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a b s t r a c t

Representation of objects by multi-dimensional data arrays has become very common

for many research areas e.g. image analysis, signal processing and chemometrics. In

most cases, it is the straightforward representation obtained from sophisticated

measurement equipments e.g. radar signal processing. Although the use of this complex

data structure could be advantageous for a better discrimination between different

classes of objects, it is usually ignored. Classification tools that take this structure into

account have hardly been developed yet. Meanwhile, the dissimilarity representation

has demonstrated advantages in the solution of classification problems e.g. spectral

data. Dissimilarities also allow the representation of multi-dimensional objects in a way

that the data structure can be used. This paper introduces their use as a tool for

classifying objects originally represented by two-dimensional (2D) arrays. 2D measures

can be useful to achieve this representation. A 2D measure to compute the dissimilarity

representation from spectral data with this kind of structure is proposed. It is compared

to existent 2D measures, in terms of the information that is taken into account and

computational complexity.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The standard way of representing objects for classifi-
cation is in a two-way structure (matrix), where a number
of objects (rows) are simply characterized by feature
vectors (1D representation). Nevertheless, in many
research areas such as signal analysis, chemometrics and
image analysis, objects observed by sensors are repre-
sented by higher-order generalizations of vectors and
matrices i.e. several sets of features measured on objects,
as for example, data collected at different times or
conditions. The structure in which a set of objects with
this representation is organized is called multi-way data.

Multi-way data analysis [1] is the extension of multi-
variate analysis when data is arranged in this multi-way
structure. The most common is the three-way (3D) array,
where objects are represented by matrices (2D representa-
tion) e.g. signals (objects, in the first direction of the array)
represented by time points in the second direction and
frequency in the third direction of the three-way data. The
information obtained from such structures, e.g. interrelations
between the different sets of variables, can be advantageous
for many purposes as regression and/or classification.

Data will not be analyzed optimally by the traditional
multivariate methods, which do not take into account the
multi-way structure. If objects are analyzed in a 1D
representation derived (unfolding for example) from the
original higher-order one, the information of objects
properties in one of the directions will be ignored. This
may deteriorate the results. Moreover, fictitious relation-
ships between the variables of the different directions
may be created in this process. A number of methods for
multi-way analysis have been proposed [1,2]. Most of
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these methods are for exploratory and regression pur-
poses. Classification has been studied much less. This
might be caused by the lack of classification tools able
to operate on objects represented by multi-way arrays,
that use all the available information.

Traditionally, pattern recognition systems are based on
feature representations. Every object is represented by a
feature vector that is constituted of object attributes that
are characteristic for the differences between the pattern
classes. The representation itself neglects possible depen-
dencies between these attributes. They have to be found
from the statistics in a training set. This holds in particular
when as features samples of an object image a time signal
or a spectrum is taken. The connectivity between pixels,
time samples or frequencies is lost in the representation.
By operations like a PCA they may be refound, but at the
cost of a sufficient size of the training set.

To overcome the above problem of the feature repre-
sentation, the Dissimilarity Representation (DR) has been
developed [3–5]. It is based on a direct comparison of the
total objects based on a dissimilarity measure. In this way,
the geometry and the structure of a class are determined
by a user defined dissimilarity measure in which applica-
tion background information may be expressed. As this
measure may respect the fact that the object has some
shape in an image, as a function of time or in its spectrum,
the above connectivity problem can be avoided.

The dissimilarity representation may generate a dis-
similarity space, which is a general vector space. It can
be used to train any of the traditional classifiers by a
proper training set, represented by its dissimilarities to
a selected set of prototype objects. This representation
set may also be randomly selected or even be the entire
training set.

In this paper, we introduce the use of the DR as a tool
for classifying three-way data in such a way that objects
are analyzed in their 2D structure. Consequently, the
relationship between the object properties in the different
variable directions of the three-way array can be included
if a suitable dissimilarity measure is selected. Moreover,
the relations between the objects are analyzed in the
dissimilarity space. Thus, the key issue in this process is to
find a dissimilarity measure that takes into account all
relevant object differences for their classification. Infor-
mation about the data that is not taken into account in the
traditional representation or approaches can be included
in the dissimilarity measure.

