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Beyond Traditional Kernels: Classification in Two
Dissimilarity-Based Representation Spaces
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Abstract—Proximity captures the degree of similarity between
examples and is thereby fundamental in learning. Learning from
pairwise proximity data usually relies on either kernel methods
for specifically designed kernels or the nearest neighbor (NN) rule.
Kernel methods are powerful, but often cannot handle arbitrary
proximities without necessary corrections. The NN rule can work
well in such cases, but suffers from local decisions. The aim of
this paper is to provide an indispensable explanation and insights
about two simple yet powerful alternatives when neither conven-
tional kernel methods nor the NN rule can perform best. These
strategies use two proximity-based representation spaces (RSs) in
which accurate classifiers are trained on all training objects and
demand comparisons to a small set of prototypes. They can han-
dle all meaningful dissimilarity measures, including non-Euclidean
and nonmetric ones. Practical examples illustrate that these RSs
can be highly advantageous in supervised learning. Simple classi-
fiers built there tend to outperform the NN rule. Moreover, com-
putational complexity may be controlled. Consequently, these ap-
proaches offer an appealing alternative to learn from proximity
data for which kernel methods cannot directly be applied, are too
costly or impractical, while the NN rule leads to noisy results.

Index Terms—Classifier design and evaluation, indefinite ker-
nels, similarity measures, statistical learning.

I. INTRODUCTION

PROXIMITY plays an essential role in human learning as it
is believed to underpin the process of recognition. It may

be seen as a natural link between observations of objects, i.e.,
perception, and an overall judgment of their shared commonal-
ities, i.e., higher level knowledge [29]. In pattern recognition, a
suitable object representation is needed in order to train a classi-
fier. A good representation is crucial since it will lead to a good
discrimination between similar and different examples [23]. It
is thereby natural to use proximity as a basic quality to identify
patterns and model group characteristics, and to derive repre-
sentations via pairwise object comparisons.

Many researchers are aware of the fundamental role that prox-
imity plays both in recognition and class description [5], [24],
[27], [28], [41], [51], [71], [74]. The use of pairwise procedures
in hierarchical clustering for taxonomy can be traced back at
least to Sokal [70]. Classical scaling is one of the first pro-
jection methods for dissimilarity data. It originates from the
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works of Cayley [8], Menger [48], and Schoenberg [66]. Later,
nonlinear multidimensional scaling techniques were developed,
mostly for visualization purposes [4]. However, (dis)similarity
data were not systematically studied in supervised learning.

Goldfarb [27] was one of the first researchers to observe
the importance of dissimilarity for object representation.1 It
was however only until mid-1990s before the true potential
of proximity-based learning was realized when Vapnik laid a
foundation to kernel methods [75]. Kernel tools have rapidly
emerged due to an elegant relation between the kernel trick and
optimization/regularization in reproducing kernel Hilbert spaces
(RKHSs) [78]. Although kernel methods have been successfully
applied to various learning scenarios, such techniques were not
directly applicable to general proximity data. So, the severe
limitation of a kernel, its positive semidefinite (psd) property,
has been challenged. First, the so-called “featureless approach”
was introduced in [22] and followed by [51]. This was later
renamed and generalized to the dissimilarity (proximity) repre-
sentation [57], [61]. This is a numerical representation whose
elements encode the degrees of similarity between examples
and given or optimized prototypes. Such representations ex-
tend kernels to indefinite kernels [27], [35], [43], [52], dyadic
kernels [33], [34], [39], or descriptions based on pairwise re-
lations. Since proximity measures are studied in all learning
frameworks, such proximity representations are universally ap-
plicable. They can be defined over sensor measurements, such
as images, and also over features, strings, graphs, probability
distributions, and other knowledge-based descriptions. Suitable
structure-aware measures such as edit distances can be used
to compare nonvectorial examples as they usually contain an
inherent and identifiable structure.

In statistical learning, proximity is usually imposed before-
hand either as the Euclidean distance between vectors or as
a psd kernel. In applications, proximity measures are defined
for arbitrary patterns such as strings, histograms, shapes, bags
of words, probabilistic models, etc. Many proposed measures
incorporate some prior information about the problem. Hence,
similarity functions are often non-psd, while dissimilarity func-
tions are either nonmetric or lack the Euclidean behavior, i.e., are
not isometrically embeddable into a Euclidean space [32], [57].
These are naturally derived when objects, shapes, or sequences
are aligned in a template matching process. As argued in [41],
nonmetric measures are preferred in the presence of partially oc-
cluded objects, in which violation of triangle inequality is inher-
ent to the problem of robust matching. Moreover, incorporation

1Later, Goldfarb developed a theory of inductive structural learning in which
objects were evolving structural processes and the dissimilarity measure was
dynamically learned [28]. This theory is beyond the scope of this paper.
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of invariance leads to indefinite kernels, i.e., non-psd similarities
[36]. Nonmetric examples include structural local alignments
of proteins [62], modified-Hausdorff distances [20], measures
based on deformable templates [42], tangent distance [69], nor-
malized edit distances [6], or Kullback–Leibler divergence [25].

Although such general (dis)similarity measures are widely
used for matching and object comparison [6], [20], [25], [41],
[76], classification often relies on the nearest neighbor (NN)
rule or its variants. The NN rule is commonly applied because
it is simple and tends to perform well on large training sets. If
the derivation of dissimilarities is costly, complexity needs to
be reduced in the test stage, i.e., the number of objects to which
dissimilarities have to be computed. The NN rule often worsens
its performance for such reduced prototype sets. And this is
where proximity-based linear and quadratic classifiers become
profitable as they often lead to higher classification accuracy
than this condensed NN rule. They perform well, irrespectively
whether the measure is Euclidean, non-Euclidean, metric or
nonmetric. This avoids the use of regularization when kernels
are derived [35], [47] or metric correction techniques that may
cause significant loss of information when the deviation from
the psd, Euclidean, or metric behavior is large [43], [59]. This
important fact is illustrated in our experiments.

In this paper, we provide a summary about general proximity-
based learning methods, focussing on classification in two sim-
ple yet powerful proximity-based representation spaces (RSs):
dissimilarity spaces and pseudo-Euclidean spaces. A fundamen-
tal explanation of these spaces is given, emphasizing their ap-
plicability to general measures. Important findings and insights
are summarized based on experiments conducted on artificial
and real data.

The paper is organized as follows. Section II starts with an
overview of proximity-based learning paradigms. Section III
provides the foundation of proximity-based RSs. Section IV
focusses on techniques that determine a representation set. Sec-
tions V and VI describe experiments that illustrate the properties
of the reviewed representations. The discussion and overall con-
clusions are in Section VII.

II. OVERVIEW OF PROXIMITY-BASED LEARNING

Basic definitions and properties related to proximities and
kernels can be found in the Appendix. We will now focus on
two main and significantly different proximity-based learning
scenarios. The first one relies on neighborhood relations defined
via the (dis)similarity values. This leads to variants of the NN
rule that are directly applied to the given proximity data. The
other strategy trains classifiers in suitable RSs. Such vector
spaces are determined either by linear or nonlinear projection
methods, or remain implicit, but approachable via the kernel
trick for kernel methods.

A. Direct NN Rule Without the Use of RSs

In statistical learning, one often starts from a predefined fea-
ture space in which objects are represented by feature vectors.
In this context, proximity-based techniques include variants of
(weighted) NN rule [16] or condensed NN rule, often based on
the Euclidean distance [13], [15], [21], [37]. To account for vari-

ability in feature spaces, a local structure is taken into account in
order to learn the metric or to weight neighbor contributions ap-
propriately [18], [38], [45], [55]. Such approaches are designed
to optimize either the parameters of the measure in local regions
of the feature space or the number of NNs. We are not interested
in these methods here, since we deal with the given proximity
data, usually provided without any accompanying feature-based
representation.

The direct NN rule is our baseline method. It means that
the NN rule is applied to the given proximity matrix, without
the use of an RS. In general, the 1NN and kNN rules are the
simplest learning strategies for arbitrary proximity data. They
are asymptotically optimal in the Bayes sense for Euclidean
(or metric) distances [16]. They can generalize well for large
training sets but at high storage and computational costs. More-
over, the accuracy of the kNN rule may significantly be af-
fected by noisy or erroneously labeled examples. Various proto-
type optimization techniques exist to alleviate these drawbacks
in feature vector spaces. Initial training examples are either
merged [21], [40], [50] or reduced [13], [15], [37] to a small
prototype set. Some of such techniques are adapted for the use
of the direct NN rule.

