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Abstract. To improve weak classifiershaggingand boosting could be used.
Thesetechniquesrebasedon combiningclassifiersUsually, a simplemajority
vote or a weightedmajority vote are usedas combiningrulesin baggingand
boosting.However, other combiningrules suchas mean,productand average
are possible. In this paper we study bagging and boosting in Linear
DiscriminantAnalysis (LDA) andthe role of combiningrulesin baggingand
boosting.Simulationstudies carriedout for two artificial datasetsandonereal
dataset,shav that baggingandboostingmight be usefulin LDA: baggingfor

critical training samplesizesand boostingfor large training samplesizes.In

contrastto a commonopinion, we demonstrateéhat the usefulnesof boosting
doesnotdirectly dependn theinstability of a classifierIt is alsoshovn thatthe
choice of the combining rule may affect the performanceof bagging and
boosting.

1 Introduction

Whenthetrainingsamplesizeis smallcomparedo the datadimensionalitythe
training datamay often give a distortedrepresentationf the real datadistribution. A
classificationrule, constructedbn suchtraining data,may be biasedand have a large
variance Consequentlyonecangeta lousy classifier having a poor performancd1].
In order to improve a weak classifier by stabilizing its decision, a number of
techniquescould be used, for instance,regularization [2] or noise injection [3].
Anotherapproachyhich allows usto improve a weakclassifier consistdn combining
classifiers,obtainedon the modified versionsof the original training set (e.g., by
sampling[4] or weighting).This approachs implementedn bagging[5] andboosting
[6], however, in differentways.In bagging,one sampleghe training set, generating
randomindependenbootstrapreplicatesof thetrainingset,constructghe classifieron
eachof thesebootstrapreplicatesand aggregjatesthemby simple majority vote in the
final decisionrule. In boosting classifiersareconstructecn weightedversionsof the
training set,which are obtainedsequentelyin the algorithm.Initially, all objectshave
equalweights,andthe first classifieris constructedn this dataset. Thenweightsare
changedaccordingo the performancef the classifier Erroneouslassifiedobjectsget
larger weightsandthe next classifieris boostedon the reweightedtraining set.In this
way a sequencef trainingsetsandclassifierds obtainedwhich arethencombinedby
the simple majority or the weighted majoritgte in the final decision.

As a rule, baggingand boostingare appliedto classificationand regression
trees(CART) [7],[8],[9],[10], whereit is difficult to imply othercombiningrulesthan



simple majority vote or weightedmajority vote. However, baggingandboostingmay
alsoperformwell in lineardiscriminantanalysig[11], [12]. Linear classifiersallow us
to useothercombiningrulessuchasthe average(whenthefinal classifieris obtained
by averagingthe coeficientsof the combinedclassifiers)the mean(whendecisionis
made accordingto the mean of posteriori probabilities given by the combined
classifiers)andthe productrule (whendecisionis madeby the productof posteriori
probabilities presentedby the combined classifiers). It may happenthat these
combiningrulesperformbetterthanmajority vote, especiallyfor bagging.Moreover,
theaveragerule hasanadvantageo othercombiningrules,becausdt requiresto keep
only the coeficients of classifiersinstead of all posteriori probabilities of each
combined classifier

In this paperwe investigatethe role of five mentionedcombiningrules(simple
majority vote, weightedmajority vote, average,meanand product)for baggingand
boostingin lineardiscriminantanalysisThe NearesMeanClassifie(NMC) [13], also
known asthe Euclideandistanceclassifier is usedin our study This choiceis made
becauseghe NMC is often a weak, unstableclassifierfor datasetshaving an other
distribution than Gaussianwith equal variances.Therefore,baggingand boosting,
which we recite in the next section, may be useful in order to improve it's
performanceTo performour simulationstudy we have choserntwo artificial datasets
andonerealdataset,which aredescribedn section3. Theartificial datasetspresenta
2-classproblem.Therealdatasetconsistof a 2-classproblemanda 4-classproblem.
The results of our simulation study are presentedin section 4. Conclusionsare
summarized in section 5.

2 Bagging and Boosting

In orderto improve the performanceof unstableregressionor classification
rules,anumberof combiningtechnique€anbeusedIn recentyears themostpopular
onesbecamebaggingand boosting. They both modify the training data set, build
classifierson thesemodifiedtraining setsandthencombinetheminto afinal decision
rule by simpleor weightedmajority vote. However, they performit in a differentway.