Although the introduced approach can be theoretically
applied to any type of three-way data, we will focus in
this paper on three-way spectral data e.g. signals repre-
sented by time points in one direction and frequency
components in the other direction. With this purpose, we
also try to construct a 2D measure that makes use of the
2D nature of the objects, and extracts the functional
information e.g. shape and connectivity from this type
of data. We will show how, by making use of the 2D
structure, the discrimination of objects improves with
respect to that obtained just using the traditional vector-
ial (1D) representation.

The paper is organized as follows. In Section 2, related
works about DR e.g. on spectral data and other 2D

measures proposed in the literature are analyzed. In
Section 3, a brief introduction to the DR theory is given.
In addition, the proposed generalization of the DR for
three-way data is presented, together with the new 2D
dissimilarity measure. This measure is compared to the
other related measures in Section 2. The comparison is
done in terms of the analyzed data and the computational
complexity. In Section 4, the materials and methods
applied in the experimental section are detailed. Follow-
ing, the experimental results are presented and discussed
in Section 5. In this section, in order to show the
advantage of using the 2D representation of objects, the
proposed approach is compared to the 1D representation
of the analyzed data sets. Moreover, the new measure is
compared to other ones in the literature for the two three-
way spectral data sets analyzed in the paper. Some
characteristics of the proposed measure are also analyzed.
Finally, the drawn conclusions are presented in Section 6.

2. Related studies

Several studies to classify spectral data starting from
their vectorial feature e.g. wavelengths representation
have been done [6–12]. Nevertheless, for a wide variety
of problems, the structure of the data can often be more
complex than this; one can have several sets of variables
measured on different samples, as for example, data
collected at different times or conditions. There have not
been many attempts to use this multi-dimensional repre-
sentation as it is, and take advantage of it for a better
discrimination of objects.

In signal processing, multi-dimensional representation of
objects (mainly 2D) has been used e.g. video signal, space-
time-wave analysis for source localization and detection
[13], blind multiuser detection–estimation in direct-
sequence code-division multiple-access (DS-CDMA) com-
munication [14], 3D radar clutter modeling and mitigation
[15–17], classification of sonar contacts [18], blind spatial
signature estimation [19], detection of epilepsy [20] and
alzheimer [21] from EEG signals, analysis of seismic signals
[22–24], and sound and speech recognition [25,26], among
others. However, what it is mainly done in these researches
is to reduce the multi-way data to a vector for each object,
by unfolding it in one of the variables direction e.g. from a
spectrogram or scalogram, averaging in time to get the
frequency spectrum, or vice versa. Afterwards, the authors
do the processing of the data. For the classification task, a
traditional classifier is applied after the data is transformed
e.g. linear discriminant classifier and neural networks
mainly [16,23–26].

In other research fields like chemometrics [27], the
multi-way data analysis [2,28,1] has been one of the main
topics for the last years, but most efforts are directed to
solve regression and exploratory analysis problems
[27,28]. These methods for multi-way data analysis
have also been used in signal processing, but mainly
for exploratory analysis (looking for the interrelation
between the variables in the different directions of the
multi-dimensional array) or for dimensionality reduction
purposes [15,18,14]; applying a traditional classifier after-
wards. So, classification has not been that explored in
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multi-way analysis [1,29–31]. However, this approach is
just based on a numerical analysis, where other aspects
like the shape of the signal, which can also have valuable
information for the discrimination between different pat-
terns of signals (classification), is not taken into account.

On the other hand, although it is a rather new
technique, the DR has been applied in many fields e.g.
image analysis [32,33] and spectral data analysis [5,4]. In
the latter, the DR has shown to be advantageous as it
addresses the dimensionality ill-posed problem of most
spectral data sets. Normally, this kind of data is charac-
terized by having a few objects but represented with very
high-dimensional vectors. Consequently, by using the DR,
a dimensionality reduction is achieved, even if the entire
training set is used as representation set. Moreover,
background knowledge on the data can be expressed in
the dissimilarity measure. Some studies have been done
to find suitable dissimilarity measures for spectral data
[5] to apply the DR approach, and more specifically for
seismic volcanic signals [4,34] and chemical data [35].

