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Abstract. When objects cannot be represented well by single feature vectors, a collection
of feature vectors can be used. This is what is done in Multiple Instance learning, where
it is called a bag of instances. By using a bag of instances, an object gains more internal
structure than when a single feature vector is used. This improves the expressiveness of the
representation, but also adds complexity to the classification of the object. This paper shows
that for the situation that not a single instance determines the class label of a bag, simple bag
dissimilarity measures can significantly outperform standard multiple instance classifiers. In
particular a measure that computes just the average minimum distance between instances,
or a measure that uses the Earth Mover’s distance, perform very well.
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1 Introduction

Standard pattern recognition assumes that objects are represented by a feature vector, containing
measurements on the objects that are informative for the class separability [7]. Unfortunately,
for complex real world objects this is often insufficient. By using a single feature vector, much of
the internal structure of the object is lost. Take for instance an image, that can contain several
regions with very different characteristics: a person, a face, a tree in the background, a blue sky.
It is a priori not clear how important each region is for the classification problem at hand. Only
when a very clear classification task is requested, suitable features may be selected and extracted.
Otherwise, the representation should be flexible enough to encode all information in the image,
and let the classifier optimize its model to get a good performance.

When the representation requires more flexibility, the single feature representation may be
replaced by a collection of feature vectors. For instance in the case of image classification or
image retrieval, it is customary to segment the image in more-or-less homogeneous subparts, and
to represent the full image by a collection of feature vectors. This is what is called Multiple
Instance Learning (MIL)[5]. Objects are represented by a set (called bag) of feature vectors (called
instances), and each object can belong to the positive or negative class. Typically, it is assumed
that objects from the positive class contain at least one instance from a so-called concept. The
task of a classifier is then to identify if one of the instances belong to the concept, and label the
object then to the positive class. Many MIL algorithms therefore contain an optimization strategy
to search for the most informative instance per bag, and create a model of the concept [20, 13, 22,
1].

For the situation that no clear concept can be defined, or the situation that most instances in
a bag actually contribute to the class discrimination, a more global approach in comparing bags
can be defined. Instead of focusing on the single most informative instance in a bag, a similarity
measure between sets of feature vectors is defined [9, 15, 2, 12]. In most cases the goal is to define
a Mercer kernel between the bags, such that a standard support vector classifier can be trained.
By this one tries to implicitly reduce the complexity of a bag of instances back to a simple vector
representation. The advantage is that the well understood procedures of pattern recognition can
be applied, but the drawback is that a part of the representational power is lost.



When the demand for Mercer kernels is relaxed, more powerful dissimilarity measures can be
defined. Actually, any (dis)similarity can be constructed, as long it may be informative for the
class separability [17]. This is at the expense that it cannot be directly plugged into the support
vector classifier. The alternative is then to apply a classifier that can operate on distances, like the
k-nearest neighbor classifier or a nearest mean classifier, or to use a dissimilarity space approach
[8, 14]. In a dissimilarity space approach the dissimilarities are treated as new features, such that
any classifier can be trained on these features. The distance character of the dissimilarities is then
not used, but as features they can still contribute to a good class separation.

In this paper we propose a few simple dissimilarity measures between bags, based on pairwise
dissimilarities between instances. These dissimilarities capture a more global differences between
instance distributions of bags. This is done in section 2. We show in section 4 that for quite some
multiple instance problems, the more global dissimilarity measures are very informative in that
the classifiers trained on top of them give very good classification performance. In section 5 we
conclude and have a bit more discussion on the results.

2 Bag dissimilarities

Assume an object i is represented by a bag Bi = {xik, k = 1, ..., ni} containing ni instances, where
each instance is represented by a vector x ∈ Rd. In the training set {(Bi, yi), i = 1, ..., N} each
bag is labeled positive yi = +1 or negative yi = −1. Given the bag of instances, a classifier has to
predict its class label ŷi = f(Bi). First define the pairwise dissimilarities of instances in the bags
Bi and Bj :

Dij = D(Bi, Bj) =


D(xi1,xj1) ... D(xi1,xjnj )
D(xi2,xj1) ... D(xi2,xjnj )

...
...

