reached and for what set of points is not clear. In fig.
4 is shown how m points in Rk can be classified arbi-
trarily by a neural network with m/k hidden units and
m + m/k weights, providing a lower bound for VC. In
this network the first layer of m/k units isolates one of
the classes by pairs of linear functions. The second
layer provides the final assignment. See also Baum
[1]. For a multiclass situation VC > W/2. So, such con-
structions show that for classifying m objects correct-
ly (εA = 0), a feedforward network with about W = 2m
weights exists that can do it. The remarkable thing is
now that this is not found in many applications with
large networks, e.g. [5] and [8]. The training rule is
apparently not able to find such solutions. Reasons
can be: finite training time, parameter settings, etc.
This defect of the training rule is very profitable, as
zero-error solutions as given in fig. 4 have no general-
ization power whatsoever.

So we have to conclude that as a consequence
of the fact that the training rule (usually backpropaga-
tion) does not do what it is supposed to do: minimiz-

Fig. 2. A circular decision function with fixed radius
can classify 4 points in R2 in any way.
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A nonlinear classifier may have an unbounded
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Fig. 4. Almost any set of m points in Rκ can be arbi-
trarily classified by a network with m/k hid-
den units and m +m/k weights



ing the error, a good generalization is obtained. A
better training rule, in the sense that a better minimi-
zation is reached, may thereby be counterproductive:
a larger generalization error is reached.

This result can be explained by introducing a
training rule related capacity VR that is smaller than
the classifier capacity VC. If now the following holds:

VR < m < VC

then the m training objects are used to train a
classifier with such a large capacity that no generali-
zation has to be expected, but as it is trained by a rule
for which the capacity is small enough, generalization
can still be reached. An example of this situation is
the estimation of a linear classifier for m objects in Rk
while m < k. Here Fisher’s linear discriminant can not
be used as the scatter matrix will be singular. Howev-
er, the more simple nearest mean method may still
yield a reliable classifier.

Focussing or restricting the training rule to a
small set of solutions can also be described in terms
of regularization, a technique for solving underdeter-
mined sets of equations, e.g. see Sjöberg and Ljung
[6] and Moody [7]. Here expressions are derived for
the expectation of the deviation ε - εΑ like:

Ε{ε(λ) - εΑ(λ)} = 2 σ2
eff peff(λ)/m

as presented by Moody [7]. λ is an adjustable regular-
ization parameter, peff(λ) is the effective number of
parameters as result of the regularization and σ2

eff is
the effective output noise of the classifier. Three
points are important to notice:

1. Here ε and εΑ are mean square errors and not prob-
abilities of error!

2. It has already been illustrated above that the num-
ber of parameters is not a good measure for the ca-
pacity of a classifier. This does not seem to hold
for the topic of function approximation as studied
by Moody.

3. The expression tells something of the deviation,
the difference between the true error ε and the ob-
served error εΑ. By measuring εΑ and estimating
the right hand term, an expected value for ε(λ) is
found. Vapnik’s theory presents a probabilistic up-
perbound for this error.

3. The actual capacity of a classifier and
superlearning

The above mentioned theory on classifier ca-
pacity is based on a possible worst case situation: the
data configuration for which the largest number of di-
chotomies can be realized by the classifier. However,
in a practical situation a dataset is given and in theory
it can be verified whether the data is in the worst case
or not. If not, a smaller number of dichotomies are
possible, resulting into a smaller actual capacity VA.
So we have:

VA ≤ VR ≤ VC

This suggests that generalizable results can be ob-
tained for training sets that are smaller than the train-
ing rule capacity:

VA ≤ m ≤ VR ≤ VC

In such a situation the special data configuration
makes it possible to get a generalizable classifier by a
training rule from which it cannot be expected as
m ≤ VR. This will be called superlearning. Such a spe-
cial data configuration might be caused by a high cor-
relation in the data. Also nonlinear dependencies are
of importance as the neural network is a nonlinear
classifier. If the data is located in a linear or nonlinear
subspace of the feature space large numbers of possi-
ble classifiers will not be distinguishable anymore as
the intrinsic dimensionality of the data does not allow
it. The following example may elucidate this. If we
are looking for a linear classifier in R100 based on 50
training objects no generalization can be expected.
However, if these 50 objects are located in a 5-dimen-
sional subspace of R100, generalization may very well
be possible.

4. Examples

We will now discuss a few examples that illus-
trate the presented ideas about the actual capacity and
the superlearning phenomenon.