The DR can be generated from any other representa-
tion of the objects e.g. vectors of numbers, graphs, or
multi-way data, as long as the suitable dissimilarity
measure is found. However, it has not been done yet for
the last one. Nonetheless, some 2D measures (mainly for
image processing) have been used and developed for the
dissimilarity-based k-Nearest Neighbor (k-NN) classifier,
with the purpose of making use of the two-dimensional
(2D) data array representation e.g. Frobenius [36], Yang
[37] and Volume [38] distances, and the Assembled
Matrix Distance (AMD) [39]. But none of these measures
takes the spectral information, e.g. continuity, shape, into
account. Some measures are analyzed in the subsequent
sections together with the one proposed in this paper.

3. Dissimilarity representation from three-way data

The Dissimilarity Representation [3] was proposed as a
more flexible representation than the feature representa-
tion, with the purpose of having more information about
the structure of the objects. It is seen as a link between
the statistical and structural approaches, as both types of
patterns can be described by the (dis)similarity measure.
More possible prior knowledges about the data, e.g.
rotation and size independence of images, shift indepen-
dence of spectra, can be taken into account. The DR is also
based on the role that (dis)similarities play in a class
composition, where objects from the same class should be
similar and objects from different classes should be
different (compactness property). Hence, it should be
easier for the classifiers to discriminate between them.

Using the DR, classifiers are trained in the space of the
proximities between objects, instead of the traditional
feature space. Thus, in place of the feature matrix
X 2 Rn�q, where n runs over the objects and q over the
variables, the set of objects is represented by the matrix
DðX,RÞ. This matrix contains the dissimilarity values
dðxi,rjÞ between each object xi of X and the objects rj of
the representation set Rðr1, . . . ,rhÞ, where h is the number
of prototypes. We build from this matrix a dissimilarity
space. Objects are represented in this space by the row

vectors of the dissimilarity matrix. Each dimension corre-
sponds to the dissimilarities with one of the representa-
tion objects.

The elements of R are called prototypes, and have
preferably to be selected by a prototype selection method
[3]. These prototypes are usually the most representative
objects of each class, RDX or X itself, resulting in a
square dissimilarity matrix D(X,X). R and X can also be
chosen as different sets. As dissimilarities are computed
to R, a dimensionality reduction is reached if a good, small
set can be found, resulting in less computationally expen-
sive representation and classifiers.

For a t-dimensional array Y 2 RI1�I2�����It (see Fig. 1),
the theory of the DR is the same. In fact, one of the
advantages of the DR is that it can be generated from any
representation of the objects e.g. vectors of numbers or
graphs, as long as we have a proper dissimilarity measure.
This applies also to the multi-way data. Originally, each
object is represented by a (t�1)-dimensional array of
numerical values and all the objects together compose
the t-dimensional array. Hence, to obtain the dissimilarity
space, a mapping fð�,RÞ : RI1�I2�����It�1-Rh is defined, such
that for every object y, fðy,RÞ ¼ ½dðy,r1Þ,dðy,r2Þ, . . . ,dðy,rhÞ�,
where h is the number of prototypes. Classifiers are then
built in this space, as in any feature space.

Thus, to apply this approach to any classification
problem the following steps should be followed:

1. Design the three-way (multi-way) data from the pro-
blem at hand, like objects�variable1�variable2.

2. Define the dissimilarity measure according to the
characteristics of the data. This measure should
include all possible relevant knowledge, e.g. on the
(in)significance of the tails of a spectrum.

3. Compute the dissimilarity matrix between the new
objects and the representative objects (prototypes).

4. Prototype selection (if needed, depending on the
classifier and the computational demands), with one
of the methods reported in the references.