D(xini ,xj1) ... D(xini ,xjnj )

 , (1)

where D(xik,xjl) defines the distance between instance k from bag Bi and instance l from bag Bj .
In principle, any distance D(xi,xj) can be used, but in this paper the squared Euclidean distance
is used.

The classic approach for the classification of a bag B is to first identify a concept C ∈ Rd, and
to check for each instance if it is member of this concept.

f(Bi) =

{
+1, if ∃xik ∈ C

−1, otherwise
(2)

In section 3 a few approaches using concepts are explained in more depth.
Instead of focussing on the single most informative instance from a bag, a bag can be described

by its full distribution of its instances. This assumes that all instances in a bag are informative
about the bag label and not a single instance can determine the class label. It is then possible
to define a dissimilarity matrix dij = d(Bi, Bj) between bags, that is measuring the difference
between (or overlap in) the distributions of Bi and Bj .

A drawback may be that the distances obtained in such manner may not be euclidean, or even
metric. Therefore only methods that directly operate on distances can be applied, for instance
a k-nearest neighbor (k-nearest bag) classifier would be suitable. The alternative approach is to
interpret the distances to the other bags as new features, and to train classifiers on this new
dissimilarity space [14]:

f(Bi) = f((di1, di2, ..., diR)) (3)

Typically, the distances to all training bags can be used so R = N , but reductions in complexity
and computational requirements can be obtained when a smaller representation set is chosen
R << N .

We did not specify the dissimilarity dij between bags yet. In this paper we consider two
approaches, the first using bag distribution dissimilarities (section 2.1) and the second using the
pairwise instance dissimilarities (section 2.2).



2.1 Bag distribution dissimilarities

To characterize bag differences in terms of differences between distributions of the instances would
mean that for each bag a probability density has to be estimated, and next the difference between
the distributions of two bags. It is not only very hard to estimate a high dimensional probability
density function in a high dimensional feature space, it is also very computational demanding to
estimate the difference, or overlap, of two distributions. Therefore approximations are made, and
the following approximate distribution comparisons are considered:

Mahalanobis distance The distribution of each bag is approximated by a single Gaussian dis-
tribution with mean µ and covariance matrix Σ. The difference between two Gaussian distri-
butions is computed using the Mahalanobis distance:

dij = (µi − µj)T

(
1
2
Σi +

1
2
Σj

)−1

(µi − µj) (4)

Note that the averaged covariance matrix is used of the covariance matrices Σi and Σj of
the two bags. That means that when the number of instances per bag is low, and the feature
dimensionality is high, it can become hard (or, in fact, impossible) to invert the averaged
covariance matrix.

Earth Mover’s distance The Earth Mover’s distance measures the dissimilarity between two
distributions pi and pj by measuring the effort to turn one distibution pi, one ’pile of earth’,
into another one pj . [16] In case of a discrete probability mass, the probability has to be
moved over distances Dij(k, l) as defined in (1). For the MIL bag similarity that we consider,
we assume that each instance in bag Bi contains 1/ni of the total probability mass. The Earth
Mover’s distance is defined by the minimum amount of work that is needed to transform
distribution pi into pj :

dij = min
fkl

∑
k,l

fklDij(k, l) (5)

where fkl defines the flow between instance k and instance l, and with the additional constraints
that fkl ≥ 0, ∀k, l,

∑
l fkl ≤ 1/ni,

∑
k fkl ≤ 1/nj and

∑
kl fkl = 1.

2.2 Pairwise instance dissimilarities

Instead of modeling full probability densities, the empirical distances between instances can be
used.