B. Statistical Classifiers in Representation Vector Spaces

RSs are data-dependent inner product vector spaces that en-
code proximity information. Although finite metric data can be
embedded with low distortion into normed and metric spaces
such as l1 or l∞, their applicability for statistical learning is lim-
ited, mainly to a fast and approximate search of NNs or simple
statistics on huge amounts of data; see chapters of Indyk in [30].
The reason is that statistical techniques often rely on an inner
product, which is not originally defined in arbitrary normed or
metric spaces. So, inner product spaces are of interest here, be-
cause they allow us to use traditional statistical classifiers such
as linear ones. We now start with the definition of proximity
representation.

1) Proximity Representation Versus Kernel: Assume a set
of prototype objects R = {p1 , p2 , . . . , pn} in any initial rep-
resentation (e.g., strings, shapes, or bags of words) called a
representation set. Let d be a nonnegative dissimilarity measure
that ideally incorporates prior knowledge and the invariance of
the application domain. In general, we only require that d is
reflexive, i.e., d(x, x) = 0 for all x. An object x is represented
as a vector of dissimilarities computed between x and the proto-
types from R, i.e., D(x,R) = [d(x, p1) d(x, p2) · · · d(x, pn )]T.
Given a training set X = {x1 , . . . , xN } of N examples, a
dissimilarity representation is an N × n dissimilarity matrix
D(X , R), in which D(xi, R) is now a row vector [57], [61].
If a similarity measure k is used instead, we will get a
similarity representation K(X , R) defined by similarity vec-
tors K(x,R) = [k(x, p1) k(x, p2) · · · k(x, pn )]T. Moreover, if
X = R and k is psd, then K is a kernel matrix. Often R ⊆ X ,
but R and X may also be disjoint sets. R is either given or
optimized to guarantee a good tradeoff between recognition ac-
curacy of the final classifier and computational complexity. One
may therefore control the size of R.
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As as result, kernel matrices form a specific class of prox-
imity representations. A kernel is a (conditionally) psd function
K(x, y) of two variables x and y, interpreted as a general-
ized inner product (hence similarity) in an RKHS H induced by
K [67], [68], [78]. Due to the reproducing property of K, kernel-
based classifiers are indirectly built in H and often expressed as
linear combinations of kernel values. Although the applicability
of traditional kernels has been extended to general nonvectorial
descriptions, e.g., [44] and [79], the class of permissible kernels
is limited due to their requirement of being psd [or condition-
ally positive definite (cpd)]. A natural generalization leads to
indefinite kernels [7], [35], [52] or dyadic kernels [39], which
are also examples of proximity representations.

2) Representation Spaces: Let D(X , R) be an N × n dis-
similarity representation with the elements d(xi, pj ). Let
K(X , R) be the corresponding N × n similarity representa-
tion of the elements k(xi, pj ). By “corresponding,” we mean
the following. If the dissimilarity d is designed first, then k is
defined as k(xi, pj ) = 1/2[d2(xi, 0) + d2(0, pj ) − d2(xi, pj )],
where 0 represents a specific element that acts as a reference.
If the similarity k is defined first, then d is computed such that
d2(xi, pj ) = k(xi, xi) + k(pj , pj ) − 2k(xi, pj ).

Proximity-based RSs are used either directly or indirectly.
Later, we list main linear and nonlinear projection approaches;
the list is nonexhaustive. A linear projection is based on linear
operations of the given/transformed proximity representation.
The main techniques are as follows.

1) Implicit use of RSs via (indefinite) kernel matrices:
a) psd kernel K(X ,X ) or cpd kernel −D�2(X ,X ): K

can be forced to be psd by regularization [47], ap-
proximation, or transformation [11]. Note that sup-
port vector machine (SVM) is also reformulated for
dyadic kernels K(X , R), R ⊆ X [39].

b) Any symmetric kernels K(X ,X ) or −D�2(X ,X ):
Indefinite kernel methods rely on the reproducing
property of the kernel matrix and work in the repro-
ducing kernel Krein (pseudo-Euclidean) spaces [7],
[35], [52].

2) Explicit use of RSs via maps into inner product spaces:
a) Proximity representations K(X , R) or D(X , R),

R ⊆ X , based on symmetric measures, are used to
determine Euclidean or pseudo-Euclidean spaces.

i) Pseudo-Euclidean linear embedding. It
simplifies to classical scaling, if k is psd
or d has a Euclidean behavior [4], [27] (see
Section III-B).

ii) FastMap, a distance-preserving linear embed-
ding into a Euclidean space [26]. d has to be
Euclidean.

iii) Locally linear embedding (LLE) [65]. d is the
Euclidean metric or the corresponding k is psd.

iv) Laplacian, Hessian, and other eigenmaps [1],
[19]. Euclidean distances are further used in
kernels.

v) Linear map into a (Euclidean) proximity space
[61] for arbitrary d and s (see Section III-C).
Proximity space is related to dyadic kernels

[39]. Note that relevance SVM [73] can be seen
as a Bayesian approach in a similarity space.

vi) Nonlinear multidimensional scaling or vari-
ants of Sammon mapping [4], [11]. Neural
nets [14], regression or reformulated stress op-
timization [56] can be used to learn the map
afterwards.

vii) Embedding into a Euclidean space within a
regularization framework [47].

viii) Neural nets or nonlinear optimization tech-
niques as general tools for nonlinear projec-
tions.

b) Arbitrary proximity representations K(X , R) or
D(X , R) are used to determine Euclidean spaces.
These include linear maps found by singular value
decomposition, proximity space, or nonlinear maps
found by (auto-associative) neural nets or via opti-
mization techniques.

3) Explicit use of RSs via embeddings into normed or met-
ric spaces. D(X ,X ) is metric. These include Lipschitz
embeddings into compact metric spaces [49], [77] or low-
distortion embeddings into normed lp -spaces, p = 1,∞
(see [30] for details).

3) Classifiers in RSs: Inner product spaces are of high inter-
est, because of the availability of various statistical techniques.
It is important to emphasize that a proximity space is the sim-
plest and most general concept for such an inner product RS.
It is applicable to all proximity representations and all mea-
sures. Moreover, it makes use of the original (dis)similarities.
Other simple approaches such as FastMap, LLE or Laplacian
eigenmaps work only for Euclidean distances or kernels (such
as Gaussian) defined over Euclidean distances. Hence, their ap-
plicability is limited.

Because we deal with finite data, kernel methods can be in-
terpreted in both similarity spaces defined by the kernel ma-
trix K and the RKHSs, which are Euclidean spaces induced
by a finite K. So, there are close relations between these two
spaces. For example, SVM is the largest margin linear classifier
in the RKHS induced by the kernel matrix K(X ,X ), which is
at the same time a linear function of the kernel values to the
selected support vectors. Given a two-class problem, the anal-
ogy between the SVM and linear decision (LD) functions in
proximity spaces is SVM: f(x) =

∑
pi ∈SV wiK(x, pi) + w0 ,

LD in a similarity space: f(x) =
∑

pi ∈R wiK(x, pi) + w0 , and
LD in a dissimilarity space: f(x) =

∑
pi ∈R wiD(x, pi) + w0 .

R ⊆ X is a representation set and SV ⊆ X denote support vec-
tors determined by SVM. All these decision functions are linear
combinations of proximity values. The basic difference is that
in SVM, both the classifier and support vectors are optimized
together to guarantee the largest margin in the RKHS. Linear
classifiers in proximity spaces are usually defined in a two-stage
process. R is determined first, and then, a linear classifier is es-
timated based on a chosen model or assumption, e.g., a linear
discriminant. So, the representation set and weights wi are op-
timized for SVM differently than for other linear classifiers in
proximity spaces. SVM is simply a specific classifier in a simi-
larity space based on an elegant mathematical interpretation in
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the RKHS. If a psd kernel K(X , R) defines a similarity space,
all classifiers built there can be interpreted in a suitable RKHS.