5. Build a classifier, using the dissimilarity matrix as
input data, as the new description of the objects will
be based on their dissimilarities to the prototypes from
each class.

The issue to be addressed here is how to obtain the
dissimilarities from the multi-way representation. Many
ideas can arise to do this transformation. We propose as a
first approach, focusing in three-way data, to take
each object (matrix) (matrix) y of Y and compute the

Fig. 1. Design of a three-way array.
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dissimilarities between them by a 2D dissimilarity mea-
sure. Some 2D measures have been proposed in [39] for
face and palm-print recognition. However, the selection of
the suitable measure for the problem at hand is a very
important aspect in the DR approach. To deepen in this
task we will focus in our case of study on three-way
spectral data i.e. objects represented by spectra and/or
time signals in the two variable directions. Thus, each
object is represented by a matrix (2D). A comparative
study is made about the characteristics of each data set
and the dissimilarity measure to be used. A 2D dissim-
ilarity measure is proposed.

3.1. 2Dshape measure

In many types of data, e.g. spectral data, it is necessary
to take into account the shape information and connec-
tivity between the measured points. In this way, the
observations in the spectrum can be seen as continuous
single entities, instead of sets of different variables.

As mentioned in Section 2, some measures for 2D
representation of samples have been proposed. Assume
that the three-way array Y 2 Rn�m�l, where n is the
number of objects, and m and l the number of variables
(related to a single object) in each of the other directions,
respectively; 8j¼ 1,2, . . . ,m and k¼ 1,2, . . . ,l. Then, the
AMD measure [39] for two objects ya and yb of Y is
defined as

dAMDðya,ybÞ ¼
Xl
k ¼ 1

Xm
j ¼ 1

ðya,j,k�yb,j,kÞ2
0
@

1
A

p=2
0
B@

1
CA

1=p

ð1Þ

The power p is used to emphasize either small or large
differences between the elements, in dependence of the
problem at hand. If po1, all the differences are reduced,
thus the larger ones do not interfere much in the measure.
On the other hand, if p41, the larger differences will be
more pronounced, resulting in a heavy influence on the
measure. This measure is a generalization of the Frobe-
nius and Yang distance measures referenced in Section 2.
When p¼ 1 in AMD, it is the same as the Yang distance,
and for p¼ 2 is then the Frobenius distance.

These measures could be a good option when the
spectral (functional) information can be assumed to be
present in the data representation. However, this is not
usually the case, as spectra are observed and recorded
discretely. Consequently, they are analyzed with multi-
variate data analysis techniques which consider the
spectrum as high-dimensional vectors of different but
high-correlated variables, instead of a continuous single
entity. Therefore, when the information is not taken into
account in the representation of the data, the dissimilarity
measure has to take care of it.

Hence, considering the results obtained with the Shape
measure (Manhattan distance on the first Gaussian deri-
vatives) for simple spectra [5], we propose to make use of
the derivatives into the AMD measure. In such a way, we
can take the ordering information into account as well as
the shape of the spectra. A principle of the DR approach is
that, instead of a single representation of a problem, one

may also consider either a complex representation, built
from many dissimilarity representations, where different
aspects of the data are described in various ways [3].
Based on this and the previously stated, and in a way that
the information available in both directions of the 2D data
can be taken into account, we define the 2Dshape dis-
similarity measure as follows:

1. Compute the matrix D1

D1
a,b ¼

Xl
k ¼ 1

Xm
j ¼ 1

ðysa,j,k�ysb,j,kÞ2
0
@

1
A

p1=2
0
B@

1
CA

1=p1

ysi,j,� ¼
d

dj
Gðj,sÞ � yi,j,�

2. Compute the matrix D2

D2
a,b ¼

Xm
j ¼ 1

Xl
k ¼ 1

ðysa,j,k�ysb,j,kÞ2
 !p2=2

0
@

1
A

1=p2

ysi,�,k ¼
d

dk
Gðk,sÞ � yi,�,k

3. Combine both dissimilarities matrices D¼ a1D
1þa2D

2

The variables yi,j,� and yi,�,k stand for the kth columns
and the jth rows of the ith matrix (object); 8i¼ 1,2, . . . ,n.
Their expressions correspond to the computation of the
first Gaussian (that is what G stands for) derivatives of
spectra. Thus, a smoothing (blurring) is done by a con-
volution process (�) with a Gaussian filter and s stands for
a smoothing parameter [5]. The dissimilarities in step 1
and step 2 correspond to the first and second directions,
respectively, as indicated by the notation e.g. spectra and
time. This measure can also be used in three-way data
where there are no variations in shape in one of the
directions. In this case, it is enough to use the AMD
measure in step 1 or step 2 only, such that only the
differences in area are compared. Moreover, different
p-values can be applied in the different directions. In the
combination step, we included a weight for scaling. In this
case, we defined ac ¼Dc=maxðDcÞ, to normalize the dis-
similarity matrices.

If we analyze the computational complexity of all these
measures, they are in the order of Oðm � lÞ, as our samples
have two-dimensions (two types of variables). In general,
to compute the whole dissimilarity matrices, the computa-
tional complexity of all of them is Oðn2 �m � lÞ. We are
assuming here the worst case, in which all the training
samples are used as prototypes. Nevertheless, if we really
take into account the number of operations required for
each measure, they are different. Between the Frobenius,
Yang and AMD measures there are some slight differences
in the number of operations required. Nevertheless, when
we analyze the 2Dshape measure, it requires twice the
number of operations needed for the other measures, plus
the last sum operation. Moreover, in case of applying the
derivatives, these operations are also added, and it depends
on the selected smoothing parameter s. So, from this point
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of view, depending on the problem at hand, it is needed a
trade-off between computational complexity and classifi-
cation accuracy.

4. Materials and methods

Two three-way spectral data sets will be studied in
this paper. The first is a public domain data set and the
description has been taken from the website [40,41] for a
better understanding of this paper. It consists of samples
of red wine, produced from the same grape (Cabernet
Sauvignon) and belonging to different geographical areas
and producers. They were collected from local super-
markets and analyzed by means of HS-GC–MS (headspace
gas chromatography/mass spectrometry). Separation of
aroma compounds was carried out on a gas chromato-
graphy system (2700 columns from the scans of chroma-
tographic profile). For each sample, a mass spectrum scan
(m/z: 5–204) measured at the 2700 elution time points
was obtained, providing a data cube of size 44� 2700�
200 i.e. samples (objects) in first direction, elution time
points in second direction and mass spectrum in third
direction. The data set is composed of samples from three
different geographical areas: South America (21 samples),
Australia (12 samples) and South Africa (11 samples). For
the two-way representation (1D representation of objects)
of the data, the three-way data was unfolded in its second
direction, obtaining a matrix of size 44� 540 000. All-zero
columns were deleted in this representation (none of the
samples have information in these columns), so the final
data set has a size of 44� 117 060. The dissimilarity
representation has a size of 44� 44.

The second data set corresponds to seismic signals from
the ice-capped Nevado del Ruiz volcano in the Colombian
Andes, currently studied by the Volcanological and seis-
mological observatory at Manizales. Signals were digitized
at 100.16 Hz sampling frequency by using a 12 bit analog-
to-digital converter. The data set for the experiments is
composed of 12 032-point signals of two classes of volcanic
events: 235 of Long-Period (LP) earthquakes, and 235 of
Volcano-Tectonic (VT) earthquakes. A 2D time–frequency
representation was computed with short-time Fourier
transform (STFT), obtaining a spectrogram from each signal
[10]. To compute these spectrograms, trying to achieve a
trade-off between time and frequency resolution, a 256-
point (window size) STFT was calculated with 50% overlap.
With this technique, it can be known what frequency
intervals are present in a time interval of the signal and
use it for the discrimination between classes. The conca-
tenation of the spectrograms of the different signals
(objects) will result in a 470� 93� 129 three-way data
i.e. events (objects) in first direction, time points in second
direction and frequency components in the third direction.
For the 1D (spectral) representation of each object, we
have computed the spectrum by using a 12 032-point fast
Fourier transform (FFT), leading to a 470� 12 032 data.
Consequently, the information in the whole signal is
analyzed in both its 1D and 2D representation. The
dissimilarity representation has a size of 470� 100.