To get a single dissimilarity measure between bags Bi and Bj , the matrix in (1) has to be
reduced to a single scalar. A collection of operations O1, .., O5 is defined that first reduce the rows
and columns of the matrix to (two) vectors, and then reduces the vectors to a scalar. In figure 1
a graphical representation of the general family of operations on the dissimilarity Dij is shown.
The first two operations perform a row and column wise reduction:

d̃i = O1(D(xi1,xj1), ..., D(xini
,xj1)) (6)

d̃j = O2(D(xi1,xj1), ..., D(xi1,xjnj
)) (7)

where the individual operators reduce a vector to a scalar: Oi : Rn → R. On these reduced vectors,
the final bag dissimilarity is defined:

dij = O5(O3(d̃i), O4(d̃j)). (8)

(Note that dij contains a single scalar dissimilarity, while Dij contains the full instance dissimilarity
matrix.) Often a symmetric dissimilarity matrix is preferred, dij = dji, and therefore the operations
are defined in a symmetric way: O1 = O2 and O3 = O4.

This reduction of the full dissimilarity matrix using these operations generalizes many ap-
proaches, depending on the choices for Oi. This results in well-known and new bag similarity
measures:
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Fig. 1. The operations that can be performed on a general dissimilarity matrix D between bags Bi and
Bj .

Overall minimum O1 = O2 = min, O3 = O4 = min, O5 = min: Use the overall minimum
pairwise distance between instances. This is expected to be quite noisy because a single instance
determines the final distance between bags. When the number of instances per bag is low, and
there is a very dense concept C, i.e. it is covering a small area in the feature space, this measure
may actually work.

Mean minimum distance O1 = O2 = min, O3 = O4 = mean, O5 = mean The mean minimum
distance between bags, where for each instance the closest instance in the other bag is found,
and where the minimum distances are averaged over all the instances. This is certainly not as
noise sensitive as the overall minimum, and captures more of the general similarity between the
distributions of the two bags. This does not work if there is a single instance that determines
the class label.

Standard Haussdorf distance O1 = O2 = min, O3 = O4 = max, O5 = max: The standard
Haussdorf distance between bags, where for each instance the closest instance in the other
bag is found, and from all the closest matches, the lastest distance is used to define the bag
distance. The advantage is that the Haussdorf distance defines a metric, but it is sensitive to
a single outlier instance, that can dominate the full bag distance.

Modified Haussdorf O1 = O2 = min, O3 = O4 = max, O5 = min: The modified Haussdorf
distance between bags [6] that is less sensitive to single outliers.

2.3 Linear assignment dissimilarity

The operations that are defined in (8) matches instances independently of each other; each element
in (6) or (7) are computed individually. By performing a linear assignment [11], instances in bag
Bi are matched to bag Bj . When one bag is larger than the other, instances of the largest bag are
not matched, and will not contribute to the distance between the two bags. Define Ikl = 1 when
instances k and l are matched, and Ikl = 0 otherwise, then the bag dissimilarity is defined as:

dij =
∑
k,l

IklDij(k, l). (9)

3 Standard MIL classifiers

The original model proposed by [5] was an axis-parallel rectangle that was grown and shrunk to
best cover the area of the concept. Several parameters determine the optimization of the rectangle,
and one of them (τ) defines a slight extrapolation around to box to become a bit resistant against
noise. It is applied to a drug discovery problem where molecules have to be distinguished based
on their shape into active and inactive molecules. It appears that this rectangular model fits well
with the molecule shape classification, but it is less successful in other applications.



A probabilistic description of the MIL problem was given by [13]. The concept is modeled by a
general probabilistic model, where typically an axis-parallel Gaussian is used. Unfortunately, the
optimization of the parameters requires a computationally expensive maximization of an likelihood
that is adapted to include the constraint that at least one of the instances in a positive bag has a
high concept probability. Because the error landscape is very wild, several random initialisations
are tried, and the solution with the highest likelihood is used.

