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Abstract

Two major steps can be distinguished in the construction of recog-
nition systems for pattern classes of real world objects. These are rep-
resentation and generalization. The step of generalization has been
well studied for the case of vector representations in Euclidean spaces.
However, in the pattern recognition practice non-Euclidean dissimi-
larity measures and/or indefinite kernels (or similarity measures) are
frequently used for representation. They implicitly describe objects
in non-Euclidean vector spaces (determined through embeddings) for
which generalization is less well defined.

There are three ways to handle this problem: (1) suitable adap-
tation of the (dis)similarity measure, (2) transformation of the non-
Euclidean space into a Euclidean space via a correction procedure, and
(3) extension of the set of generalization procedures to non-Euclidean
spaces.

Which solution is to be preferred may be related to the cause
of the non-Euclidean relations between the objects in a particular
problem. We will try to analyze them on the basis of examples from
the real world as well as artificial ones. Non-Euclidean behavior can
arise either by non-intrinsic or intrinsic causes. The first ones are
the result of the lack of either computational or observational power.
The second ones are the consequence of an essential non-Euclidean
judgment of the object dissimilarities, often resulting from restricted,
pairwise comparisons.

This report is concluded with a discussion on the possible identifi-
cation of the cause of a non-Euclidean representation for the general-
ization step.



1 Introduction

Automatic systems for the recognition of objects like images, videos, time
signals, spectra, etcetera, can be designed by learning from a set of object
examples labeled with the desired pattern class. Two main steps can be
distinguished in this procedure:

Representation: In this step the individual objects are characterized by
a simple mathematical entity such as a vector, string of symbols or a
graph. A condition for this representation is that objects can easily be
related in order to facilitate the following step.

Generalization: The representations of the object examples should enable
the mathematical construction of models for object classes or class
discriminants such that a good class estimate can be found for the
representation of new, unseen and, thereby, unlabeled objects.

The topic of generalization has been intensively studied within the research
areas such as statistical learning theory [1] statistical pattern recognition
[2, 3, 4, 5], artificial neural networks [6] and machine learning [7, 8]. The
most popular representations are based on Euclidean vector spaces, next to
strings and graphs. More recently it has also been studied how to use vector
sets for representing single objects; see e.g. [9]. Representations like strings of
symbols and attributed graphs are sometimes preferred over vectors as they
model the objects more accurately and offer more possibilities to include
domain expert knowledge [10].

Representations in Euclidean vector spaces are well suited for generaliza-
tion. Many tools are available to build (learn) models and discriminants from
sets of object examples (training sets) that may be used to classify new ob-
jects into the right class. Traditionally, the Euclidean vector space is defined
by a set of features. These should ideally characterize the patterns well and
also be relevant for class differences at the same time. Such features have to
be defined by experts exploiting their knowledge of the application.

A drawback of the use of features is that different objects may have the
same representation as they differ by properties that were not expressed
in the chosen feature set. This results in class overlap: in some areas in
the feature space objects of different classes are represented by the same
feature vectors. Consequently, they cannot be distinguished, which leads to
an intrinsic classification error, usually called the Bayes error.

An alternative to the feature representation is the dissimilarity represen-
tation based on direct pairwise object comparisons. If the entire objects are
taken into account in the comparison, then only identical objects will have a
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dissimilarity zero (if the dissimilarity measure has the property of ’identity
of indiscernibles’). For such a representation class overlap does not exist if
the objects can be unambiguously labeled: there are no real world objects in
the application that belong to more than one class.

Another advantage of the dissimilarity representation is that it uses the
expert knowledge in a different way. Instead of features, a dissimilarity mea-
sures has to be supplied. Of course, when the features are available, a distance
measure between feature vectors may be used as a dissimilarity measure. But
instead, also other measures, comparing the entire objects may be considered
and are even preferred. In some applications, e.g. shape recognition, good
features are much more difficult to define than a dissimilarity measure. Even
'bad’ dissimilarity measures may be used (at the cost of large training sets)
as long as only identical objects have a zero dissimilarity.

Dissimilarities have been used in pattern recognition for a long time. The
idea of template matching’ is based on them: objects are given the same
class label if their difference is sufficiently small [11]. This is identical to
the nearest neighbor rule used in vector spaces [3]. Also many procedures
for cluster analysis make use of dissimilarities instead of feature spaces [12].
To some extent, the concept of dissimilarities is analogous to the use of
kernels (and the potential functions as studied in the sixties [13]). The main
difference is that kernels were originally defined in vector spaces to preferably
fulfill Mercer’s conditions [14, 15]. Kernel values can be interpreted as inner
products between feature vectors and are, as such, similarities. Because of
their properties they are very well suited for finding non-linear classifiers in
vector spaces using Support Vector Machines (SVMs) [7].

Inspired by the use of kernels in the machine learning area and the use
of dissimilarities in pattern recognition, authors of this report started to
experiment with building other classifiers than the ones based on template
matching and the nearest neighbor rule for the dissimilarity representation
[16, 17, 18, 19, 20], which they also discussed as generalized kernel approaches
[21, 22]. Their target was to develop procedures for any type of dissimilarity
matrix generated in pattern recognition applications. Many of the dissimilar-
ity measures used in the pattern recognition practice appear to be indefinite:
they cannot be understood as distances in a Euclidean vector space, they are
sometimes even not metric and they do not satisfy the Mercer conditions.

The work on the general dissimilarity matrices touches the gradually
raising interest of the machine learning community in indefinite kernels:
[23, 24, 25, 26, 27]. There is however some doubt whether the non-Euclidean
aspects of the relations between pairwise comparison of objects are informa-
tive [28, 29, 30].



In this report preparations are discussed to study further the handling
and possible informativeness of non-FEuclidean dissimilarity matrices. From
the observation that they arise often in the pattern recognition practice, it
can be concluded that this is a significant issue. We will therefore discuss
the various circumstances under which such dissimilarity matrices arise and
will try to characterize them. Next, we will discuss three ways to approach
this problem:

1. Avoiding the non-Euclidean dissimilarities by adapting the measure.

2. Correcting dissimilarity matrices such that they become Euclidean and
by this traditional generalization procedures can be applied.

3. Leaving the data as they are and developing generalization procedures
that can handle non-Euclidean dissimilarity data.

This will be illustrated by a series of examples based on artificially generated
data sets as well as on real world problems. These are partially based on
vector representations derived from dissimilarity matrices. There are two es-
sentially different ways to construct vector spaces from dissimilarities. They
are extensively described in the literature. For completeness they will be
shortly summarized in the next section.