III. TWO IMPORTANT DISSIMILARITY-BASED RSS

Assume X is a training set, R is an optimized representation
set and U is an evaluation set. D(X , R) is an N × n training
dissimilarity matrix and D(U,R) is an M × n test dissimilarity
matrix. Accordingly, K(X , R) is an N × n training similarity
matrix, while K(U,R) is an M × n test similarity matrix.

Note that the direct 1NN and kNN rules used in this context
are the nearest prototype methods. Unless stated otherwise, the
NN rule will act on the representation set R. When applied to
D(U,R), the test objects from U are assigned to classes that
most frequently occur among the kNNs in R [as judged by k
smallest dissimilarities d(u, pj ), for each test object u ∈ U and
pi ∈ R]. If the original vectorial representation is also available,
prototype generation techniques can be employed to determine
R [40], [46], [50]. Otherwise, R is selected out of the training
set, e.g., by condensing methods. If classes are densely sampled,
the NN rule is expected to perform well for metric distances and
a very large representation set R.

A. Classification in Proximity-Based RSs

We now focuss on pseudo-Euclidean spaces and dissimilar-
ity spaces, which provide the simplest, yet powerful ways of
encoding (dis)similarity information. Although more complex
procedures exist, as listed in Section II-B, they usually rely on
vectorial data and Euclidean distances [19], [65], [80], and are
not of general applicability. Classification in proximity-based
spaces involves the following steps.

1) First, dissimilarity/similarity measure is defined for the
raw data, given by an application expert, learned from the
examples, or defined in a feature space.

2) Representation set R is usually chosen (or generated) from
the initial set of learning objects X . R should preferably
be a fraction, such as 5%–10%, or a logarithm of the total
number of objects |X |. It may be reduced to a few objects
for the execution speed (see Section IV for details).

3) Having determined R, an RS is constructed from either
D(R,R) or K(R,R). The two main procedures are dis-
cussed in Sections III-B and C.

4) All training objects are mapped into such a constructed
RS and a classifier is trained by these. Traditional statisti-
cal classifiers are used there or new ones are formulated.
Linear and quadratic functions are especially of interest,
because of their simplicity.

5) Finally, test objects are mapped into the RS based on their
proximities to the examples from R. The resulting test
vectors are classified.

Several dissimilarity measures applied in practice are non-
Euclidean or nonmetric, often due to incorporation of invariance.
Even if the Euclidean distance is used as the basic point-to-point
distance (as, for example, in modified-Hausdorff distances [20]),
the minimum distances between sets of invariant representations
may conflict the triangle inequality, as illustrated in Fig. 1. It
is shown in [36] that the use of kernels in relation to invariants
may lead to indefinite kernels.

Fig. 1. Parameter vector space with the invariant trajectories for objects O1 ,
O2 , and O3 representing equivalence classes. If the chosen dissimilarity mea-
sure is the minimal distance between these trajectories, triangle inequality can
easily be violated, i.e., d(O1 , O2 ) + d(O1 , O2 ) < d(O1 , O3 ).

The two dissimilarity-based RSs discussed here are universal,
because there is no restriction to either Euclidean or metric mea-
sures. They are thereby suitable to handle problems described
earlier, in which non-Euclidean measures naturally arise. In
Section III-B, we discuss the possibility of pseudo-Euclidean
embedding, in which the non-Euclidean behavior is explicitly
modeled. In Section III-C, we present the dissimilarity space
for which the nature of the measure makes no difference. It can
always be applied in the same way.

B. Pseudo-Euclidean Linear Embedding Approach

Let d be a symmetric dissimilarity measure and R ⊆ X . The
corresponding dissimilarity matrix D := D(R,R) can be em-
bedded in a pseudo-Euclidean space E by an isometric (distance-
preserving) mapping [27], [57]. E = R

(p,q) = R
p ⊕ R

q is a real
vector space equipped with a nondegenerate indefinite inner
product 〈·, ·〉E such that 〈·, ·〉E is positive definite on R

p and neg-
ative definite on R

q . E is therefore characterized by the so-called
signature (p, q), indicating the dimensions of both subspaces.
Note that R

(p,0) is a Euclidean space.
The inner product between two vectors x,y ∈ R

(p,q) with
respect to an orthonormal basis is defined as 〈x,y〉E = xTJpqy,
where

Jpq =
[

Ip×p 0
0 −Iq×q

]

and I denotes the identity matrix. Hence, d2
E(x,y) = (x −

y)TJpq (x − y), and it becomes square Euclidean for Jpq = I .
Since E is a linear space, operations based on inner products are
appropriately extended from the Euclidean case. The interpre-
tations are, however, different. More details can be found, e.g.,
in [3], [27], [57], and [61].

In a pseudo-Euclidean embedding, we look for a config-
uration X (here vectors are stored as rows) in some R

(p,q)

that preserves the distances given by an n × n dissimilarity
matrix D�2 = (d2

ij ). First, the indefinite Gram matrix G is
computed as G = −(1/2)JD�2J , where J = I − (1/n)11T

is the centering matrix [27]. J projects2 the data such that X
has a zero mean vector. The factorization of G is found by its

eigendecomposition as G = QΛQT = Q|Λ|1/2 [Jpq

0 ]

2A more general projection sets a weighted mean of X to a zero vector. Then,
Js = I − 1 sT, where s is such that sT1 = 1 and G = −(1/2) Js D�2 JT

s . By
choosing a suitable s, any vector from X can be projected at the origin.
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|Λ|1/2QT, where Λ is a diagonal matrix of first decreasing
p positive eigenvalues, followed by increasing q negative
eigenvalues, and zeros. Q is a matrix of the corresponding
eigenvectors. Since G is a Gram matrix, then G = XJpqX

T

by definition. As a result, given r = p + q nonzero eigenvalues
(r < n), an r-dimensional X is found as X = Qr |Λr |1/2 ,
where Qr ∈ R

n×r is a matrix of r leading eigenvectors and
Λr ∈ R

r×r contains the corresponding eigenvalues. X is un-
correlated, because the estimated pseudo-Euclidean covariance
matrix C = [1/(n − 1)]XTX Jpq = [1/(n − 1)] Λr is diago-
nal. Moreover, the eigenvalues λi encode variances in this space.
This holds thanks to the centering effect of J in the definition
of G and it is not valid for a general Js (see footnote 2).

The eigenvalues of G play a key role as they scale the basis
eigenvectors. Since only some eigenvalues are expected to be
large in magnitude, the remaining ones, if close to zero, can be
disregarded as uninformative. By their removal, the data are not
only denoised, but the curse of dimensionality may be avoided.
Since X is uncorrelated, the reduced representation X ′ is de-
termined by the largest p′ positive and the smallest q′ negative
eigenvalues as X ′ = Qm |Λm |1/2 , m = p′ + q′ < r. As such,
X ′ is derived from an approximate embedding and reflects the
principal component analysis (PCA) result. More precisely, the
embedding is equivalent to an indefinite kernel PCA, in which G
is a reproducing kernel for the pseudo-Euclidean space R

(p,q) .
In general, the embedding can also start from a similarity matrix
K(R,R) (interpreted as a Gram matrix G := K), instead of D.
Note that for the Euclidean distance d, the resulting embedding
is known as classical scaling [4].

Let D�2
new (U,R) be a matrix of square dissimilarities relating

new objects from U to the set R. An m-dimensional X ′
new is

determined by orthogonal projections to E . These are uniquely
defined since R

(p ′,q ′) is a nondegenerate space (as dimen-
sions corresponding to zero eigenvalues are neglected). Based
on the indefinite cross-Gram matrix Gnew = −1/2(D�2

new −
1
n 11TD�2)J , X ′

new is derived as X ′
new = GnewX ′|Λm |−1Jp ′q ′

by the use of orthogonal projections [27], [57], [61].
Pseudo-Euclidean embedding into R

m relies on D(R,R). All
training examples D(X , R) are projected to R

m and used for
training. Classifiers based on inner products are appropriately
extended from the Euclidean case. For example, an LD function
f(x) = vTJpqx + v0 can be derived in E or constructed by
addressing it as f(x) = wTx + v0 , where w = Jpqv [27], [34],
[57]. Additionally, since R

(p ′,q ′) is an inner product vector space
with the induced (strong) Hilbert topology of the norm in the
associated Euclidean space R

(p ′+q ′) [64], one may choose to
train classifiers in R

(p ′+q ′) .