Newer methods often avoid the modeling of the concept by a density model, and try to separate
concept instances from background instances using a discriminative approach. Two of them include
the MISVM [1] and the MiBoost [19]. The first uses a support vector classifier, in which one instance
from each positive bag is selected as being the ‘witness’, i.e. each bag is reduced to its most positive
member. The second is a variant of boosting, where in each boosting step a weight per instance is
updated. The weight indicates how informative this instance seems to be in the prediction of the
class label of the bag.

The above mentioned methods assume the presence of a concept. Other methods avoid this
assumption, and try to apply standard pattern recognition techniques directly to the MIL problem.
The first approach is to extract features from the bag of instances, like the average instance, or the
minimum and maximum feature values that appear in the bag, and train a standard classifier on
this feature vector [9]. A second approach is to ignore the MIL problem and to label all instances
according to their bag label. [21] Then a standard classifier can be fitted to the fully labeled
instance dataset. To classify a new bag of instances, first all instances are classified, and then a
simple combining rule like taking the maximum, or majority voting is applied. Finally, an idea
similar to the bag of words in the natural language processing can be applied. In particular, in
MILES [4] all instances in the training set are considered words (or potential concepts), and new
bags are represented by their similarity to each of the words. On these long similarity vectors a
sparse classifier is fitted to select the most informative words.

4 Experiments

To show the benefits and limitations of the bag similarities, classification experiments are per-
formed on some standard real world MIL datasets. The datasets often deal with image classifica-
tion, where with different procedures segments are extracted, different features per segment are
computed and different classes are defined. [3, 1, 4]. Two non-image problems are the classical drug
discovery problems Musk1 and Musk2, in which molecules are described by 166 shape features
[5], and the webpage classification, in which webpages are described by a collection of pages that
have links to the original page. In table 1 some characteristics are shown of the datasets that
are considered in this paper. The datasets are chosen to show some variability in the number of
features, the number of bags, and the average number of instances per bag.

Table 1. Some characteristics of the standard MIL datasets used in this paper.

pos. neg. min. median max.
dataset nr.inst. dim. bags bags inst/bag inst/bag inst/bag

MUSK 1 [5] 476 166 47 45 2 4 40
MUSK 2 [5] 6598 166 39 63 1 12 1044
Corel African [4] 7947 9 100 1900 2 3 13
Corel Historical [4] 7947 9 100 1900 2 3 13
SIVAL AjaxOrange [10] 47414 30 60 1440 31 32 32
Web atheism [23] 5443 200 50 50 22 58 76
Web motorcycles [23] 4730 200 50 50 22 49 73
Web mideast [23] 3373 200 50 50 15 34 55
Corel Fox [1] 1320 230 100 100 2 6 13
Corel Tiger [1] 1220 230 100 100 1 6 13
Corel Elephant [1] 1391 230 100 100 2 7 13



In tables 2, 3 and 4 the results of the classifiers mentioned in Section 2 are shown. Three
different types of classifiers are used: the standard MIL classifiers in the top block, the k-nearest
neighbor that is directly operating on the distances defined in Section 2 given in the middle block,
and finally classifiers that use the distances as features in the last block.

For the Axis-parallel Rectangle classifier (APR) the τ parameter is varied, because that appears
to have the most significant influence on the performance. The other parameters are fixed. For the
Diverse Density 100 random restarts of the optimization is chosen. In the miBoost the number of
boosting runs was set to M = 100. For the MI-SVM and MILES the kernel was chosen to be an
RBF kernel, where the width parameter σ was roughly optimized (using 5 candidates). For the
MI-SVM the linear kernel was also applied for comparison.

The more simple MIL classifiers includes first the Linear Discriminant Analysis (LDA) trained
on all instances, with a maximum combination rule to get from instance to bag labels. The next
two classifiers represent a bag of instances by the mean instance (where the feature values are
averaged) or the minimum and maximum feature value, respectively. On this new feature vector
a LDA is trained. The last simple MIL classifier applies a bag of words approach, where first k
cluster centers are obtained by applying k-means clustering on all instances, next the bags are
represented by the number of instances that are assigned to each cluster, and finally a (linear)
support vector classifier is trained on the histograms.