For both data sets, the related measures in Section 3.1
are used to obtain the DR from their 2D representation.

This way, we can analyze which should be a suitable
measure for each problem, and compare how the results
behave in each case. The experiments are also made for
several p-values. Hence, we can also compare all the
measures related before. For the wine data set, p¼ ½0:1,
0:5,1,2,3� and also for both directions of the volcano data
set. In the case of the 2Dshape measure, experiments
were also ran by exchanging the p-values of both direc-
tions. The s parameter was optimized in a grid-search
procedure with 10-fold cross-validation, for the different
p-values in both data sets. In the case of wine data, as the
number of objects is so small, the optimization procedure
was done with the whole data set. The best results were
obtained for s¼ 5. As we are measuring shape in just one
of the two directions, only one s parameter had to be
optimized. In the case of the seismic volcanic data, 170
samples (85 of each class) were used to optimize the
s parameter for each direction. The rest of the data was
then used to evaluate the classification performances, by
using the best s values (s¼ 2 for the time direction and
s¼ 3 for the frequency direction) overall p.

As mentioned previously, we will make a comparison
between the classification accuracy by making use of the
2D structure or just the 1D. In the case of the 2D
representation, the 2D measures explained in Section
3.1 will be used and compared. For 1D representation,
we will use the shape measure introduced in [5]. It is
defined as the Manhattan distance on the Gaussian
derivatives of the spectra. As this measure is for vectors,
only one s has to be used. The s parameter in this
measure was also optimized in a cross-validation proce-
dure and the best results were achieved with s¼ 15 for
the volcanic data set and s¼ 20 for the wine data set.

The regularized linear discriminant classifier (RLDC)
[42,43] was built on the DR obtained from the different
representations of the two data sets. In order to find the
regularization parameters, an automatic regularization (opti-
mization over training set by cross-validation) process was
done. Experiments were repeated 10 times. Training and test
objects were randomly chosen from the total data sets, in a
10-fold cross-validation process. For the wine data set, as the
size of the training set is so small, we decided to use all the
objects as prototypes. A random prototype selection was
performed with several numbers of prototypes for the
volcanic data set. The best results were obtained for 100
prototypes, which are the ones shown here. In both cases, the
same training and test sets were used for all the representa-
tions, so the results can be comparable. Classifiers perfor-
mances are evaluated in terms of the average classification
error (ACE), and the standard deviation from the different
repetitions is taken into account.

The experiments were all performed in Matlab. For the
computation of the spectrograms, we used the Signal
Processing Toolbox from Matlab, and PRTools toolbox [44]
for the computation of DR and classification of the data.

5. Experimental results and discussion

In this section we present several analyses. First, we
want to compare the spectral data sets by applying the
proposed measure and the other 2D measures of the
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literature. This is in order to demonstrate the importance
of selecting a suitable measure for the data at hand. An
analysis of the influence of the parameter p in the results
will also be performed. Afterwards, a comparison between
the 2D and 1D representations of the objects will be done,
to show the advantage of making use of the 2D structure
data for a better discrimination of samples.

5.1. 2Dshape measure vs others measures

In chemometrics, in the case of the techniques com-
bined with chromatography, in the chromatography
direction (2nd) we will have the eluded peaks for all the
components present in the substances. But in the spectral
mode (third direction, mass spectra for GC–MS), each
eluded component will only have one mass spectrum
(mass fragments in which the molecule decomposes)
independently of the class. This means that, with these
techniques, if the classes differ because they have differ-
ent components, the only thing we will see is the absence/
presence of the peak or some differences in the concen-
tration of the mass fragments.