2 Vector spaces for the dissimilarity repre-
sentation

The complete dissimilarity representation yields a square matrix with the
dissimilarities between all pairs of objects. Traditionally, just the dissimilar-
ities between the test objects and training objects are used. For every test
object the nearest neighbors in the set of training objects are first found and
used by the nearest neighbor classifier. This procedure does not use the rela-
tions between the training objects. The following two approaches construct
a new vector space on the basis of the relations within the training set. The
resulting vector space is used for training classifiers.

In the first approach, the dissimilarity matrix is considered as a set of row
vectors, one for every object. They represent the objects in a vector space
constructed by the dissimilarities to the other objects. Usually, this vector
space is treated as a Euclidean space and equipped with the standard inner
product definition.

In the second approach, an attempt is made to embed the dissimilarity
matrix in a Euclidean vector space such that the distances between the ob-
jects in this space are equal to the given dissimilarities. This can only be



realized error free, of course, if the original set of dissimilarities are Euclidean
themselves. If this is not the case, either an approximate procedure has to
be followed or the objects should be embedded into a non-Euclidean vector
space. This is a space in which the standard inner product definition and
the related distance measure are changed, resulting in indefinite kernels. It
appears that an exact embedding is possible for every symmetric dissimilar-
ity matrix with zeros on the diagonal. The resulting space is the so-called
pseudo-Euclidean space.

These two approaches are more formally defined below, using an already
published description [31].

2.1 Dissimilarity space

Let X = {x1,...,2,} be a training set. Given a dissimilarity function and/or
dissimilarity data, we define a data-dependent mapping D(:, R) : X — RF
from X to the so-called dissimilarity space (DS) [16, 32, 21]. The k-element
set R consists of objects that are representative for the problem. This set
is called the representation or prototype set and it may be a subset of X.
In the dissimilarity space each dimension D(-,p;) describes a dissimilarity
to a prototype p; from R. In this paper, we initially choose R := X. As
a result, every object is described by an n-dimensional dissimilarity vector
D(z,X) = [d(z,x1) ... d(z,x,)]". The resulting vector space is endowed
with the traditional inner product and the Euclidean metric.

Any dissimilarity measure p can be defined in the DS. One of them is the
Euclidean distance:

n

pos (2,y) = (Q_ld(w, ) — d(y, z,)])'? (1)

i=1

This is the distance computed on vectors defined by original dissimilarities.
For a set of dissimilarity measures p it holds asymptotically that the nearest
neighbor objects are unchanged by ppg. This is however not necessarily true
for finite data sets. It will be shown later that this can be an advantage.
The approaches discussed in this report are originally intended for dis-
similarities directly computed between objects and not resulting from feature
representation. It is, however, still possible to study dissimilarity represen-
tations derived from features and yields sometimes interesting results [33].
In Fig. 1 an example is presented that compares an optimized radial basis
SVM with a Fisher linear discriminant computed in the dissimilarity space
derived from the Euclidean distances in a feature space. The example shows
a large variability of the nearest neighbor distances. As the radial basis kernel
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Figure 1: A spiral example with 100 objects per class. Left column shows the
complete data sets, while the right column presents the zoom of the spiral
center. 50 objects per class are used for training, systematically sampled.
The middle row shows the training set and SVM with an optimized radial
basis function; 17 out of 100 test objects are erroneously classified. The
bottom row shows the Fisher Linear Piscriminant (without regularization)
computed in the dissimilarity space derived from the Euclidean distances.
All test objects are correctly classified.



used by SVM is constant it cannot be optimal for all regions of the feature
space. Fisher linear discriminant is computed in the dissimilarity space. Here
the classes are linearly separable. Although the classifier is overtrained (the
dissimilarity space is 100-dimensional and the training set has also 100 ob-
jects) it gives here perfect results. It should be realized that this example is
specifically constructed to show the possibilities of the dissimilarity space.

2.2 Pseudo-Euclidean space

Before explaining the relation between pseudo-Euclidean spaces and dissim-
ilarity representation, we start with definitions.

A Pseudo-Euclidean Space (PES) £ = R®% = RP @ RY is a vector space
with a non-degenerate indefinite inner product (-, -). such that (-,-). is pos-
itive definite on R? and negative definite on R? [34, 20]. The inner prod-
uct in R®9 is defined (wrt an orthonormal basis) as (x,y)e = x' Ty,
where J,, = [Lpxp 0; 0 — I;x,] and I is the identity matrix. As a result,
d2(x,y) = (x —y)  Tpe(x — y). Obviously, a Euclidean space R? is a special
case of a pseudo-Euclidean space R®% . An infinite-dimensional extension of
a PES is a Krein space. It is a vector space K equipped with an indefinite
inner product (-,),: K x K — R such that K admits an orthogonal decom-
position as a direct sum, K = K, ©K_, where (K, (-,-),) and (K_, —(-,-)_)
are separable Hilbert spaces with their corresponding positive and negative
definite inner products.

A positive definite kernel function can be interpreted as a generalized
inner product in some Hilbert space. This space becomes Euclidean when
a kernel matrix is considered. In analogy, an arbitrary symmetric kernel ma-
trix can be interpreted as a generalized inner product in a pseudo-Fuclidean
space. Such a PES is obviously data dependent and can be retrieved via an
embedding procedure. Similarly, an arbitrary symmetric dissimilarity ma-
trix with zero self-dissimilarities can be interpreted as a pseudo-Euclidean
distance in a proper pseudo-Euclidean space. Since in practice we deal with
finite data, dissimilarity matrices or kernel matrices can be seen as describing
relations between vectors in the underlying pseudo-Euclidean spaces. These
pseudo-Euclidean spaces can be either determined via an embedding proce-
dure and directly used for generalization, or approached indirectly by the
operations on the given indefinite kernel. The section below explains how to

find the embedded PES.