The standard MIL classifier are compared to the classifiers that work with the bag dissimilari-
ties. Five different dissimilarities are considered here, the ’Overall Minimum’ (minmin.) dissimilar-
ity, the ’Mean Minimum’ (mindist) distance, the ’Hausdorff’ (haussd.) distance, the Mahalanobis
(mahal.) distance, the Earth Mover’s distance (emd) and, finally, the linear assignment (lin.ass.)
distance. The classifier that is used for classifying distance data is the k-nearest neighbor. The k
is optimized on the training set using leave-one-out crossvalidation.

Furthermore, all classifiers are implemented, trained and evaluated using a Matlab toolbox
[18]. In quite some cases the performance as mentioned in the literature could not be reproduced.
This might be caused by the fact that the optimization of the free parameters in the methods
was not so extensive as in the original papers. In this paper a reasonable range of parameters was
chosen and an internal crossvalidation was used to find the final optimal value. In some cases (in
particular the Diverse Density) the optimization was so slow, that just a fixed parameter setting
was chosen. Furthermore, all features have been rescaled to zero mean and unit variance on the
training set. The reported performance is the area under the ROC curve (×100). A performance
of 50.0 means that the two classes are not separated at all, a performance of 100.0 is perfect.

From the results in Tables 2, 3 and 4 several things can be concluded:
Datasets that contain a clear concept often do not gain much by the use of bag similarities.

That is visible in datasets Musk 1, Musk 2, AjaxOrange, Corel Tiger and Corel Elephant. For
datasets in which many instances contain some information about the class label, like in the
webpage classification, but also a bit in Corel African, Corel Historical and Corel Fox, the bag
dissimilarity measures are informative.

It is not always the case that using a nearest neighbor classifier on the distances gives the highest
performance. In particular on the webpage classification problems significant improvements can
be made by using a k-nearest neighbor classifier (or a Parzen classifier) in the dissimilarity space.
On the other hand, on the Corel African and Corel Historical datasets, training a classifier in the
dissimilarity space slightly deteriorates the results. This is probably caused by the fact that the
dissimilarity space is quite large here because the number of training bags is high: 90% of 2000 =
1800D.

5 Conclusions

In some MIL problems not a single instance may be decisive, but the full distribution of all
the instances in a bag. For these situations bag dissimilarities are defined that characterize the
difference in distribution between bags. For the webpage classification problem this resulted in
very good performances, while for other problems, where a single concept can be expected, the



Table 2. AUC performances (100×) of the classifiers on datasets Musk1, Musk2, Corel African and Corel
Historical. Results are obtained using five times 10-fold stratified crossvalidation. Results (1) cannot be
obtained because some bags in Musk2 are too large to compute the Earth Mover’s distance between bags.