Nevertheless, the other difference between classes that
we can find is the relation between the eluded compo-
nents in the chromatogram i.e. how the concentration of

one of the peaks varies with respect to the others, for the
different classes. In this case, it is important to take shape
into account, because there is information in the ordering
of the components (peaks) with different concentrations
and also continuity.

Thus, for the wine data set we propose to adapt the
2Dshape measure defined in Section 3.1, which takes the
information of both directions into account, to the speci-
ficities of the data. When computing the D1 matrix for the
chromatography direction, we will use the Gaussian
derivatives to take into account the shape in the changes
of concentration in the neighboring components. How-
ever, for the D2 matrix from the mass spectra mode, the
use of derivatives is meaningless, because there is no
continuity between the mass fragments; just the differ-
ences between the concentration of the mass fragments
will be computed.

In Figs. 2 and 3, the results for AMD and 2Dshape
measures are shown. Notice again that when p¼1, we are
using the Yang distance and when p¼2, the Frobenius.
This way, we are comparing the three measures related in
Section 3.1. If we analyze Fig. 2, we can see that the errors
are in a range of 20–50% for the three measures (no
functional information about the data is taken into
account). Nevertheless, when we look at Fig. 3, the highest
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Fig. 2. Average cross-validation error (with standard deviation) for the AMD measure for different p-values for wine data set.
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Fig. 3. Average cross-validation error (with standard deviation) for the 2Dshape measure for different p-values on both directions for wine data set.
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error is around 28%, and coincides with the p-values for
which the worst error was obtained with the AMD
measure. It can be noticed that, by measuring the infor-
mation in both directions and taking the functional, e.g.
shape, information into account, we have decreased the
errors to around 12–28%. Hence, from this data set we
might conclude that, even when the p parameter is not
optimized, by taking the spectral information into
account better results can be achieved.

In Fig. 4, the classification results for the DR from the
different directions separately are shown.

We can see from this figure that there is one direc-
tion for which better results are obtained. In this case it
is the second direction (chromatography), which makes
sense because we are analyzing the relation of concen-
tration of components (shape) for the different classes.
However, the third direction (mass spectrum), although
is not that informative, can also help to discriminate.
From this figure and Fig. 3, we can notice that if we
combine the dissimilarity matrices from both directions
(using the p-values for which the best results are
obtained in each direction separately) the independent
results for each direction are outperformed. This corro-
borates our initial hypothesis of getting a better dis-
crimination between classes, if we take the information
of both directions into account. In this case, we can also

see how the lowest error achieved in the combination
(around 12%) was obtained by using p¼1 in the second
direction and p¼0.5 in the third direction. These are the
p-values for which the best results were obtained in the
independent analysis.

A good example where the proposed measure in
Section 3.1 can be useful is in this time–frequency
representation of the second data set obtained by spectro-
grams. In this case, shape changes are present in the
spectral (frequency) direction and connectivity in the
time direction (due to the windows overlapping). In the
next figures, the ACE are shown for the AMD (different
p-values) measure in Fig. 5 and 2Dshape measure in Fig. 6.

From the figures we can observe a similar behavior to
the ones of the Wine data set. With the proposed measure,
where the shape and continuity information is taken into
account, we got to outperform the AMD from a lowest
error of around 27% of ACE, to 21%. This suggests that the
proposed 2D measure is capable of capturing the informa-
tion needed. Also, we should take a look at the results
(ACE) when analyzing the directions separately (see Fig. 7).
The results for the time direction (second) are not very
good. The ones for the third direction (frequency) on the
other hand are much better. This also makes sense, and is
corroborated by the fact that spectral-based classification
is often used for this type of data, as spectral content of
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Fig. 4. Average cross-validation error (with standard deviation) for the two directions separately in the 2Dshape measure for wine data set. Different
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Fig. 5. Average cross-validation error (with standard deviation) for the AMD measure for different p-values for seismic volcanic data set.
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these signals allows the discrimination between the events
(events do not change in time heavily). Nevertheless, when
the information from both directions is taken into account,
better results are achieved, as shown in the results in Fig. 6.
Moreover, we observe here that, in the case where the
information from one of the directions is not sufficiently
discriminative, the least we will get are the results similar
to the ones for the discriminative direction.