C. Dissimilarity Space Approach

In this approach, a dissimilarity representation D(X , R) is ad-
dressed as a data-dependent mapping D(·, R) : X → R

n from
an initial representation or the index set X to the so-called
dissimilarity space [22], [34], [61], [79]. In this space, each
dimension D(·, pi) describes a dissimilarity to a prototype pi .
Such a vector space is equipped with the traditional inner prod-
uct and Euclidean metric. Since dissimilarities are nonnegative,

Fig. 2. Two-dimensional metric dissimilarity space. x := d(x, pi ) and
y := d(x, pj ).

all data are mapped as vectors to a nonnegative orthotope. Any
symmetric or asymmetric dissimilarity measure d can be used.

Let R ⊆ X . If D(R,R) is a nonsingular n × n matrix, then all
vectors D(pi, R) are corners of an (n − 1)-dimensional simplex
(R-simplex) in the n-dimensional dissimilarity space D(·, R).
If d is metric, then all D(x,R) lie in an open n-dimensional
hyperprism defined by a perpendicular move of its R-simplex
base. If d is bounded, i.e., D(x, pi) ≤ c for c > 0, then all
D(x,R) lie in the intersection between the open hyperprism and
the c-length hypercube placed with one corner at the origin in the
positive orthotope of D(·, R). The vertices of the hyperprism’s
base lie in (n − 1)-dimensional subspaces of D(·, R), which
are the axes of D(·, R) if |R| = 2 (see Fig. 2). For a nonmetric
measure, D(x,R) may lie outside the hyperprism.

The property that the dissimilarity should be small for simi-
lar objects and large for distinct objects gives a possibility for
discrimination. So, D(·, pi) can be interpreted as a dissimilarity-
based feature. If d is metric and d(pi, pj ) is small, then
d(x, pi) ≈ d(x, pj ) holds for all x due to the backward triangle
inequality. Since pi and pj encode similar dissimilarity infor-
mation, one of them is sufficient to be considered as a prototype.
In the nonmetric case, R should be chosen such that the vectors
D(x,R) and D(z,R) are correlated for two similar objects x
and z, even if d(x, pi) and d(z, pi) differ for some pi ∈ R. Clas-
sifiers defined by linear or quadratic combinations of d(·, pi)
∀pi ∈R are useful for nonmetric or poorly discriminative mea-
sures (see Section III-D). For a two-class problem, an LD in
D(·, R) is defined as f(D(x,R)) =

∑n
i=1 wi d(x, pi) + w0 .

D. Direct 1NN Rule Versus Simple Classifiers in
Dissimilarity Spaces

We now provide some intuition on why the 1NN rule can
be outperformed by classifiers built in dissimilarity spaces.
Assume F classes ω1 , . . . , ωF , with their corresponding pro-
totype sets R1 , . . . , RF , and the complete representation set
R = {R1 , . . . , RF }, |R| = n. A measure d is perfect if all train-
ing examples share class memberships with their NNs (deter-
mined by the smallest dissimilarity, i.e., for each ωc and each
training example xc

i ∈ ωc , one has {minpc ∈{Rc \xc
i
} d(xc

i , p
c) <

minp¬c ∈{R\Rc } d(xc
i , p

¬c)}. This means that the leave-one-out
(LOO) 1NN error on D(X , R) is zero. If new testing objects are
perfectly classified, then the 1NN rule is a zero-error classifier.

Imperfect measures are common in practice, e.g., when
derived by suboptimal procedures or defined for complex
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Fig. 3. Direct 1NN rule (here: nearest prototype rule) versus linear or quadratic classifiers in a 2-D dissimilarity space D(·, R), R = [pA pB ]. Projections on
the axes are indicated by dashed lines and classes A or B . (a) Measure is perfect, so is the 1NN rule (nearest prototype rule). (b) Measure is imperfect, but a linear
classifier is (LC: linear classifier). (c) Individual prototypes are bad (see projections on the axes), but their quadratic combination is optimal. This does not hold
for any linear classifier (QC: quadratic classifier).

nonvectorial data. Moreover, even perfect measures become im-
perfect when large prototype sets are reduced in order to lower
the computational costs, especially for multimodal data. As a re-
sult, the dissimilarity measure will be badly descriptive for some
classes. This means that the dissimilarities computed to nearest
prototypes within such a class will be large and may be larger
than the dissimilarities computed to the nearest prototypes of
other classes. So, the 1NN and kNN rules will deteriorate, as a
result. However, when the dissimilarity contributions are appro-
priately weighted to either emphasize or weaken discriminative
abilities of the prototypes, their linear or quadratic combinations
will lead to better decisions.

Consider a two-class problem in 2-D dissimilarity spaces,
as depicted in Fig. 3. Classes A and B are represented by
the prototypes pA and pB , respectively; R = [pA pB ]. Ideally,
if d is perfect, then d(x, pA ) < d(x, pB ) holds for any x ∈ A
and d(x, pB ) < d(x, pA ) holds for any x ∈ B [see Fig. 3(a)].
So, all vectors D(x,R) of the classes A or B that lie above,
or respectively, below the decision plane d(x, pA ) = d(x, pB ),
will correctly be classified by the nearest prototype rule. In
practice, d is often imperfect and prototypes are weakly dis-
criminative, i.e., the objects and their nearest prototypes may
not belong to the same class. As a result, classes will over-
lap as judged by the dissimilarity-based features d(x, pA ) or
d(x, pB ) [see Fig. 3(b)]. To improve that, dissimilarities have
to be appropriately weighted, which leads to an LD function,
wAd(x, pA ) + wA

0 = wB d(x, pB ) + wB
0 [see Fig. 3(b)]. How-

ever, when some prototypes are badly discriminative, a quadratic
decision may be necessary [see Fig. 3(c)].

This intuition remains valid for any prototype set R =
{RA,RB }, |R| = n, except that the 1NN rule becomes a
piecewise linear function in a dissimilarity space D(·, R). If
minj d(x, pA

j ) ≤ minl d(x, pB
l ), then x is assigned to A, and

otherwise to B. Since such a rule may be badly influenced by
noisy examples or weak prototypes, statistics over dissimilari-
ties can help. A more robust rule, therefore, is

x → A, if
1

nA

∑
j

d(x, pA
j ) ≤ 1

nB

∑
l

d(x, pB
l ) (1)

x → B, otherwise

which is a simple LD function in D(·, R). In such a reasoning,
we have implicitly assumed that dissimilarity values d(·, pi)
span similar range for all pi . This often does not hold in prac-

tice, e.g., for imperfect measures, weak prototypes, or data with
clusters. To account for different discriminative powers of pro-
totypes, we need to weight the dissimilarity contributions ap-
propriately. Negative weights may be useful, e.g., to diminish
the influence of bad prototypes. Moreover, to emphasize either
small or large dissimilarities, a power transformation can be
included. So, for q > 0, we arrive at the following rule:

x → A, if
∑

j

wA
j dq (x, pA

j ) + wA
0 ≤

∑
l

wB
l dq (x, pB

l ) + wB
0

x → B, otherwise. (2)

This decision boundary is a linear combination of the dissimi-
larities in their qth power, hence, a linear classifier in the space
D�q (·, R) [see also Fig. 3(b)]. When some prototypes are badly
discriminative, a quadratic function may be more successful
than a linear one [see Fig. 3(c)].

Linear or quadratic classifiers can be defined by sparse math-
ematical programming methods or based on hypothesized mod-
els. One may assume that classes are approximately normally
distributed in dissimilarity spaces. This is reasonable when dis-
tances are based on sums of differences and their variances are
in similar order of magnitude. Such resulting dissimilarities will
approximate normal distributions (or χ2 distribution if there are
some dominant variances) due to the central limit theorem. This
observation suggests that NLCs may perform well in dissimi-
larity spaces.