Bagging is basedon the bootstrapping[4] and aggregating conceptsand
presentedby Breiman[5]. Both, bootstrappingand aggreating may be beneficial.
Bootstrappingis basedon randomsamplingwith replacementTherefore,taking a

. b b b b . .
bootstrapreplicate X~ = (X7, X5, ..., X)) (the randomselectionwith replacement

of N objects from the set of N objects) of the training sample set
X = (Xq, Xy, ...y X,3), One can sometimesavoid or get less misleadingtraining
objectsin the bootstraptraining set. Consequentlya classifierconstructedon such
training set may have a betterperformance Aggregating actually meanscombining
classifiers. Often a combinedclassifiergives betterresultsthanindividual classifiers,
becauseof combiningin the final solution advantagesof the individual classifiers.
Therefore baggingmight be helpful to build betterclassifieron training samplesets
with misleaders. In bagging, bootstrapping and aggreating techniques are
implemented in the folleing way.

1. Repeat fob=1,2,...B.



a) Take a bootstrap replicat% of tq)e training data seX .
b) Construct a classifie€(X ") on X

2. Combine classifiers by simple majoritgt® to a final decision rule.

Boosting, proposedby Freund and Schapire[6], is anothertechniqueto
combineunstableandweakclassifieran orderto geta classificatiorrule with a better
performanceln contrastto bagging,wherebootstraptraining setsand classifiersare
independentaind random,in boosting,classifiersand training setsare obtainedin a
strictly deterministic way. Both, training data sets and classifiers are obtained
sequentelyn thealgorithm.At eachstep trainingdataarereweightedin suchway that
incorrectlyclassifiedobjectsgetlargerweightsin anew modifiedtrainingset.By that,
one actually maximizesmaigins betweentraining objects.It suggestshe connection
betweerboostingand Vapnik's SupportVector Classifier(SVC) [7],[14]. Boostingis
organized in the follving way.

1. Repeat fob=1,2,...B.
a) Construct the classifier C (XD) on the weighted training data set

X = (ngl,wzxz,..., W X)), usingweightsw;", i=1,..n (W = 1forb—1)
b) Compute probability estimates of the error err, = - Zw EI,

b [0 X; classified correctly 1 - errbD
Ei =0 ,andcbzéloga—
1, otherwise O ey O
b+1 b by . .
c) Setw; T w;exp(—c,&; ), i=1,...n, and renormalize so tha ib+ L,

1=
2. Combineclassifierst(XD) by weightedmajority vote with weights ¢, to afinal
decision rule.

3 Data

Two artificial data setsand one real data set are usedfor our experimental
investigations.

» Thefirst setis a 30-dimensionatorrelatedGaussiardataset constitutedoy
two classeswith equalcovariancematrices.Eachclassconsistsof 500 vectors.The
meanof thefirst classis zerofor all featuresThe meanof the secondclassis equalto
3 for thefirst two featuresandequalto O for all otherfeaturesThecommoncovariance
matrix is a diagonalmatrix with a varianceof 40 for the secondfeatureand a unit
variancefor all other features.The intrinsic classoverlap (Bayeserror) is 0.064.In

orderto spreadhe separabilityover all featuresthis datasetis rotatedusinga 30* 30

rotationmatrix whichis E _11] for thefirst two featuresandthe identity matrix for all

other features.We call thesedatafurther “Gaussiancorrelated datd’. Its first two
features are presented in Fig. 1.

» The seconddatasetconsistf two 8-dimensionatlassesThefirst two features
of the data classesare uniformly distributed with unit variancesphericalGaussian
noisealongtwo 2173 concentricarcswith radii 6.2and10.0for thefirst andthesecond
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Fig. 1. The scatterplot of a two-dimensionalprojection of the 30-dimensionalGaussiar
correlated data

class respeately.
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wherep; =6.2,p,=10, & N(0, 1), Y OU 3 330 | T 1,4 ; k= 1,2 Theother

six featureshave the samesphericalGaussiaristribution with zeromeanandvariance
0.1 for both classesBoth classesonsistof 500 objectseach.We will call thesedata
“banana-shaped data(BSD). Its first tvo features are presented in Fig. 2.
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Fig. 2. Scatter plot of a ta~dimensional projection of the 8-dimensional banana-shaped
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Fig. 3. Scatter plot of the first tavprincipal components of the pump data with four classe:

* The last dataset consistsof the measurementebtainedfrom four kinds of
waterpumpoperatingstatesa normalbehaiour (NB), a bearingfault (BF) (afaultin
the outerring of the uppermossingle bearing),animbalancefailure (IF) anda loose
foundationfailure (LFF), where the running speed(46, 48, 50, 52 and 54 Hz) and
machineload (25, 29 and 33 KW) are varied. To measurepump vibrations,a ring
accelerometeis used.For the obtainedtime seriesof the pumpvibration patternswe
determinedhe coeficientsof anorder128autorgressie model. The 128 coeficients
of this modelareusedasthe featuresdescribingthe pumpvibration patternsFor each
operatingmodel15 128-dimensionalectorsare obtained which arenormalizedw.r.t.
themeanandthe standardieviation. Thenthe dataarecombinedeitherin 4 classega
normalbehaiour, a bearingfault,animbalancefailure andaloosefoundationfailure)
consistedof 225 obsenations each,or in 2 classes(the normal behaiour and the
abnormalbehaiour). In the latter case the normal behaiour classconsistedof 225
obsenrationsthe abnormalbehaiour classconsistedf 675 obsenationsrepresenting
all threefailures: bearing,imbalanceand loose foundation. The first two principal
componentsof the autorgressie model coeficients for four operatingstatesare
presented in Fig. 3. g/call these datpump data” in the experiments.

Trainingdatasetswith 3 to 400 (with 3 to 200for pumpdata)samplegerclass
arechosernrandomlyfrom atotal set. The remainingdataare usedfor testing.These
andall otherexperimentsarerepeatedb0 timesfor independentraining samplesets.
In all figuresthe averagedresultsover 50 repetitionsare presentecand we do not
mention that aymore.

The standarddeviations of the meangeneralizationerrors of the NMC, the
bagged\MC, the boostedNMC andthe SVC wereof the similar orderfor eachdata
set. When increasingthe training samplesize, they were decreasingapproximately
from 0.015to0 0.005,from 0.015to 0.009,from 0.01to 0.008andfrom 0.02to 0.01for
30-dimensionalGaussiarcorrelateddata,for 8-dimensionabanana-shapedataand
for 128-dimensional pump data with 4 and 2 classes, regglcti



4 The Effect of the Combining Rule in Bagging and Boosting

Let us now study the usefulnessof bagging and boostingin LDA on the
exampleof theNMC andlook attheeffect of thecombiningrule ontheir performance.
In orderto understandetter whenbaggingandboostingmight be beneficial,it may
be usefulto considertheinstability of a classifier[11]. Theinstability of a classifieris
measuredby us by calculatingthe changesin classificationof a training data set
causedby the bootstrapreplicate of the original learning data set. Repeatingthis
procedureseveral times on the training set (we did it 25 times) and averagingthe
resultsan estimateof the classifierinstability is obtained.The meaninstability of the
NMC (on 50 independentraining sets)definedin this way is presentedn Fig. 4 for
the datasetsdescribedn the previous section.One canseethat the instability of the
NMC is distinctfor differentdatasets.However, for all datasets,the classifieris the
most unstablewhen the training samplesize is small. Then the instability of the
classifier decreases as the training sample size increases.
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Fig. 4. The instability of the NMC for 30-dimensionalGaussiancorrelateddata (a), 8-
dimensionalbanana-shapedata (b), 128-dimensionapump datawith 2 classes(c) and 4
classes (d)



Simulation results obtainedon the 30-dimensionalGaussiancorrelateddata
(seeFig. 5) shav thatbaggingandboostingarevery usefulfor the NMC on this data
set.Baggingimproves almosttwice the generalizatiorerror of the NMC for critical
training samplesizes,whenthe datadimensionalityis comparablevith the numberof
training objects,andthe classifieris unstable Whentraining setsarevery small, often
they representhe distribution of the entire datasetincorrectly Bootstrappingsuch
training sets,onecanhardly geta bettertraining set. Therefore pbaggingis uselesgor
very smalltraining samplesizes.Whenthe training samplesizeis large, the classifier
is stable.Large training setsrepresenthe distribution of the entire dataaccurately
Therefore,perturbationsin the compositionof the training set do not changethe
training setvery much. By this reason,baggingis uselesdor large training sample
sizes.One also can seethat the performanceof baggingis strongly affectedby the
choiceof the combiningrule. Baggingwith the simple majority vote rule, which is
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Fig. 5. Thegeneralizatiorerrorof theNMC, thebagged\MC (left plot) andtheboostedNMC
(right plot) using diferent combining rules for 30-dimensional Gaussian correlated data
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Fig. 6. Thegeneralizatiorerrorof the NMC, thebagged\MC (left plot) andtheboostedNMC
(right plot) using diferent combining rules for 8-dimensional banana-shaped data