2.2.1 Pseudo-Euclidean embedded space

A symmetric dissimilarity matrix D := D(X,X) can be embedded in a
Pseudo-Euclidean Space (PES) £ by an isometric mapping [34, 20]. The em-
bedding relies on the indefinite Gram matrix G, derived as G := —%H D*H,
where D*? = (dgj) and H = I — %11T is the centering matrix. H projects
the data such that X has a zero mean vector. The eigendecomposition of G
leads to G = QAQT = Q|A|2[T,q: 0]|A|2QT, where A is a diagonal matrix of
eigenvalues, first decreasing p positive ones, then increasing ¢ negative ones,
followed by zeros. @ is the matrix of eigenvectors. Since G = X J,, X" by
definition of a Gram matrix, X € R" is found as X = Q,, |An|%, where @,
consists of n eigenvectors ranked according to their eigenvalues A,. Note
that X has a zero mean and is uncorrelated, because the estimated pseudo-
Euclidean covariance matrix C' = = X7X 7,, = -1 A, is diagonal. The
eigenvalues \; encode variances of the extracted features in R®%.

Let x,y € R”. If this space is a PES R®9 p + ¢ = n, the pseudo-

Euclidean distance is computed as:

P p+q

pres (X,y) = (Z[% —y)? - Z [z — vi])?) /2

i=p+1

= (380 p)las — w2

where 0(i,p) = sign(p — ¢ + 0.5). Since the complete pseudo-Euclidean
embedding is perfect, D(x,y) = ppps (z,y) holds.

Other distance measures may also be defined between vectors in a PES,
depending on how this space is interpreted. Two obvious choices are:

p

pres+ (X,y) = (Z[% - yi]2)l/27 (2)

i=1
which neglects the axes corresponding to the negative dimensions (derived
from negative eigenvalues in the embedding), and

n

PAES (X, }’) = (Z[% - yi]2)1/27 (3)

i=1

which treats the vector space R™ as Euclidean RP9. This means that the
negative subspace of PES is interpreted as a Euclidean subspace (i.e. the
negative signs of eigenvalues are neglected in the embedding procedure).
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define a Non-Euclidean Coefficient (NEC) as:

To inspect the amount of non-Euclidean influence in the derived PES,; we

p+q

NEC =3 NS N €01

Jj=p+1

pt+q

i=1

(4)

Fig. 2 shows how NEC varies as a function of p of the Minkowski-p dissimi-
larity measure (k-dimensional spaces) for a two-dimensional example:
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Figure 2: A two-dimensional data set (left) and the NEC as a function of p
for various Minkowski-p dissimilarity measures.

k
prting (%, 5) = (Y _[ws — wil")”? (5)

i=1
This dissimilarity measure is Euclidean for p = 2 and metric for p > 1. The
measure is non-Euclidean for all p # 2. The value of NEC may vary con-
siderably with a changing dimensionality. This phenomenon is illustrated in
Fig. 3 for 100 points generated by a standard Gaussian distribution for vari-
ous values of p. The one-dimensional dissimilarities obviously fit perfectly to
a Euclidean space. For a vary high dimensionality, the sets of dissimilarities

become again better embeddable in a Euclidean space.

2.3 Discussion on dissimilarity-based vector spaces

Now we want to make some remarks on the two procedures for deriving vector
spaces from dissimilarity matrices, as discussed in previous subsection. On
some aspects we will return at the end of this reports in relation to examples
and experiments.
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Figure 3: The Non-Euclidean Coefficient for various Minkowski-p dissimi-
larity measures as a function of the dimensionality of a set of 100 points
generated by a standard Gaussian distribution.

The dissimilarity space in fact interprets the dissimilarities to particular
prototypes (the representation set) as features. Their characteristics of dis-
similarities is not used when a general classifier is applied. Special classifiers
are needed to make use of that information. The good side of this ’dis-
advantage’ is that the dissimilarity space can be used for any dissimilarity
representation, including ones that are negative or asymmetric.

The embedding procedure is more restrictive. The dissimilarities are as-
sumed to be symmetric and zero for the comparison with identical objects.
Something like the pseudo-Fuclidean embedding is needed in case of non-
Euclidean data sets. The requirements of a proper metric or well-defined
distances obeying the triangle inequality are not of use as they do not guar-
antee a FEuclidean embedding. As we want to study more general data sets
we use the name of dissimilarities instead of distances.

A severe drawback of both procedures is that they initially start with
vector spaces that have as many objects as dimensions. Specific classifiers
or dimension reduction procedures are thereby needed. For the dissimilarity
representation this is somewhat more feasible than for the feature represen-
tation: features can be very different, some might be very good, others might
be useless, or only useful in relation with particular other features. This is
not true for dissimilarities. The initial representation is just based on ob-
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jects. They have similar characteristics. It is not useful to use two objects
that are much alike. Systematic, or even random procedures that reduce the
initial representation set (in fact prototype selection) can be very effective
[35] for this reason.

3 Non-Euclidean dissimilarity measures

The purpose of this study is to find good generalization procedures for dis-
similarity data that arise in practical pattern recognition applications. In
between is the step of representation. In the previous section two procedures
for deriving vector spaces are presented. One is general, but neglects the
dissimilarity characteristic of the data. The other is specific but suffers from
the possible non-Euclidean relations that are present in the data. In order to
analyze possible transformations of the derived vector spaces, especially of
the pseudo-Euclidean space, we will first summarize and categorize the ways
in which non-Euclidean dissimilarity data can arise.

Before becoming more specific, we like to emphasize how common non-
Euclidean measures are. In [20] we already presented an extensive overview
of such measures, but we encountered in many occasions that this fact is not
sufficiently recognized.

Almost all probabilistic distance measures are non-Euclidean, including
the Kolmogorov Variational Distance which is directly related to the clas-
sification error. This implies that when we want to build a classification
system for a set of objects and each individual object is represented by a
probability density function resulting from its invariants, the dissimilarity
matrix resulting from the overlap between the object pdfs is non-Euclidean.
Also the Mahalanobis class distance as well as the related Fisher criterion
are non-Euclidean.

As a direct consequence of the above, many non-Euclidean distance mea-
sures are used in cluster analysis and in the analysis of spectra in chemomet-
rics and hyperspectral image analysis. An energy spectrum can be considered
as a pdf of energy contributions for different wavelengths. The popular abso-
lute difference between two spectra is identical with the Minkowski-1 distance
(related to the l;-norm) between vector representations of the spectra.

In shape recognition, various dissimilarity measures are used based on
the weighted edit distance as well as on variants of the Hausdorff distance.
Usual parameters are optimized within an application w.r.t. the performance
based on template matching and other nearest neighbor classifiers [36]. Most
of them are still metric, some of them however are non-metric [37].