E. River Example

Artificial 2-D river example is now used to illustrate how
linear classifiers in dissimilarity spaces become nonlinear clas-
sifiers in the original feature spaces. This follows because the
nonlinearity about the problem is incorporated into the represen-
tation, here, by Euclidean distances. The variability between the
classes is captured properly when different examples are cho-
sen as prototypes. A linear combination of the dissimilarities to
such prototypes can model nonlinear boundaries in the feature
space. The data consist of two classes, ideally separated by a
sine-shaped discriminant, as shown in Fig. 4(a) and (b). First,
a learning set L of 1000 examples per class is created. Then, a
collection of training sets {X} of growing sizes is sampled from
L. For each set X , classifiers are trained in dissimilarity spaces
based on the Euclidean distance. The performance is measured
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Fig. 4. River example. 1NN rule versus linear classifiers in D(·,X ). (b) R is automatically detected. Prototypes are denoted by squares for ν-SVM and by
diamonds for µ-LPM [1NN rule versus sparse linear classifiers in D(·, R)]. (c) All standard errors of the mean results are smaller than 0.003 for |X | ≥ 50 per
class (average classification errors). (d) µ-LPM requires only a fixed number of prototypes, in contrast to ν-SVM (# prototypes as a function of |X | per class).

on the test set L\X . This procedure is repeated 25 times and the
results are averaged.

Two classifiers are trained in the complete dissimilarity space
D(·,X ). These are a pseudo-Fisher linear discriminant (PFLD)
based on a pseudoinverse of the singular covariance matrix and
linear programming machine (LPM), a hyperplane found by
solving a standard nonsparse linear programming problem. The
other two classifiers, ν-SVM and µ-LPM [34], automatically
determine the prototype set R—objects that support the deci-
sion boundary (see Section V for details). ν-SVM relies on the
cpd kernel K = −D, where D is a Euclidean distance matrix
(see Section II-B). All other classifiers are trained on D. For
simplicity, we set ν = 0.05 and µ = 0.05. If the optimal values
of ν and µ are sought, e.g., by tenfold cross-validation, then the
ν-SVM may improve. The results presented in Fig. 4(c) show
that the 1NN rule (the best kNN rule here) is systematically
outperformed by linear classifiers in the Euclidean dissimilarity
space.

IV. FINDING THE REPRESENTATION SET

A set R in a dissimilarity space D(X , R) plays a similar role
as a condensed set for the 1NN rule. Once selected, however,
the condensed set defines the 1NN rule independently of the re-
maining training objects, in contrast to classifiers built in RSs. R
should be chosen such that it enables both high recognition ac-
curacy and low computational effort. Since similar objects yield
similar contributions, only some of them need to be included
in R. Moreover, for a multimodal problem, it may be advan-
tageous to select objects related to such modes, e.g., detected

via clustering techniques. Such unsupervised methods do not,
however, consider the quality of the resulting set R in terms of
class separability. This can be done by employing a separability
criterion in a process of either feature or instance selection or by
optimizing classification performance. In total, R will consist
of n objects, selected from the training set X . If an algorithm is
applied in a class-wise manner, then ni objects are chosen for
each class ωi such that

∑
i ni = n.

A. Pseudo-Euclidean Embedding Approach

We now consider a dissimilarity-preserving projection of
a symmetric dissimilarity matrix D(X ,X ) into a pseudo-
Euclidean space E = R

(p,q) . Since many “extracted features”
tend to be uninformative due to low variances, the dimension is
determined by the number m = p′ + q′ of dominant eigenval-
ues. Given an embedded representation X ′ in R

(p ′,q ′) , we want
to find the set R such that the projection based by R (with the
remainingX\R objects projected afterwards) gives a configura-
tion X ′

R that is beneficial for learning. A faithful representation
of X ′ is not necessarily of interest here, since our goal is good
classification in the embedded space. So, R should ideally pre-
serve separability between the classes.

Let us first focus on the representation aspects. Our reason-
ing starts from X ′ whose mean coincides with the origin in the
pseudo-Euclidean space. The origin is first shifted to x′

(1) , which
is the projection of the prototype p(1) , found as the closest one to
the origin. For simplicity, let X ′ now refer to such a shifted con-
figuration. Let R1 = {p(1)} be the first chosen prototype. Other
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objects are then successively added until n ≥ m + 1 prototypes
are found. Let Rj = {p(1) , . . . , p(j )} be the representation set
after the jth step. In each step, an object is selected that mini-
mizes some criterion [57]. This does not guarantee the optimal
solution, but the best immediate solution. Two such criteria are
described next.

In the average projection error (APE) criterion, Ej denotes
a (j − 1)-dimensional subspace, defined by Rj , of the com-
plete space E = R

(p,q) . We will iterate over all candidate
objects z to find the optimal p(j+1) for Rj+1 . For each z,
a subspace Ej+1 is defined by {Rj , z}, hence, determined
from a dissimilarity matrix Djz := D([Rj , z], [Rj , z]). Based
on the properties of 〈·, ·〉E and given that p(1) is projected
as x′

1 at the origin, the square approximation error of pro-

jecting x′
i ∈ R

m into Ej+1 is eapr(x′
i) = ||x′

i − x
′Ej + 1
i ||2E =

d2(p(i) , p(1)) − (gnew
·i )T G−1 gnew

·i , where G is the Gram ma-
trix and gnew

·i is the ith column of the cross-Gram matrix Gnew .
Both G and Gnew refer to the representations in Ej+1 . Hence,
G = −(1/2)J(1)D

�2
jz JT

(1) , where J(1) = I − 1sT projects p(1)
at the origin; s is a zero vector except for s(1) = 1. Gnew =
−(1/2)(D�2

jz ,new − 1sTD�2
jz )JT

(1) . In the (j + 1)th step, we look
for a z such that the APE error

∑
x ′

i
∈X ′ eapr(x′

i) onto Ej+1 is the
smallest and the z for which this holds is the prototype p(j+1) .

In the criterion based on the largest approximation error
(LAE), candidate objects z are also iteratively evaluated to
find the best one to be chosen as p(j+1) . An object z is se-
lected for p(j+1) such that it yields the LAE when projected
onto a space E j defined by Rj . Note that for R1 = {p(1)},
eapr(x′

i) = d2(p(i) , p(1)).
Concerning supervised techniques, two variants of forward

feature selection are considered here. The first approach FSel-M
relies on repetitive embeddings. Starting from R1 = {p(1)},
prototypes are sequentially added. In the (j + 1)th step, a can-
didate object z (here from a set of randomly preselected objects
to speed up the computation) is chosen as p(j+1) as the one
for which the embedded configuration Xj+1 of D(X , [Rj , z])
maximizes the smallest Mahalanobis distance between the
classes. This Mahalanobis distance in a pseudo-Euclidean space
simplifies to the one computed in the Euclidean case [27], [57].
As earlier, the embedding is performed each time when a
candidate object is evaluated. Since the pseudo-Euclidean
embedding relies on square dissimilarities D�2 , the second
FSel-M2 approach works in the square dissimilarity space
D�2(·,X ). The prototypes are selected in a greedy fashion
to maximize the smallest Mahalanobis distance between the
classes in the dissimilarity space. The search is therefore faster
than for the FSel-M criterion.

B. Dissimilarity Space Approach

Given original vectorial data, prototypes can be generated in a
feature space. This can be realized by clustering data into groups
and merging their members into prototypes. The most com-
mon approach is the k-means/expectation-maximization (EM)
clustering algorithm [21], which models clusters by Gaussian
distributions. The cluster means define the prototypes. Linear
subspaces can also be used to describe clusters such that their

weighted means are chosen as prototypes. So, D(X , R) relies on
prototypes created from the initial training feature vectors [46].

If no original vectorial representation is available, prototype
selection techniques are applied. Unsupervised approaches in-
clude k-centers (KCent) and mode seeking (ModeSeek). The
KCent algorithm, if applied class-wise, looks for a set Rωi

=
{pωi

1 , . . . , pωi
ni
}, evenly distributed with respect to D(Xωi

,Xωi
),

where Xωi
denotes the training objects of ωi . So, pωi

i are chosen
to minimize E = maxi minz d(pωi

i , pωi
z ). The search is per-

formed in a forward strategy, starting from a random initializa-
tion [60]. The final prototypes minimize E over M = 50 trials.
In the ModeSeek algorithm, Rωi

is a set of estimated modes
of the distribution of ωi with respect to D(Xωi

,Xωi
) [9]. |Rωi

|
depends on the neighborhood size sn . The larger sn , the smaller
Rωi

. So, sn is chosen to generate the largest set R, not larger
than the demanded one.