4.1 Example 1

Fig. 5 shows two normally distributed classes
in R2. For each class just 5 training objects are given.
Both classes have a very large variance in one direc-
tion. Methods like the nearest mean and the nearest
neighbor will fail. If R2 is rotated into a higher dimen-
sional space, say R20 and becomes a subspace of it,
also parametric methods based on the estimation of



normal distributions will fail. However, an attempt to
optimize the separability between the classes by an
error minimizing classifier like a neural network, can
yield a generalizable result in spite of the large capac-
ity of the classifier (VC = VR = 20, m = 10). Such a so-
lution may also be found by a principal component
analysis, followed by Fisher’s linear discriminant.
The neural network may combine this in a single ap-
proach.

4.2 Example 2

Suppose f(x) is some arbitrary function on R1,
say some frequency spectrum. Let the samples x1,
x2,... xk be the feature input to a classifier that has to
distinguish between two types of curves for f(x). Sup-
pose that the intrinsic variations between the function
are just caused by shifts and amplitude variations: ∀i:
fi(x) = a f0(x-b). This implies that all feature vectors x,
independent of k, are located on some, possibly non-
linear, 2-dimensional subspace of Rk. Independent of
k, about 10 training funtions(m = 10) may now al-
ready give a generalizable result for a linear classifier
as in spite of VC = k we find for the actual capacity
VA = 2. Here we see that increasing k by adding noise
free new samples of the functions does not necessarily

result in a peaking result, in agreement with the intu-
itive notion that a better functional description is ob-
tained. This is a possible explanation of the results of
a paper by Ciftcioglu et al. [10] in which the authors
report to find reliable results with a feed forward net-
work with 512 weights trained by just 6 examples!

4.3 Example 3

In the ICPR11 conference, 1992, Guyon, Vap-
nik and others [4] presented an interesting paper in
which they study the effective capacity, which seems
to combine our training rule capacity VR and actual
capacity VA . They show experimentally that a de-
creasing effective capacity first increases the perfor-
mance of the classifier (increased generalizability
caused by a smaller set of inspected classifiers) and fi-
nally decreases the performance (the good classifiers
are not represented anymore in the set of inspected
classifiers).

This paper is for another reason also of interest.
The application is character recognition and the fea-
tures are just pixel values. In the preprocessing the
characters are heavily blurred. Blurring is a linear op-
eration in the feature space. It is equivalent to a linear
operation on the weights in the first layer of a net-
work. So any network classifier that is found after
blurring the input characters, is equivalent to a net-
work of the same size for non-blurred characters.
Why is it that using pixel values of the original char-
acters are worse features than pixel values of blurred
characters as the resulting feature spaces differ only
by a linear operation? A possible answer in our termi-
nology is that the blurring operation transforms the
data such that the actual capacity of the classifier de-
creases. The blurring operation probably results in a
feature space in which the distances between objects
better represent the resemblance between the original
characters.

4.4 Example 4

Kamata et al. [9] have studied a remote sensing
application using 7 bands. In windows varying from
1 x 1 to 5 x 5 pixels recognition tasks are performed
with 5 classes. So the dimensionality of the feature
space ranges from 7 x 1 x 1 = 7 to 7 x 5 x 5 = 175.
A network with one hidden layer with 10 units is
used. So the number of weights ranges from 80 to
1800. The authors use 5 x 10 = 50 training examples
and 5 x 30 = 150 test examples. The network is al-

R2

Nearest Mean Classifier

Nearest Neighbor Classifier

R2 rotated in R20 ->

 parametric solutions impossible

Possible neural net solution

Fig. 5. 5+5 points in a 2-dimensional subspace may
be sufficient to construct a generalizable
neural net classifier.



ways trained until all training objects are classified
correctly (εA = 0.0). This convergency cannot be
reached for the 1 x 1 window, which is thereby not
tested. In table 1 the test results for the other window
sizes are listed. The test results in the right column
show the typical peaking characteristic. First an in-
crease of performance, then, for higher dimensionali-
ties and more complex networks a deterioration. The
remarkable point in this table is the zero error for the
3 x 3 window size. Here the authors train in a 63 di-
mensional feature space a network with 680 weights
and yield a perfect generalizable result. The network
is trained until a zero error for the training set is
found. This implies an almost unbounded training ef-
fort. The generalizable result for the 3 x 3 window is
thereby obtained by a very low value of the actual ca-
pacity VA, probably caused by the high correlation be-
tween the bands and between the pixels in a window.
This also explains the not perfect, but very good re-
sults for the larger windows. A larger window increas-
es the dimensionality, but hardly the intrinsic
dimensionality if the pixel noise is small.