In the design and optimization of the dissimilarity measures it was in
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the past not an issue whether they were Euclidean. Just more recently,
with the popularity of SVMs, it has became important to design kernels
(similarity measures) which fulfill the Mercer conditions. This is equivalent to
the possibility of Euclidean embedding. Next subsection discusses a number
of reasons that give rise to violations of these conditions in applications,
which lead to a set of non-Euclidean dissimilarities or indefinite kernels.

3.1 Non-intrinsic non-Euclidean dissimilarities
3.1.1 Numeric inaccuracies

A very simple reason why non-Euclidean dissimilarities arise is the numeric
inaccuracies resulting from the use of computers with a finite word length.
E.g., when we generate at random four points in an n-dimensional vector
space and we follow the embedding procedure discussed in section 2.2 the
projected vectors will fit in a 3-dimensional Euclidean space. In the procedure
three eigenvalues larger than zero are expected to be found. In case n = 2
one of these eigenvalues will be zero. In a numeric procedure, however,
there is a probability of almost 50% that the smallest eigenvalue has a very
small negative value due to numeric inaccuracies (resulting from iterative
procedures of determining the eigenvalues).

For this reason it is advisable to neglect all very small positive as well as
negative eigenvalues. As a consequence, the dimensionality of the embedded
space will be smaller than its maximum value of n-1.

3.1.2 Overestimation of large distances

When dissimilarities are not directly computed in a vector space but derived
on raw data such as images or objects detected in images instead, more
complicated measures may be used. They may still rely on the concept that
the distance between two objects is the length or cost of the shortest path
that has to be followed to transform one object into the other. Examples
of such transformations are the weighted edit distance [38] and deformable
templates [39]. In the optimization procedure that minimizes the length of
the path, a minimization procedure may be used based on approximating the
costs from above. As a consequence, too large distances are found.

The detection of too large distances is not easy, except when they
are so large that the triangle inequality has been violated. In that case
d(A,C) > d(A, B) + d(B,C), indicating that a lower cost is possible in the
transformation of A to C' via a detour over B. This violates the result of
the cost minimization. See [40] for an example. Such violations can easily
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be detected and corrected. The result is however just the replacement of a
non-metric measure by a metric one. A possible non-Euclidean set of dissim-
ilarities resulting from relations between more than three objects may still
exist.

3.1.3 Underestimation of small distances

The underestimation of small distances has the same result as the above
discussed overestimation of large distances. Similar correction procedures
may be applied and again they only correct the metric property but not the
Euclidean one.

There may be different causes of underestimated small distances. They
may arise as the consequence of neglecting different particular object proper-
ties in different pairwise comparisons. For instance, in consumer preference
data, the ranking of the most interesting books by every reader individually
yields (dis)similarities based on different books by different pairwise compar-
isons of books or readers. Unread books by both readers in a comparison are
thereby not taken into account, resulting in a too small estimate, especially
for the small dissimilarities. E.g., it is possible to estimate a dissimilarity of
zero if the ranking of the books read by both readers is identical, while it
may be larger if additional books are taken into account.

Phrased in more abstract terms, the underestimation of small distances
occurs when object pairs have to be compared from different points of view,
or suffering from different partial (information) occlusions.

3.2 Intrinsic non-Euclidean dissimilarities

The causes discussed in the above may be judged as accidental. They result
either from computational or observational problems. If better computers
and observations were available, they would disappear. Now we will focuss
on dissimilarity measures for which this will not happen. We will discuss
three possibilities, without claiming completeness.

3.2.1 Non-Euclidean dissimilarities

As already indicated at the start of this section, there can be arguments
from the application side to use another metric than the Euclidean one. An
example is the Kolmogorov variational distance between pdfs as it is related
to the classification error, or the [;-distance between energy spectra as it
is related to energy differences. Although the l,-norm is very convenient

15



X2

Figure 4: Vector space with the invariant trajectories for three objects Oy, O
and Ojs. If the chosen dissimilarity measure is the minimal distance between

these trajectories, triangle inequality can easily be violated, i.e. d(O1,Os) +
d(Ol, 03) < d(Ol, 03)

for computational reasons or because it is rotation invariant in a Euclidean
space, the [;-norm may naturally arise from the demands in applications.

3.2.2 Invariants

A very fundamental reason is related to the occurrence of invariants. Fre-
quently, one is not interested in the dissimilarity between two objects A and
B, but between two families of objects A(6) and B(#) in which 6 controls an
invariant, e.g. rotation in case of shape recognition. One may define the dis-
similarity between two objects A and B as the minimum difference between
the two sets defined by all their invariants.

4'(4, B) = minmin(d(A(0,). B(03))) (6)

A B
In general, this measure is non-metric: the triangle inequality may be vio-
lated as for different pairs of objects different values of # may be found that
minimize (6). An example is given in figure 3.2.2, which is taken from [22].

3.2.3 Sets of vectors

Finding relations between sets of vectors is an important issue in cluster
analysis. Individual objects may be represented by single vectors, but in a

hierarchical clustering procedure the (dis)similarities between already
grouped vectors are used to establish a new cluster level. Dissimilarity mea-
sures as used in the complete linkage and single linkage procedures are very
common. The second, which is defined as the distance between the two most
neighboring points of the two clusters being compared, is non-metric. It even
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holds for this distance measure that if d(A, B) = 0, then it does not follow
that A = B, because different clusters may just be touching.

For the single linkage dissimilarity measure it can be understood why the
dissimilarity space may be useful. Given a set of such dissimilarities between
clouds of vectors, it can be concluded that two clouds are similar if the entire
sets of dissimilarities with all other clouds are about equal. If just their
mutual dissimilarity is (close to) zero, they may still be very different. Fig. 5
illustrates this point.

TN

Lar
EB dcp

Figure 5: Single-linkage distance may be small for clusters which differ in
position and shape.

The problem with the single linkage dissimilarity measure between two
sets of vectors points to a more general problem in relating sets and even
objects. In [9] an attempt has been made to define a proper Mercer kernel
between two sets of vectors. Such sets are in this paper compared by the
Hellinger distance derived from the Bhattacharyya’s affinity between two
pdfs pa(z) and pp(z) found for the two vector sets A and B:

1/2

i, 8) = | [ (Voate) = vinte)] )

The authors state that by expressing p(z) in any orthogonal basis of func-
tions, the resulting kernel K is automatically positive definite. This is correct,
but it should be realized that it has to be the same basis for all vector sets
A, B, ... to which the kernel is applied. If in a pairwise comparison of sets
different bases are derived, the kernel will become indefinite. This may hap-
pen if the numbers of vectors per set are smaller than the dimensionality of
the vector space. It will happen most likely if this vector space is already a
Hilbert space, e.g. when the vectors are already derived from a kernelization
step.