classifier Musk 1 Musk 2 Corel African Corel Historical

Standard MIL classifiers

APR τ = 0.999 81.8 (1.3) 82.5 (1.2) 50.5 (0.0) 50.5 (0.1)
APR τ = 0.995 78.9 (1.7) 80.8 (2.3) 57.4 (0.8) 61.4 (0.4)
Diverse Density (100 restarts) 89.4 (1.3) 93.2 (0.0) 85.6 (0.1) 83.4 (0.7)
MiBoost (M = 100 rounds) 80.3 (3.1) 49.3 (3.7) 68.0 (0.0) 80.4 (1.6)
MI-SVM (linear kernel) 70.3 (3.0) 81.5 (2.1) 63.4 (2.0) 78.9 (0.6)
MI-SVM (RBG kernel) 92.9 (1.3) NaN (0.0) NaN (0.0) 90.8 (1.0)
MILES (RBF kernel) 92.8 (1.4) 95.3 (1.5) 58.9 (9.2) 60.8 (12.8)
Simple MIL with LDA, max-comb. 72.9 (3.4) 76.7 (3.4) 68.8 (0.2) 74.4 (0.2)
LDA on mean-inst 85.7 (1.4) 87.6 (2.8) 77.2 (0.3) 86.2 (0.1)
LDA on extremes 92.4 (1.9) 88.9 (4.0) 88.5 (0.1) 85.3 (0.2)
BagOfWords (k=10)+linear SVM 72.7 (4.7) 63.7 (6.1) 75.1 (3.2) 78.4 (3.9)
BagOfWords (k=100)+linear SVM 78.7 (5.5) 71.2 (3.1) 83.4 (1.8) 85.6 (2.6)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 90.1 (1.4) 84.0 (1.9) 86.6 (0.4) 84.1 (1.2)
mindist+k-NND 86.3 (2.0) 83.2 (1.6) 92.7 (0.7) 90.7 (1.1)
haussd.+k-NND 89.0 (1.6) 84.2 (0.8) 86.7 (0.9) 88.5 (1.0)
mahal.+k-NND 61.8 (2.8) 65.7 (5.7) 67.3 (0.7) 63.2 (1.2)

emd+k-NND 90.1 (2.7) (1) 92.0 (0.7) 88.8 (1.7)
lin.ass.+kNND 84.7 (1.6) 76.5 (2.7) 69.9 (0.6) 87.8 (0.4)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 94.7 (3.0) 92.3 (2.7) 90.4 (0.6) 84.0 (0.6)
mindist.+Parzen Classifier 61.2 (6.0) 50.0 (0.0) 83.4 (0.9) 86.0 (0.5)
haussd.+Parzen Classifier 86.9 (0.7) 92.1 (2.5) 79.1 (0.6) 84.3 (0.5)
mahal.+Parzen Classifier 52.1 (0.9) 65.8 (2.4) 46.3 (2.4) 52.4 (1.3)

emd+Parzen Classifier 87.4 (3.4) (1) 89.4 (0.4) 85.4 (0.7)
lin.ass.+Parzen Classifier 83.3 (2.7) 72.2 (2.9) 83.5 (0.7) 86.2 (0.5)
minmin.+k-NN 93.3 (1.5) 90.7 (3.9) 88.7 (0.8) 83.5 (1.3)
mindist.+k-NN 88.8 (3.0) 83.8 (1.4) 81.7 (1.1) 85.5 (1.0)
haussd.+k-NN 89.2 (2.7) 91.6 (1.0) 77.0 (0.7) 80.0 (1.3)
mahal.+k-NN 72.0 (3.1) 61.6 (2.7) 53.3 (1.6) 57.0 (0.8)

emd+k-NN 92.4 (1.4) (1) 86.9 (1.1) 79.6 (1.5)
lin.ass.+k-NN 88.6 (2.1) 72.6 (3.7) 81.5 (1.4) 84.7 (1.4)

bag dissimilarity is far less successful. It seems that most webpages that link to another webpage,
contain information about the linked-to webpage, and therefore selecting just one single most
informative webpage is not optimal. For other problems, like the image classification problem, the
different segments appear to be more independent, in that detecting the single most informative
segment is often best. This effect is also enhanced by the fact that in the image classification
problems images often do not have many segments (around 3-6), so it is hard to treat these few
instances as a distribution.

When the given the bag dissimilarities are interpreted as new features to represent the bag, a
classifier can be trained on these distance features. In this paper only the k-nearest neighbor and
the Parzen classifier are considered. Although the choice of the classifier has some influence on
the final performance, the choice of the bag dissimilarity is more important. One well-performing
dissimilarity is using the Earth Mover’s Distance.