We can also see from Figs. 6 and 7 that the best
performances with the 2Dshape measure are achieved for
the p-values for which the best results are obtained in
each direction independently.

5.2. 1D vs 2D object representation

In this section we make a comparison between the
classification results when using the vectorial (1D) of
objects and when making use of the 2D structure. In
Table 1, the ACE for the DR from the 1D and 2D
representations of both data sets can be observed. In
Section 5.1, an analysis of different 2D measures was
done, and in both data sets the best results were obtained
when applying a version of the proposed 2Dshape mea-
sure. Thus, in this section, the ACE values shown in

Table 1 for the 2D representation of both data sets are
those best values obtained in the previous section. For the
Wine data set, the results achieved with the unfolding
procedure are not very good. By applying the DR on this
representation, the high-dimensionality of the obtained
data (which is one of the main problems in this proce-
dure) is reduced. This is because now in the new dissim-
ilarity space, the dimensionality is given by the number of
objects in the representation set (training set in this data
set). Still, fictitious connections between the end point of
the variables in one direction and the start of the others
are inserted. In any direction that we do the unfolding, the
same phenomenon will happen; some relation will be lost
or its benefit will not be used. However, these results are
notably outperformed when using the 2D representation.
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Fig. 6. Average cross-validation error (with standard deviation) for the 2Dshape measure for different p-values on both directions for seismic volcanic

data set.
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Fig. 7. Average cross-validation error (with standard deviation) for the two directions separately in the 2Dshape measure for seismic volcanic data set.

Different p-values are analyzed.

Table 1
Average cross-validation error in % (with standard deviation) for wine

and seismic volcanic data sets.

Representations Wine Volcano

1D 36.1(1.4) 30.2(0.4)

2D 12.1(0.5) 20.9(0.2)
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In the case of the seismic volcanic data set, the
differences in 1D spectral content of a signal allow for
the discrimination between the events. Nevertheless, with
this representation we are not able to use the changes of
frequency content in time to separate classes. It can also be
observed in Table 1 that the ACE on the dissimilarity space
generated from just the spectral data (1D) is around 30%.
Nevertheless, when we analyze the error of the DR from
the 2D representation we see a significant improvement.
This ratifies the fact that the time–frequency relation is
more discriminative than just the spectral information.

Thus, it can be observed that it is usually advantageous
to make use of the multi-dimensional structure of the
data for the classification process. The information and
relationship between the variables of the different direc-
tions can be more discriminative, than if we just obtain a
vector (1D) of variables from its 2D representation,
ignoring its original structure.

6. Conclusions

We introduced the use of the dissimilarity representa-
tion as a tool for classifying three-way data. In this
approach, objects are analyzed in their matrix (2D struc-
ture) representation by using 2D measures. Moreover,
information about the data that is missing in the original
representation, e.g. shape, can be considered in it. We
developed a new 2D dissimilarity measure that allows
taking into account the shape and continuity information
in the directions of three-way spectral data. Furthermore,
the relationship between the different dimensions is
taken into account in this measure. It was compared to
other three measures of the literature, in order to proof
the importance of the selection of a suitable dissimilarity
measure for the problem at hand. We also showed that,
even when there is more discriminative information in
one direction of the three-way data than in other, the
results usually improve by combining.

The good performance of classifiers on the DR from the
2D representation of the objects, compared with the one
from the traditional 1D, shows that this approach can be a
good solution for the classification of objects with a 2D
structure. Although this paper was focused on the solution
for three-way data, it can be extended to multi-way e.g. in
chemometrics, molecular entities of a substance can be
separated by size on a chromatographic system and then
detected by fluorescence, leading to a four-way data of
(objects)�(fractions)�(excitation)�(emission). The proposed
measure, as the dissimilarity representation, could be
extended to multi-way data; it is part of the future work.
Moreover, this procedure could be used in other types of
problems where shape changes help for discrimination, like
in image processing e.g. for the classification of faces.
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