This also makes it clear that indefinite relations may arise in any pairwise
comparison of real world objects if they are first represented in some joint
space for the two objects, followed by a dissimilarity measure. These joint
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spaces may be different for different pairs! Consequently, the total set of
dissimilarities can be non-Euclidean, even if a single comparison is defined
as Euclidean, as in (7).

3.3 Other non-Euclidean measures

There may be other factors leading to non-Euclidean dissimilarity measures.
After further inspection, they may simplify to one or both of the above. We
now mention two possibilities:

e Dis/similarity judgements by human experts. In some applications, e.g.
psychometrical experiments, subjects are asked to judge the similarity
between various sets of observations. It is not clear on which ground
such judgements are made, as also in the consumer preference data.

e Weighted combinations of different dis/similarity measures that focus
on different aspects of objects, e.g.

d(z,y) = Z a;di(z,y)

where «; is a constant and d;(x,y) is a dissimilarity w.r.t. particular
i-th characteristics. An example is to derive the dissimilarity between
images as a weighted average of dissimilarities computed w.r.t. texture,
color and response to particular shape detectors.

4 Example classifiers in pseudo-Euclidean
spaces

In our recent studies on analyzing dissimilarity data [20, 22, 41, 25, 29, 31],
we have given many examples for classifiers that can be trained in indefinite
(pseudo-Euclidean) spaces, e.g.

e The nearest mean rule as means and distances to points are well defined.
e The nearest neighbor rule for the same reason.
e The Parzen classifier, as it can be expressed in distances to points.

e The linear and quadratic classifiers based on class covariances. In Eu-
clidean spaces they are related to normal distributions. In the pseudo-
Euclidean spaces they can still be computed, but the relation with
densities is unclear.
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e A kernelized version of the Fisher discriminant for indefinite kernels.

Problematic classifiers are the ones based on general probability density es-
timates, as they are not (yet) properly defined for pseudo-Euclidean spaces
and classifiers that rely on a distance to a linear or nonlinear classification
boundary, such as SVM. The SVM classifier may still be computed but con-
vergence and uniqueness are not guaranteed [23].

Below we present two artificial examples, taken from [25] in order to
illustrate the work and performance of classifiers built in pseudo-Euclidean
spaces. In this case, we do not explicitly determine the embedded PES, but
consider classifiers that work on indefinite kernels instead. The considered
classifiers are indefinite kernel Fisher discriminant (IKFD), indefinite SVM
(ISVM) and indefinite kernel nearest mean classifier (IKNMC).

4.1 Checkboard example

The first example is an artificial 4 x 4 checkerboard data set based on a uni-
form distribution on [—2, 2]*> C R?; see Fig. 6. A practical source of indefinite-
ness is incorporation of invariance into kernels. Here, it is done by combining
different kernels into a new one. Let us denote d(x,2'):=3",_, , [(x);—(2")i|*
and the kernel k(z, z') := exp(—d(x, 2")?/0?). As prior knowledge we observe
that the problem is invariant w.r.t. the point reflection 7(x) := —x through
the origin. We incorporate this by combining two kernels into a new one:
k(z,2") := max(k(z,2"), k(x, 7(2')), which can alternatively be motivated by
invariant distances. Application on a random training data set of 504 50
samples yields an indefinite kernel matrix and corresponding data represen-
tations in a PES R®9 for each 0. A 10-fold cross-validation was performed
on the training set for each of the listed ¢ to determine the additional param-
eters of IKFD and ISVM. The chosen parameters and the corresponding test
errors (on 5004500 samples) are reported in Table 1, as well as the signature
(p,q) and NEC as an indefiniteness index. The resulting classifiers (with o
also being selected in cross-validation) are illustrated in Fig. 6. The param-
eters are: f=1,0=0.5 for IKFD, C=1,0= 0.1 for ISVM, and ¢=0.05 for
IKNMC. The test-errors equal 0.083,0.121 and 0.173, respectively. The per-
fect point symmetry of all classifiers in Fig. 6 occurs thanks to the invariant
kernel. The table shows that IKNMC is here consistently worse than IKFD.
ISVM performs as well or better than IKFD for marginal indefiniteness (here
0<0.1). For predominantly indefinite data (here ¢ >0.1), IKFD outperforms
ISVM.
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Table 1: Checkerboard example. Measures of indefiniteness and test errors.

o | NEC | (p.q) |IKFD (3) [ISVM (C) | IKNMC
0.010 | 0.000 | (98,2) | 0.336 (10) | 0.323 (10) | 0.340
0.050 | 0.022 | (82,18) | 0.145 (10) | 0.134 (10) | 0.173
0.100 | 0.055 | (66,34) | 0.121 (10~1)| 0.121 (1) | 0.201
0.500 | 0.125 | (51,49) | 0.083 (1) | 0.168 (1) | 0.384
1.000 | 0.132 | (52,48) | 0.091 (10~2)| 0.418 (1) | 0.486
5.000 | 0.107 | (50,50) | 0.132 (10-2)| 0.480 (1) | 0.497
10.00 | 0.062 | (51,49) | 0.159 (10~2)| 0.373 (10?)| 0.494

Figure 6: Indefinite invariant-kernel classifiers for the checkerboard data.

4.2 Polygon example

The other example is based on non-Euclidean dissimilarities, a common cause
of indefiniteness. We consider the Polydist_.m57 data set as described in
Section 5. It consists of 200042000 polygons corresponding to two classes of
polygons with five and seven vertices, respectively. The modified Hausdorff-
distance is applied for computing the pairwise distances. We convert this
dissimilarity d into similarity by considering the kernel k(x, ') := —d(x, z’)"
for v > 0. The experiment setting is as before, taking 50 + 50 samples for a
10-fold cross-validated parameter selection and training, and then testing on
the remaining 3900 examples. In order to address the statistical significance,
we repeat this 10 times. The resulting mean and standard deviations of
the test-errors, as well as of the signatures are reported in Table 2 Here,
we see that IKFD and ISVM clearly outperform IKNMC. In the dominant
positive definite case, v < 0.7, there is no significant difference between the
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Table 2: Polygon example. Average signatures and test errors.

v | avr. (p,q) IKFD ISVM IKNMC

0.2 | (99.0,1.0) | 0.021+£0.006 | 0.02140.006 | 0.089+0.027
0.5 | (99.0,1.0) | 0.01940.006 | 0.01840.004 | 0.110£0.034
0.7 | (98.9,1.1) | 0.0204+0.004 | 0.01840.004 | 0.11840.037
1.0 | (85.9,14.1) | 0.019£0.009 | 0.029+0.007 | 0.12940.041
2.0 | (48.9,51.1) | 0.01740.008 | 0.09440.057 | 0.152+0.051
5.0 | (44.8,55.2) | 0.102+0.021 | 0.13140.030 | 0.218+0.081
7.0 | (47.4,52.6) | 0.1114+0.027 | 0.23740.058 | 0.253+0.093

performance of IKFD and ISVM, while in the remaining indefinite cases
IKFD is obviously beneficial, with the overall best result for v=2.