Table 3. AUC performances (100×) of the classifiers on datasets SIVAL AjaxOrange, webpage Atheism,
webpage Motorcycles and webpage Mideast. Results are obtained using five times 10-fold stratified cross-
validation. Results (2) cannot be obtained because the linear programming optimizer required more than
128GB of memory, which was not available.

classifier AjaxOrange alt.atheism rec.motorcycles politics.mideast

Standard MIL classifiers

APR τ = 0.995 48.4 (0.8) 50.0 (0.0) 50.0 (0.0) 49.8 (0.4)
Diverse Density (100 restarts) 55.5 (2.9) 52.2 (2.4) 46.4 (2.9) 40.2 (2.5)
MiBoost (M = 100 rounds) 56.5 (2.4) 50.0 (0.0) NaN (0.0) 50.3 (1.5)
MI-SVM (linear kernel) 93.6 (2.6) 69.8 (2.8) 76.4 (4.0) 79.8 (2.3)
MI-SVM (RBG kernel) NaN (0.0) 45.5 (7.1) 49.7 (5.4) 46.1 (2.4)

MILES (RBF kernel) (2) 47.1 (4.5) 44.7 (4.8) 54.1 (1.8)
Simple MIL with LDA, max-comb. 89.3 (0.3) 81.6 (1.2) 80.4 (2.1) 75.0 (3.1)
LDA on mean-inst 82.3 (0.9) 83.7 (2.1) 84.4 (1.8) 78.1 (1.7)
LDA on extremes 90.3 (0.3) 50.0 (0.0) 51.2 (0.4) 65.0 (1.8)
BagOfWords (k=100)+linear SVM 81.2 (2.5) 54.0 (0.0) 65.2 (9.3) 58.6 (6.8)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 53.6 (1.2) 50.0 (0.0) 50.0 (0.0) 52.8 (2.2)
mindist+k-NND 62.9 (1.3) 59.2 (1.9) 58.4 (0.5) 53.4 (1.1)
haussd.+k-NND 72.4 (1.3) 72.8 (3.0) 68.7 (3.2) 67.1 (1.8)
mahal.+k-NND 64.0 (1.6) 47.7 (4.4) 45.0 (3.4) 58.5 (6.0)
emd+k-NND 77.6 (2.6) 56.0 (1.2) 60.8 (0.4) 57.2 (1.3)
lin.ass.+kNND 71.6 (1.4) 69.2 (1.7) 53.7 (2.9) 58.5 (3.2)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 55.7 (1.6) 49.8 (0.4) 50.0 (0.0) 50.4 (2.3)
mindist.+Parzen Classifier 78.0 (1.3) 78.9 (2.8) 78.4 (0.5) 75.2 (1.9)
haussd.+Parzen Classifier 71.8 (0.9) 73.8 (2.0) 82.0 (2.2) 73.8 (0.9)
mahal.+Parzen Classifier 75.3 (0.9) 54.2 (3.3) 43.7 (3.5) 61.9 (1.8)
emd+Parzen Classifier 78.7 (1.1) 89.7 (1.3) 77.6 (1.5) 87.8 (1.1)
lin.ass.+Parzen Classifier 78.9 (0.6) 80.1 (2.4) 84.2 (2.8) 84.3 (3.1)
minmin.+k-NN 56.0 (1.6) 50.0 (0.0) 50.0 (0.0) 47.8 (2.7)
mindist.+k-NN 70.6 (2.6) 84.9 (1.6) 86.6 (2.0) 82.2 (1.5)
haussd.+k-NN 68.9 (1.9) 85.6 (2.1) 89.2 (3.5) 77.2 (3.2)
mahal.+k-NN 70.8 (1.5) 51.2 (3.6) 56.3 (3.8) 55.8 (4.6)
emd+k-NN 72.0 (2.4) 90.0 (1.4) 86.7 (0.7) 82.6 (1.7)
lin.ass.+k-NN 70.1 (0.8) 82.1 (2.3) 82.9 (2.4) 80.8 (3.8)
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