5. Neural network training

Many user adjustable parameters influence the
result of training a neural network: the number of fea-
tures, data normalization, the number of hidden units,
input and output coding, step size, momentum term,
batch size, stopping criterion, number of repeated ini-
tializations, value of the initial weights, etcetera. They
all influence the training rule capacity and thereby
they also possibly influence the actual capacity as
they increase or decrease the set of possible classifiers
on the dataset. By each of these parameters the good
classifiers may be deleted from this set and cannot be
found thereby. On the other side, by each of these pa-
rameters the set of possible classifiers can be made
that large that the good classifiers cannot be selected

by the small training set (m < VA). “Training a neural
network can become a user’s nightmare”, Weiss and
Kulikowski [16].

In almost any application a number of initial
experiments have to be done in order to find the right
settings of the above parameters. They are sometimes
mentioned in the paper, but almost never reported in
detail. However, they influence the deviation ε - εA. A
second problem in neural network training is that it is
very time-consuming. A third point to notice is that
each neural network training result has a random
component due to the set of random initializations.
These three aspects make it almost impossible to set
up the correct leave-one-out or bootstrap procedures
as developed in the statistical error estimation litera-
ture for correcting the above deviation and using the
complete set of training objects exhaustively, see
Hand [17]. An advisable procedure might therefore
be the following:

1. Hold out a set of test objects from the training set
that is used for the initial experiments.

Error

no. of updates

101 102 103 104 105

independent test: ε

learning result: εA

Fig. 6. Training using an independent test set

.

Table 1: Review of some results by Kamata et al. [9]

window size network size no. weights no. iterations test result ε
2 x 2 28 x 10 x 5 330 1720 0.033
3 x 3 63 x 10 x 5 680 240 0.000
4 x 4 112 x 10 x 5 1170 170 0.047
5 x 5 175 x 10 x 5 1800 170 0.053



2. Train the network a number of times (e.g. 10) with
different sets of initial weights and use one of the
test sets for a stopping rule, see fig. 6. This pre-
vents the network from overtraining by reducing
the number of classifiers to be inspected.

3. The best network according to the first test set
gives for this test set again a positively biased re-
sult. This bias can be estimated by Hoeffding’s in-
equality, see Vapnik [2].

In most traditional pattern recognition methods one
would afterwards combine the testset and trainingset
for obtaining a more reliable result. This yields in
neural network training the problem that without a
testset it is hard to find best training result. Thereby
there is no guarantee that this extended training set
produces a better classifying network.

6. Conclusions and discussion

The classifier capacity as introduced by Vapnik
is a good general framework for understanding the se-
lection of generalizable classifiers. For linear and
polynomial classifiers it is directly related to studies
based on the number of parameters. However, as it is
based on a worst case situation, it is far too pessimistic
for practical use. By introducing the training rule ca-
pacity and the actual capacity it is made understand-
able how generalizable results can be obtained in
applications with a far too small set of training objects
in relation with the classifier capacity.

Generalizable training results with a sample
size under the training rule capacity, called super-
learning, can be understood from strong dependencies
in the data, resulting in a low intrinsic dimensionality.
By some examples the existence of such data is dem-
onstrated.

Following these attempts to get some insight,
some suggestions are given how to train a neural net-
work in practice such that generalizable results are
obtained.

In retrospect one might argue that the main
conclusion on the cause of superlearning is obvious:
if the data is such that the classes are well separated,
then any classifier will do, very simple ones and also
very complex ones. This also may hold if the training
set is very small: e.g., two widely separated classes
can be distinguished by almost any classifier using
two objects in the training set. So superlearning

should exist for all very simple problems The word
superlearning itself becomes questionable for such
situations.

However, these very simple problems are not
the ones of interest here. In practice they even will
hardly arise as they will already be solved before a
pattern recognition system is considered at all. The
problems discussed here, are those that cannot be
solved by a simple classifier, e.g. a linear one, or other
classifiers with a capacity in the order of the feature
size (VC = O(k)), but the problems for which a com-
plex classifier is needed, but that can still be trained by
a surprisingly small training set. That is the super-
learning phenomenon.
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