5 Examples of Euclidean corrections

We used classifiers mentioned in the previous section to analyze various trans-
formations from the pseudo-Euclidean space to the Euclidean space via Eu-
clidean corrections [29]. We found many examples were such corrections
are counterproductive, suggesting that indefinite spaces can be informative.
More subtle corrections have to be investigated further.

The above mentioned transformations are topology preserving. This does
not hold for the construction of the dissimilarity space out of a dissimilarity
representation. In this case, a new Euclidean space is postulated based on the
relations of objects with all other objects. This may remove or diminish noise,
or defects arisen in the construction of the original dissimilarities. Possible
information of original indefinite relations will thereby only be maintained
if it can be expressed in the totality of the relation of objects to all other
objects in a Euclidean way.

In the remainder of this section we will report a few experiments not
published before that we use in our investigation of Euclidean corrections and
the properties of the dissimilarity space. They are partially based on public
domain data sets, and partially based on data generated for this purpose.
Two of them are the results of the embedding of objects based on graph
representations. In the next subsection this procedure is explained.

5.1 Graph matching

This paragraph summarizes a procedure developed by the authors, presented
in [42] and used in [43].
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A graph is a set of nodes connected by edges in its most general
form. Consider an undirected graph G = (V,E,W) with the node set
V = {v1,v,...,0,}, the edge set E = {ey,€ea,...,e,} CV x V, and the
weight function W : E — (0, 1]. If the graph edges are weighted, the adja-
cency matrix A for the graph G is the n x n matrix with elements

L W(vi,v5), if (vi,v5) € E;
Aij = { 0, otherwise. (8)

Clearly if the graph is undirected, the matrix A is symmetric. The Lapla-
cian of the graph is defined by L = D — A, where D is the diagonal node
degree matrix whose elements D;; = >}, Aj;. The Laplacian matrix of G is
positive semidefinite and singular, and it is more often adopted for spectral
analysis than the adjacency matrix because of its properties.

Our approach for computing graph dissimilarity is based on spectral
graph theory that is concerned with characterizing the structural proper-
ties of graphs using the eigenvectors of the adjacency matrix or the closely
related Laplacian matrix (the degree matrix minus the adjacency matrix).
To compute the graph dissimilarity, we first project each pair of two graphs
into their joint eigenspace. This joint eigenspace (JoEig) is expanded by both
sets of eigenvectors derived from the Laplacian matrices of graphs. Then the
Frobenius norm of the difference between these two projected graphs is taken
as their distance.

Let G and H be weighted undirected graphs and Lg and Ly be their
Laplacian matrices, respectively. The eigendecomposition of Lg and Ly are
performed as

L = VaDaVE (9)
Ly = Vg Dy V¥,

where Vi and Vy are orthonormal matrices and Dg and Dy are diagonal ma-
trices of the eigenvalues (in ascending order) of G and H, respectively. With
the joint projection vector VgV, both graphs G and H will be projected to
their joint eigenspace as LgVgVy and Vg VL Ly. The difference between two
graphs using JoKig is defined as

\VaDaViy — VaDg Vi |12 (10)

The JoEig approach approximates a graph by relocating its eigenvalues in

the joint eigenspace constructed by the eigenvectors of both graphs.
However, the sizes of graphs might be different, and therefore it might

not be possible to make a matrix product between Vi and Dy or Dg and
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Figure 7: Example pictures from five different classes.

Vi . A feasible solution is to fix the number of eigenvectors for both graphs.
One possible choice is to make full use of the eigenvectors from the smaller
graph and keep the same number of eigenvectors and eigenvalues in the larger
graph as in the smaller graph by removing less important eigenvalues and
eigenvectors from the larger graph. Less important eigenvectors are those
with smaller eigenvalues. The other possibility is ignoring the size of graphs
and just pick a reasonable fix small number of eigenvectors and eigenvalues
for all graphs.

The Coil-20 data set contains multiple views of the same object in differ-
ent poses with respect to the camera. There are originally 20 objects (classes)
in the data, but we only use five objects and 360 images in total (72 views per
object) to form the data. Example pictures of these five classes are shown in
Fig. 7.

For each picture, we extract the feature points using the scale-invariant
feature transform (SIFT) method and then compute the Voronoi tessella-
tions of the feature points to construct the region adjacency graph, i.e., the
Delaunay triangulation, of the Voronoi regions. As a result, each picture is
represented as a graph with the adjacency matrix. The adjacency matri-
ces are further transformed into Laplacian matrices. The average number of
nodes of these 360 graphs is 35.9 with the standard deviation of 21.4. The
smallest graph has only five nodes.

Here, we consider two different settings for computing the distances be-
tween graphs. First, the dimensionalities of the joint eigenspaces from dif-
ferent pairs of graphs are different. This is done by making full use of the
eigenvectors from the smaller graph and keep the same number of eigenvec-
tors and eigenvalues in the larger graph as in the smaller graph by removing
less important eigenvalues and eigenvectors from the larger graph. For dif-
ferent pair of graphs, the sizes of smaller graphs are very likely also different,
and therefore different pairs of graphs are most probably compared in the
eigenspaces with different dimensionalities. The other setting is to make sure
all the eigenspaces where graphs are compared are with the same dimension-
ality. The dimensionality of these spaces is set to 5, which is the size of the
smallest graph. Each graph keeps only 5 sets of eigenvectors and eigenvalues
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by removing less important eigenvalues and eigenvectors. Therefore, all pairs
of graphs are compared in the eigenspaces with the same dimensionality.

5.2 Data sets

In the next section we will report some simple experiments based on the
following data sets. A number of them are also used and discussed in [20]
and [29].