Concerning supervised techniques, editing and condensing
(EdCon) schemes can be used [15], [46]. Editing removes noisy
examples before condensing can guarantee good NN perfor-
mance on the reduced set. R can also be determined by a
sparse LPM in a dissimilarity space D(·,X ). A solution is
obtained, e.g., by µ-LPM, which looks for a separating hyper-
plane f(D(x,X )) = wTD(x,X ) + w0 . Sparseness is imposed
by minimizing ||w||1 =

∑N
j=1 |wj | [34]. The prototype set R

is found automatically and consists of objects corresponding to
nonzero weights. Since an (indefinite) SVM can also be trained
on K = −D, R can be chosen as the set of support vectors.
However, note that SVM cannot always be found for arbitrary
K (non-Euclidean D) [35].

Finally, feature selection (FSel) methods try to find an opti-
mal set of n dissimilarity-based features in the space D(·,X )
according to some class separability function. A greedy forward
selection may be employed using several criteria such as the
Mahalanobis distance or the LOO 1NN error. The latter ap-
proach is also modified here to make use of the given dissimi-
larity data. A set of prototypes is selected according to the 1NN
LOO error; however, the features are now interpreted in a dis-
similarity space, while the 1NN error is derived on the distances
D(X ,X ) directly, and not on distances computed in a dissim-
ilarity space. The method is thereby fast as it is entirely based
on comparisons and sorting of the already given dissimilarities.
Ties are solved by selecting the set R for which the sum of
dissimilarities is minimum.

V. EXPERIMENTS WITH VECTORIAL DATA

We will now illustrate the potential of linear and
quadratic classifiers trained in dissimilarity spaces arising
from vectorial representations. Eight vectorial datasets from
http://www.ics.uci.edu/˜mlearn/MLRepository.html are used
with categorical, continuous, and mixed features [58]. City block
distances (l1) are employed for data with categorical or mixed
types after a linear scaling to the same domain (interval). Eu-
clidean distances (l2) are used otherwise (see Table I for details).

Datasets are split into training sets X and test sets U in the
ratio of 75% : 25%. The sets are first appropriately scaled, and
then, the distance representations are derived. Four different
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TABLE I
VECTORIAL DATA

methods are used to optimize R: EMgen, FSel, EdCon, and
LPauc. EMgen creates a set of prototypes, cluster means, in
the original feature space. Clusters, modeled by Gaussians with
diagonal covariance matrices, are found by the EM algorithm.
(Note that noise is added to categorical data to prevent de-
generated solutions.) Other methods select prototypes from the
training set X by working on D(X ,X ). FSel finds a set of pro-
totypes by a forward feature selection in a dissimilarity space
D(·,X ) with the criterion based on the Mahalanobis distance.
EdCon is the traditional edited and condensed set optimized
for the NN performance [15]. LPauc gives a prototype set opti-
mized for the performance of a sparse LPM, auc-LPM, defined
by maximizing the area under the receiver operating character-
istic (ROC) curve (see [72] for details). |R| is set a priori for
EMgen and FSel such that ni = 

√
|ωi |� prototypes are opti-

mized per class. If the dimensionality is very high (e.g., Sonar
data), |R| =

∑
i ni + log(#dim). Other methods determine |R|

automatically.
Four classifiers are trained by using all training objects in

dissimilarity spaces D(·, R). These are normal density-based
linear classifier (NLC), normal density-based quadratic classi-
fier (NQC), regularized by a parameter λ = 10−4 [60], logistic
linear classifier (LOGC) [21], and 1NN based on Euclidean dis-
tances in the dissimilarity space D(·, R). In addition, the direct
NN rule, 1NNd, is applied to D(U,R) and the direct 1NNd
and kNNd rules (with k optimized by an LOO error on X )
are applied to D(U,X). As indicated, three classifiers are also
trained in the initial feature spaces. These are NQC, NaiveBC
(naive Bayes), and ν-SVM with a Gaussian kernel (ν is an
LOO estimation of the 1NN error and σ is optimized by tenfold
cross-validation). Prior probabilities are estimated by class fre-
quencies. The procedure is repeated 30 times and the results are
averaged.

Important observations can be made by analyzing Table II.
First, both NLC and NQC trained in dissimilarity spaces D(·, R)

outperform the direct 1NNd rule when based on the same R,
irrespectively of how R is determined. This also holds for the
EdCon condensed sets optimized for the performance of the
1NN. Second, NLC (and often NQC) trained in D(·, R) out-
performs the 1NNd rule and performs similarly or better than
the kNNd rule, both applied to D(·,X ), i.e., based on the
complete training sets X . Moreover, NLC almost always out-
performs LOGC (and is often significantly better) when both
trained in D(·, R). This speaks in favor of the assumption of
normally distributed classes in such dissimilarity spaces. Next,
the EMgen-prototypes lead to somewhat better results than the
Fsel-prototypes, in general. Our way of setting |R| for these
two methods works well when the number of features is not too
large; it may however be insufficient for high-dimensional data
such as Sonar. Note that the automatically detected cardinality
of the EdCon- and LPauc-sets may be up to a few times our fixed
cardinality for the FSel- and EMGen-sets. The LPauc-sets are
well suited for highly overlapping classes, as for the diabetes,
heart, glass, or liver data.

In relation to ν-SVM with an optimized Gaussian kernel,
dissimilarity-based NLC is very attractive. It is simple and out-
performs ν-SVM for moderately overlapping classes of the Aus-
tralian or heart data, or for highly overlapping classes of the
diabetes, glass, and liver data. Moreover, it usually requires less
representation objects than support vectors needed by ν-SVM
(compare |R| to #SVs in the table).

In summary, NLC and NQC built in dissimilarity spaces
D(·, R) are often more advantageous than the direct 1NN rule
based on R. They also perform similarly or better than the best
kNN rule on D(·,X ), i.e., based on the training set X . They
can be recommended for problems with categorical/mixed vari-
ables, or moderate-high class overlap. In these cases, ν-SVM
and other classifiers in feature spaces will tend to lose.

VI. EXPERIMENTS WITH NONVECTORIAL DATA

Five dissimilarity datasets are used in our study based on gen-
erated polygons, scanned digits, geophysical spectra, road sign
images, and proteins. PolyDist data consist of two classes, 2000
examples each, of randomly generated convex quadrilaterals
and irregular heptagons. The polygons are first normalized, and
then, the modified Hausdorff distances [20] between their ver-
tices are computed. Zongker digit data describe ten digit classes,
each of 200 examples. Shapes of digits (from binary images)
are compared by an asymmetric similarity sij based on de-
formable template matching [42]. Nonmetric dissimilarities are
derived as dij =

√
sii + sjj − sij − sji . GeoShape data con-

sist of two multimodal geological classes, 500 examples each,
described by high-dimensional wavelength spectra. The spectra
are first normalized to a unit area, and then, the l1 distances be-
tween their Gaussian smoothed (σ = 2 bins) first-order deriva-
tives are computed [53]. RoadSign data consist of gray-level
images of circular road signs. Three hundred road sign images
(highly multimodal) and 300 outlier images acquired under gen-
eral illumination are used [54]. Dissimilarities are derived as
dij =

√
1 − sij , where sij is a normalized cross-correlation.

Finally, ProDom is a subset of 2604 protein domain sequences
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TABLE II
AVERAGE CLASSIFICATION ERRORS (IN PERCENT) FOR DISSIMILARITY-BASED AND FEATURE-BASED CLASSIFIERS

from the ProDom set [10]. We use the same four-class prob-
lem (878/404/271/1051 examples) as in [62]. Dissimilarities
are derived as dij =

√
sii + sjj − 2sij , where sij are pairwise

structural alignments computed by Roth [62].
Basic properties of these measures, linearly scaled to small

ranges, are characterized in Table III [60]. Let λ denote eigen-
values arising from a pseudo-Euclidean embedding. The mag-
nitudes of negative eigenvalues indicate the amount of devia-
tion from the Euclidean behavior, as captured by two indexes:
rnE
mm = |λmin |/λmax , the ratio of largest (in magnitude) negative

and positive eigenvalues, and rnE
rel =

∑p+q
i=p+1 |λi |/

∑N
i=1 |λi |,

the relative contribution of negative eigenvalues. The nonmetric
behavior can be quantified by the percentage of disobeyed tri-
angle inequalities rnM

tr .
Classification experiments conducted in dissimilarity-based

RSs aim to illustrate the behavior of prototype selection tech-
niques. We choose to train NQC. It tends to work well with
dissimilarity data derived from nonvectorial collections, es-
pecially for homogeneous dissimilarities based on sums of
differences. NQC is more flexible than NLC, although not
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TABLE III
PROPERTIES OF DISSIMILARITY DATASETS USED IN EXPERIMENTS

always better. It is also costly if R is large and there are
many classes. Usually, regularization is necessary for high-
dimensional RSs (large R), because class covariance matri-
ces become singular. Here, a tradeoff NQC, the TNQC rule,
is trained, in which class covariance matrices Ci are regularized
as Cκ

i = (1 − κ)Ci + κ p(ωi) diag (Ci), where κ ∈ [0, 1] and
p(ωi) denotes prior probabilities. To speed up computations,
the regularization parameter κ is set to a value from [0.001, 0.3]
found in a fivefold cross-validation. This is done separately in
dissimilarity spaces and in embedded spaces for the largest R
considered.

In each experiment, the datasets are divided into training sets
X and test sets U . Then, a representation set R ⊂ X is chosen
according to the criteria described in Section IV. Both embed-
ded pseudo-Euclidean spaces and dissimilarity spaces are used.
First, an embedded space E is determined by D(R,R) and all
objects D(X , R) are orthogonally projected there as XT . TNQC
is trained on XT in E and tested on the projected evaluation ob-
jects XU . Here, the dimension m of E is automatically detected
by the number of dominant eigenvalues (found as a point where
the “magnitude eigenvalue curve” flattens). This means that m
may grow with the training size. Concerning the dissimilarity
space, TNQC is trained on D(X , R) and tested on D(U,R). All
experiments are repeated 30 times and the results are averaged.

Figs. 5 and 6 show generalization errors of TNQC as a func-
tion of |R| for various prototype selection methods. Standard
deviations are omitted to maintain clarity. They vary between
3% ē for small ē and 7% ē for large ē, where ē is the average er-
ror. For example, if ē = 0.15, its standard error is ≈0.01, while
if ē = 0.05, it is equal to ≈0.002. To enhance interpretability
of the results, supervised methods are plotted by continuous
lines, unsupervised techniques are plotted by dash-dotted lines
and random methods are plotted by dashed lines. EdCon-1NN
stands for the 1NN result for the edited and condensed set.
Additionally, also µ-LPM and ν-SVM are applied to D(X ,X )
to automatically detect R (indefinite ν-SVM [35] is used for
K = −D). Hence, EdCon, LPM, and SVM denote the errors of
TNQC for representation sets chosen by these methods, while
LPM-LPM and SVM-SVM refer to their original results. For ex-
ample, LPM-LPM means the LPM result in a dissimilarity space
based on R also selected by LPM. Concerning the NN meth-
ods, 1NNd-final and kNNd-final stand for the direct NN rules
applied to D(·,X ). The corresponding errors set our reference
and are plotted as horizontal lines. kNNd is the direct kNN rule

applied to D(U,R), while kNN is based on Euclidean distances
in the dissimilarity space D(·, R). k is optimized by an LOO
procedure over X , while R is randomly chosen.

Our main conclusion is that a suitably regularized TNQC built
in RSs defined by D(·, R) leads to a significant improvement
over the direct kNN applied to D(·,X ). This is already achieved
for R consisting of n ≤

∑F
i=1 

√
ni � prototypes, where ni are

class sizes. Although RSs are defined by R, all training exam-
ples from X are used to build the classifier. This means that
a reduced set of dissimilarities to the objects from R has to
be computed in the test stage. If the derivation of dissimilari-
ties is costly, such a dissimilarity-based quadratic classifier will
be computationally more efficient than the kNN rule applied
to D(U,X ), especially for a small number of classes F . To
see this, compare the complexity O(cost(d)F n) of TNQC in
an RS based on n =

∑F
i=1

√
ni � prototypes versus the com-

plexity O (cost(d) (N + F log F )) of the direct kNN based on
N =

∑F
i=1 ni training objects; cost(d) denotes the average cost

of deriving a single dissimilarity value.
The results of TNQC are much better than those of NLC (not

shown here due to space limits). The reason is that TNQC is
more flexible and may be necessary for imperfect measures and
weakly discriminating prototypes, as argued in Section III-D.
To avoid the curse of dimensionality, a strong regularization,
such as κ ≥ 0.05, is however needed, especially for multiclass
problems. Note that TNQC applied here leads to better results
than a weakly regularized NQC used before [60].

Concerning prototype selection techniques, forward feature
(instance) selection based on the Mahalanobis distance leads to
the most efficient results (small generalization error and small
R) in both RSs. In case of multimode data, such as GeoShape,
the mode-seeking algorithm is preferable for a small number of
prototypes.

VII. FINAL DISCUSSION

A. Proximity Representations and RSs

Proximity representations offer a universal way to represent
information about relations between pairs of objects. They ex-
tend kernels to indefinite kernels, dyadic kernels, and other flex-
ible representations. Learning from such proximity data usu-
ally relies either on kernel methods or on the NN rule. When
traditional kernel methods cannot directly be applied, are too
costly or impractical, while the NN rule leads to noisy results,
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Fig. 5. Two-class dissimilarity data. Average classification errors for dissimilarity-based classifiers as a function of the number of prototypes |R| in pseudo-
Euclidean spaces (left) and dissimilarity spaces (right). The x-axis has a logarithmic scale.

an appealing alternative is to train statistical classifiers in two
general dissimilarity-based RSs: pseudo-Euclidean and dissim-
ilarity spaces.

These two RSs are essentially different. A pseudo-Euclidean
embedded space is realized via a feature map to an indefinite
inner product space such that the extracted features preserve the
original dissimilarities. Individual features are derived from all
dissimilarities. In an isometric mapping, the dissimilarities are
perfectly preserved, i.e., d(pk , pl) = dP E (pP E

k ,pP E
l ) holds for

the prototype set, where pP E
k and pP E

l are projected vectors.
There is no correction of the distances. Denoising, which may
come later, removes insignificant dimensions to avoid the curse
of dimensionality as well. Original dissimilarities are somewhat
changed by this. The non-Euclidean character of the measure

remains, however, if it was significantly present in the initial
dissimilarities.

Dissimilarity space is realized via a direct map to a Eu-
clidean space. Features are dissimilarity vectors to indi-
vidual prototypes. Euclidean distances dE in a dissimilar-
ity space will differ from the original dissimilarities, i.e.,
d(pk , pl) �= dE (D(pk ,R),D(pl , R)) = (

∑
pi ∈R [d(pk , pi) −

d(pl , pi)]2)1/2 . Objects in the dissimilarity space can have
a zero distance dE only if d(pk , pi) = d(pl , pi) ∀pi ∈R . Dif-
ferent objects in a pseudo-Euclidean space can, however,
have a zero distance, even if d(pk , pi) �= d(pl , pi). So, the
pseudo-Euclidean space respects the originally measured dis-
similarities, while the dissimilarity space reflects them in
the context of all objects in the representation set and is
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Fig. 6. Multiclass dissimilarity data. Average classification errors for dissimilarity-based classifiers as a function of the number of prototypes |R| in pseudo-
Euclidean spaces (left) and dissimilarity spaces (right). ν-SVM and µ-LPM failed for the Zongker data. The x-axis has a logarithmic scale.

thereby globally sensitive. What is profitable depends on the
application.

B. Classification in RSs

Linear and quadratic classifiers built in the two dissimilarity-
based RSs perform better than the direct NN rule for training
sets of small and moderate sizes. When a training set is large and
all training objects are prototypes, the NN rule will ultimately
be the best (for metric distances), as it is Bayes-consistent [16].