Chicken data: dissimilarities are based on the weighted edit distances be-
tween 446 shapes representing five classes of chicken pieces. They de-
pend on two parameters [44]. We used Chicken 30.45. It is a five-class
set with 446 objects in total. Dissimilarities are computed by using
a weighted edit-distance measure [38]. Formally, the measure is met-
ric, but due to approximative optimizations as discussed in Section 3.1
many of the larger dissimilarities cause non-metric behavior. We did
not correct for that. Earlier it was found [40] that after such a cor-
rection not only the data set yields about the same Non-Euclidean
Coefficient, but also classification performances hardly change.

Zongker data: dissimilarities between 2000 handwritten digits in 10 classes
based on deformable template matching [39]. The dissimilarity measure
is the result of an iterative optimization of the non-linear deformation
of the grid.

Polydist_m57 data: modified Hausdorff distances [37] between two classes,
pentagons and heptagons, of artificially generated polygons. Each class
consists of 2000 examples. Although polygons with five vertices are
a subset of polygons with seven vertices, we put the restriction that
all polygons of the later class have seven vertices, thereby avoiding
ambiguity. The modified Hausdorff distance is non-metric but it may
yield significantly better classification results than the original metric
Hausdorff distance. Our implementation is rotation invariant as it finds
the minimum distance over all possible rotations. Centers of gravity
are aligned.

NIST _m38 data: The modified Hausdorff distances between the contours
of two classes ('3’ and '8’) of the NIST character database. The classes
consist of 2000 objects each.

Cat-cortex data: 65 objects in four classes represented by ordinal dissim-
ilarity values [45]. This is a very small data set. We have chosen it as
it is an example of the use of ordinal data.
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Newsgroups data: 600 messages in four newsgroups related by a non-
metric correlation measure [20].

Gauss data This is based on a 2-class dataset in 20 dimensions. The two
classes have identical spherical distributions. We generated 2000 ob-
jects per class and computed Euclidean distances.

Gauss_noise data In this example the dissimilarities of the above example
are heavily disturbed by a multiplicative random factor with mean one
and standard deviation 0.3.

Gauss_ml data Instead of Euclidean distances the Minkowski-1 distances
(sum of absolute differences) between the objects of the Gauss examples
are computed. This dataset is thereby is metric but non-Euclidean.

Gauss_.m02 data Instead of Euclidean distances the Minkowski-0.2 dis-
tances between the objects of the Gauss examples are computed. This
dataset is thereby is non-metric and thereby also non-Euclidean.

Coil_diff data: This is the set of graph distances as explained in the previ-
ous section. Graphs are compared in the eigenspace with a dimension-
ality determined by the smallest graph in every pairwise comparison.
There are five classes, of 72 objects each.

Coil_same data: In this set of graph distances all graphs are compared in
a pairwise fashion in a 5D space of eigenvectors derived from the two
graphs.

5.3 Experiments

In order to simplify the computational procedures and to make results for
various data easier comparable all experiments have been performed on ran-
domly chosen subsets of 50 objects per class. Only for the Cat-cortex data
we had to take just 10 objects per class due to the small size.

Several vector spaces are considered for every data set chosen in this
way. For each of these spaces two classifiers are investigated, the 1-Nearest
Neighbor (NN) rule and the linear SVM. We always derive the kernel matrix
K for SVM in the same way. Based on the given (or computed) dissimilarities
D, we find K as:

1
K = —§HD*2H7 where
[
H=1--11".
n
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One of the considered vector spaces is non-FEuclidean, which gives rise to an
indefinite kernel. Consequently, SVM may be suboptimal. The following
four spaces, and related dissimilarities and kernels are considered:

PES: Original Data. This is the original set of dissimilarities. It can be
fully embedded in a Pseudo-Euclidean Space (PES). The kernel matrix
K as described by 5.3 is the linear kernel for this space obeying its
special inner product definition [20].

DS: Dissimilarity Space. This is the Euclidean space postulated by using
the dissimilarities to all training objects as feature dimensions. Dis-
tances in this space follow from dpS(z,y) = ||d(z,.) — d(y,
centerdot)||.

AES: Associated Euclidean Space. Instead of wusing the pseudo-
Euclidean metric, the Euclidean metric is used in the pseudo-Euclidean
space. This is similar to the standard procedure used in classical
scaling.

PES+: Positive part of the pseudo-Euclidean space. In this case all
directions in the pseudo-Euclidean space are neglected that correspond
to the negative eigenvalues. This is similar to the standard procedure
used for eigenspaces: all small eigenvalues are neglected, in this case
including the negative ones.

The following procedure was followed in the experiments:

1. The original data sets are ten times randomly sampled with the class
sizes mentioned above (usually 50 objects per class).

2. The dissimilarity matrices D for the three derived spaces are computed.

3. The kernel matrix K is computed by 5.3 for each of the four vector
spaces.

4. For the sampled original space the Non-Euclidean Coefficient NEC is
derived by 5.3.

5. The dissimilarity matrices D and the kernel matrices K are ten times
used to generate training and test sets of the same size (usually 25
objects per class). Note that in all dissimilarity matrices, but D,rg,
and all kernel matrices the representations for the test objects implicitly
depend on the training set (not on their labels!).
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6. The 1-nearest neighbor classifier is applied to the matrices D and SVM
to the matrices K.

7. The error rates for all ten classifiers are estimated from the test sets.

8. The errors obtained ten times (from random sampling) are averaged
and the standard deviations are computed.

The results are summarized in the tables 3, for the 1-Nearest Neighor rule
(NN) and 4. for the linear Support Vector Machine (SVM). The tables list the
errors * 1000 for various problems for the original data, which is equivalent
to a full pseudo-Euclidean embedding (PES), the dissimilarity space (DS),
the associated Euclidean space of the PES (AES) and the positive part of
the pseudo-Euclidean space (PES+). Between brackets are the standard
deviations of the means. Underlined results show significant improvements
over the results in the PES. The original data sets are sampled with n objects
per class. ¢ is the number of classes.

Table 3: Experiment results for the NN classifier.