Dissimilarity representations are defined in two ways: com-
puted in initial feature spaces or derived from nonvectorial data.
LD functions built in dissimilarity spaces defined over fea-
ture spaces offer a way to construct nonlinear classifiers there.
More importantly, they play a role for data with categorical or
mixed variables, or for moderately or highly overlapping classes.
We showed that SVM with an optimized Gaussian kernel, a
very good classifier for nonoverlapping classes, does not per-
form well in such cases. A NLC trained in dissimilarity spaces
D(·, R) tends to be more advantageous. Prototype sets R can be
optimized by procedures such as forward selection, condensing,
or sparse linear programming. Although no technique is overall
best, prototypes generated in the original feature spaces, e.g.,
by the EM algorithm, make good representation sets of control-
lable sizes [46]. In addition, linear programming works as an
instance selection and can provide efficient prototype sets for
highly overlapping classes.

Concerning nonvectorial data of moderate training sizes,
NQCs are trained in RSs defined over reduced sets R. Ex-
periments show that they outperform the 1NN rule and behave
similarly or better than the kNN rule, both based on the complete
training set X . This holds independently whether the measure
is metric or not. In general, flexible prototype optimization pro-
cedures are of interest. Hence, one may control the tradeoff
between recognition accuracy and computational complexity.
The forward selection based on the Mahalanobis distance crite-
rion is such a procedure and is often the best. It allows one to
select a small prototype set that is advantageous for classifiers in
both dissimilarity spaces and pseudo-Euclidean spaces. If there
is a strong cluster tendency, however, a procedure like mode
seeking may be preferred.

In pseudo-Euclidean embedded spaces, the prototypes define
a vector space that is distorted with respect to the one determined
by all training examples. The prototypes should be chosen such
that this reduced vector space preserves separability between the
classes as compared to the complete space.3 Since our selection
procedures do not fully account for data characteristics in the
embedded spaces, the classification results may be somewhat
worse than the ones in dissimilarity spaces. More study is needed
in this direction.

3This is analogous to asking how to choose vectors in a high-dimensional
vector space that approximate a covariance matrix such that the separability
between classes is preserved in a low-dimensional PCA projection.
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C. Future Perspectives

The choice of representation set is an important issue. Al-
though many good techniques are available, the best one de-
pends on the problem. For nonvectorial data, the best prototype
selection methods rely on some separability criterion. For vecto-
rial data, the best methods generate prototypes from the training
examples. How to optimize a small set of very good prototypes
is still an open question.

A proper formulation of indefinite kernel methods is also
an important task. It will help in determining explicit relations
between similarity spaces defined by (indefinite) kernels and
(Krein) Hilbert spaces induced by theses. This will lead to a
unified framework of generalized kernel methods.

In this paper, no direct corrections have been made to force
metric constraints or impose the Euclidean behavior. There
are, however, studies in which non-Euclidean dissimilarities
are corrected to become Euclidean, especially in the context
of pseudo-Euclidean embedding [11], [32], [61], [63]. Fu-
ture investigations are needed to understand when these cor-
rections are necessary, when indifferent [63], or when spu-
rious [59]. We plan to identify the causes of non-Euclidean
and nonmetric behavior, such as incorporation of invariance or
suboptimal optimization. This is the first step to understand
the circumstances under which proximity data should be cor-
rected. Only then, efficient corrections or transformations can be
designed.

Finally, proximity representations offer new possibilities for
marrying statistical learning techniques with structural and
information-theoretic data descriptions. Since proximity mea-
sures are defined in all learning contexts, proximity represen-
tations offer a natural bridge between the structure and statis-
tics. This is a hybrid approach. The structural or information-
theoretic nature of objects is first incorporated into a proximity
measure. The resulting proximity representation defines an inner
product RS in which statistical methods are used. If sufficient
prior knowledge is incorporated into the representation, simple
learning methods will give good results.

D. Summary

In this paper, we studied classification methods in two
dissimilarity-based RSs: pseudo-Euclidean embedded spaces
and dissimilarity spaces. They can handle general proximity
measures, including non-psd, non-Euclidean, or nonmetric ones.
Such measures are important to study as they result from incor-
poration of invariance [36] or robustness [41], essential aspects
in pattern recognition.

Simple linear and quadratic classifiers trained in these RSs
extend the traditional kernel methods and fill the gap when such
methods and the direct NN rule fall short. They are thereby espe-
cially useful for non-psd, non-Euclidean or nonmetric proximity
data, highly overlapping classes or when the representation set
has to be controlled, e.g., because of the computational cost.
SVM is recommended for problems with small/moderate class
overlap described by psd kernels, while the NN rule is recom-
mended for large training/representation sets. In other cases,
linear and quadratic classifiers in RSs provide clear advan-

tages over the direct NN rule: better performance and lower
(adjustable) computational complexity in classifying new ob-
jects. Such advantages have to be paid by more extensive train-
ing procedures: optimizing the representation set and train-
ing of a classifier in the derived RS. Classification with non-
Euclidean and nonmetric dissimilarity representations leads to
good results, but the optimal handling of these needs further
research.

APPENDIX

Basic definitions and characteristics concerning proximity
measures are provided next; see [12], [17], [31], [32], and [57]
for more details.

Kernel: A function K : X × X → R of continuous linear
operators on a compact set X is a kernel if K(x, y) = K(y, x)
∀x,y∈X . A linear operator on functions associated to K is defined
by the integral [LK f ](x) =

∫
X K(x, y)f(y) dy.

psd kernels/cpd kernels/conditionally negative definite (cnd)
kernels: An n × n symmetric matrix K is cpd iff zTKz ≥ 0
∀z∈Rn such that zT1 = 0. If this is satisfied for all z ∈ R

n , then
K is psd. Symmetric K is cnd iff zTKx ≤ 0 ∀z∈Rn such that
zT1 = 0. A function K(xi, xj ) over X × X is cpd/cnd/psd, if
the previous conditions hold for any n-element subset of X .

Metric: A metric measure d : X × X → R+ ∪ {0} obeys the
following axioms ∀x,y ,z∈X : reflexivity: d(x, x) = 0, symmetry:
d(x, y) = d(y, x), definiteness: (d(x, y) = 0) ⇒ (x = y), and
triangle inequality: d(x, y) + d(y, z) ≥ d(x, z). (X, d) denotes
a metric space.

�p -distance: Family of �p -distances (Rm , dp) with
dp(x,y) = (

∑m
i=1 |xi − yi |p)1/p for x,y ∈ R

m and p > 0. It is
metric if p ≥ 1. d2 is the Euclidean distance, while d1 is the city
block distance. If d is isometrically embeddable into (Rm , d1),
then d1/p is embeddable into (Rm , dp) for 1 ≤ p ≤ ∞ [17].

Euclidean behavior [32]: A measure d on a set X has a
Euclidean behavior if there exists a Euclidean space (Rm , d2)
such that (X, d) is isometrically embeddable into (Rm , d2). If
d has a Euclidean behavior, then so has d1/r , r ∈ (0, 1] [66].

Test for Euclidean behavior [32], [57]: Let D�2 = (d2
ij ). A

symmetric distance matrix D with a zero diagonal is Euclidean
iff S = −(1/2)(I − 1sT)D�2(I − s1T) is psd for sT1 = 1.
Equivalently, D is Euclidean iff D�2 is cnd. Note that −D�2 is
cpd, hence, an SVM kernel [12].

Similarity versus dissimilarity: Given a similarity measure
s : X × X → R, the corresponding d is defined as d2(x, y) =
s(x, x) + s(y, y) − 2s(x, y). If s(x, y) is psd, then s can be
interpreted as a generalized inner product in a Hilbert space
and S = (sij ) is a psd kernel matrix. Moreover, d has a Eu-
clidean behavior [32]. If s(x, y) ∈ [0, 1], then d can be defined,
e.g., as d(x, y) = − log(s(x, y)) or d(x, y) = (1 − s(x, y))p ,
p = {1, 1/2}.

Relations between psd and cnd kernels [2], [12]: Let K and
D be real kernels and let σ > 0.

1) If K is psd, then K̃ = (eσKi j ) is psd.
2) D�2 is cnd iff K̃ = (e−σ dij 2

) is psd.
3) D�2 is cnd iff K̃ = (1/(σ + dij

2)) is psd.
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4) If D�2 is cnd and d2
ii ≥ 0 for all i, then K̃1 = (d2r

ij ),
r ∈ (0, 1), and K̃2 = (log(1 + d2

ij )) are cnd.
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