Data c| n| NEC PES DS | AES | PES+
Chicken 5150 | 0313 | 93(3) | 78(2) | 365(4) | 196(3)
Zongker 10 | 50 | 0.353 | 144(2) | 81(2) | 310(4) | 128(2)
Polydist.m57 | 2 | 50 | 0.205 | 146(5) | 142(5) | 165(5) | 154(5)
NIST m38 2 | 50 | 0.178 | 116(3) | 146(4) | 140(4) | 126(4)
Cat-cortex | 4|10 | 0.160 | 152(6) | 106(5) | 96(6) | 104(6)
Newsgroup | 4 | 50 | 0.136 | 360(3) | 365(3) | 400(4) | 373(4)
Gauss 2| 50 | 0.000 | 206(7) | 258(5) | 296(7) | 296(7)
Gauss_noise 2| 50 | 0.374 | 444(6) | 380(7) | 477(6) | 470(7)
Gauss_ml 2150 | 0.172 | 316(7) | 287(5) | 326(7) | 319(7)
Gaussm02 | 2|50 | 0.309 | 369(5) | 371(6) | 390(6) | 377(6)
CoilDiff 5150 | 0.354 | 443(3) | 380(4) | 423(4) | 415(4)
CoilSame 550 | 0.437 | 552(4) | 603(4) | 634(4) | 633(4)

The results are shown in the tables 3 and 4. The following observations
can be made.

e All datasets are non-Euclidean, except Gauss of course. In some cases
the non-Euclideaness is rather strong.

e As could be expected, Gauss_.m02, which is non-metric, is more non-
Euclidean than Gauss_m1, which is metric.
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Table 4: Experiment results for the SVM.

Data c| n| NEC PES DIS | AES | PES+
Chicken 5150 0313 | 131(2) | 82(2) | 99(2) | 107(2)
Zongker 10|50 | 0.353 | 81(2) | 71(2) | 82(2) | 78(1)
Polydist m57 | 2 | 50 | 0.205 | 103(5) | 50(4) | 94(4) | 96(4)
NIST-m38 | 2|50 | 0.178 | 222(6) | 263(6) | 231(7) | 225(6)
Cat-cortex | 4|10 | 0.160 | 134(7) | 95(5) | 106(6) | 116(6)
Newsgroup 4|50 | 0.136 | 302(3) | 320(4) | 299(4) | 298(3)
Gauss 2 | 50 | 0.000 | 243(6) | 232(6) | 243(6) | 243(6)
Gauss_noise 2|50 | 0.374 | 393(7) | 312(5) | 405(5) | 371(6)
Gauss_m1 2|50 | 0.172 | 247(6) | 240(6) | 222(5) | 238(6)
Causs.m02 | 2|50 | 0.309 | 439(9) | 310(7) | 284(6) | 443(9)
CoilDiff 5150 | 0.354 | 389(3) | 413(3) | 385(3) | 404(3)
CoilSame 5150 | 0.437 | 690(6) | 665(7) | 685(6) | 625(4)

The noise of the Gauss_noise dataset is rather severe, still the CoilSame
graph example yields a larger value of NEC, suggesting that the graph
matching procedure operating in eigenspaces of the same dimension is
far from Fuclidean.

For the CoilDiff dataset eigenspaces of different dimensionality where
used for the pairwise comparisons, matching the complexity of the sim-
pler graph. This resulted in a less non-Euclidean behavior and in better
classification results (not necessarily related).

The three Euclidean spaces studied here show many improvements over
the original representation. There is just one example in which the
original, non-Euclidean space produced a clear better result (the SVM
for CoilSame). The statement however that non-Euclidean space may
be informative thereby still holds.

In general the dissimilarity space DS yields good performances. This
holds for the pure noise example, Gauss_noise, as well as for the pure
non-Euclidean measures used in Gauss_m1 and Gauss_m02.

The corrections made for the pseudo-Euclidean space, the associated
space (AES) as well as the positive space (PES+) yield sometimes
good performances and occasionally very bad, e.g. the nearest neighbor
results for the Chicken and the CoilSame example. item The traditional
way of handling non-Euclidean dissimilarities and indefinite kernels,
neglecting all small and negative eigenvalues is equivalent to the AES.
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Just occasionally this yields a significant best result: Cat-cortex for the
NN rule, and Gauss.ml and Gauss_.m02 for the SVM.

6 Discussion

In this report two main causes of non-Euclidean behavior have been iden-
tified: non-intrinsic and intrinsic ones. The former are related to computa-
tional and computational problems. In case there are no other effects Eu-
clidean representations can be expected asymptotically for increasing com-
putational and observational resources. The latter, the intrinsic causes will
remain to yield non-Euclidean dissimilarity matrices.

The question now raises whether the correction and classification proce-
dures should be different for these two cases. It may be argued that if it is to
be expected that for some circumstances an Euclidean space is appropriate,
that then an approximation of this space by some correction of the originally
non-Euclidean dataset may approximate the desired representation well. In
case of intrinsicly non-Euclidean problems approximative Euclidean spaces
might be less effective.

Table 3, in which the NN classifier has been used, shows a few datasets for
which the original space (PES) hardly could be improved: the two modified
Hausdorft problems, Polydist_m57 and NIST_m38, Newsgroup, Gauss_m02
based on an extreme Minkovski-p measure and CoilSame, the worst of the
two graph matching procedures. For the NN rule corrections of the original
dissimilarities are not needed or not helpful. This holds less clearly also for
the SVM results. Although the performances of the SVM are often better
than those of the NN classifier, we should take into account that its results
in the PES are based on an indefinite kernel, thereby not optimal and con-
sequently not comparable to the other, Euclidean spaces.

The SVM relates all objects to each other by its use of a kernel. It is
thereby a global procedure. The NN rule operates very locally and may
thereby be more suitable to study the effect of small changes in the topology
than the more powerful SVM. At the end we are, of course, mainly interested
in classification performances.

The experiments in this report are in addition to the ones we presented in
[29] and in [31]. In both papers we studied more subtle correction procedures
in which we interpolated between the PES and several Euclidean spaces.
Some of these interpolations change the dissimilarities in a monotonous way,
by which the NN classification results don’t change and thereby also don’t
improve. Such transformations are nevertheless important they show that for
every classifier in the PES, so on the original representation, there exist an
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equivalent classifier in an Euclidean space. Nevertheless, from all our exper-
iments, presented here and elsewhere it can be concluded that for many case
the pseudo-Euclidean space can be transformed in a non-topology-preserving
way into an FEuclidean space in which better classifiers can be computed.

In case there exist an Euclidean space in which several classifiers ob-
tain there best results, we may conclude that the corresponding problem is
not intrinsic non-Euclidean. If this space has been found by a correction
or transformation of a pseudo-Euclidean space this just suggests that suf-
ficient knowledge lacks to construct such a representation directly from an
appropriate set of features or (dis)similarity measure.
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