usually usedasa combingrule in bagging,performsthe worst. For this dataset,the
bestcombiningrulesfor baggingarethe average the weightedmajority vote andthe
product.Comparingthe left plot for baggingandthe right plot for boostingin Fig. 5,
one can clearly see that boosting outperformsbagging for each combining rule
respectiely. In boosting,wrongly classifiedobjectsget larger weights.Mainly, they
are objectson the borderbetweenclassesTherefore boostingperformsthe bestfor
large training sample sizes, when the border between classesbecomes more
informative. In this case boostingthe NMC performssimilar to the linear SVC [14].
However, whenthe training samplesizeis large, the NMC is stable.lt putsuson an
ideathat,in contrasto bagging theusefulnes®f boostingdoesnotdependlirectly on
thestability of theclassifier It depend®nthe“quality” of thewrongclassifiedobjects
(usually the border betweendata classes)and on the ability of the classifier (its
compleity) to distinguishthem correctly As concernscombiningrules, we seethat
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Fig. 7. Thegeneralizatiorerrorof theNMC, thebagged\MC (left plot) andthe boosted\NMC
(right plot) using diferent combining rules for 128-dimensional pump data with 2 classes
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thechoiceof thecombiningrule is lessimportantfor boosting thanfor bagging When
boostingthe NMC on the 30-dimensionalGaussiancorrelateddata, all combining
rulesperformsimilar to eachotherwith the exceptionof simple majority vote, which
is reasonably arse.

On the 8-dimensionabanana-shapedata (seeFig. 6), baggingand boosting
are also useful for the NMC. However, dueto non-Gaussiamatadistribution and a
lower instability of the NMC, the obtainedmprovementis not so spectaculaasin the
previous case. Bagging outperforms boosting for critical training sample sizes.
However, boostingperformsslightly betteron largetrainingsamplesizesachieving the
performanceof the SVC. One can also seethat somesmall differenceexists when
differentcombiningrules are usedin baggingand boosting.Simple majority vote is
againtheworstcombiningrule for bagging.For this dataset,the productcombingrule
is the bestwhenbaggingthe NMC. In boosting the weightedmajority vote combining
rule is slightly betterthan other combiningrules whentraining samplesizesare not
large.

When considering128-dimensionalpump data for a 2-classand a 4-class
problem,onecanseethatthe NMC is morestable(Fig. 4) onthis datasetthanon other
datasets,andbaggingis almostuselesgFig. 7 andFig. 8). Boostingbecomesuseful
only whenthe numberof training objectsis largerthanthe datadimensionality In this
case,boosting performs better for a 2-classproblem than for a 4-classproblem,
becausdo solve a 2-classproblemis easierthana 4-classproblem.However, to make
moreconclusionsaboutthe performancef boostingfor large training samplesizesis
difficult, asonly limited amountof datais available(225 objectsperclass).Therefore,
it isimpossibleto checkwhetherthe boosted\MC performssimilarto the SVC,when
the numberof training objectsexceeds200 per class.Neverthelessthe resultsalso
shaw thatthe choiceof the combiningrule might be important.In a 4-classproblem,
using the weighted majority vote in baggingand boostingis more preferablethan
using other combining techniqueslin a 2-classproblem, boostingwith the simple
majority vote combiningrule performsbetterthan with the weightedmajority vote
combiningrule, which is surprisinglythe worst for this dataset.It seemshatit does
not exist the unique combining rule which is the bestfor all datasetsand for all
training sample sizes.

5 Conclusions

Summarizingsimulation results presentedin the previous section, we can
conclude the follaing:

Bagging and boosting may be useful in linear discriminant analysis.

Bagging helps in unstable situations, for critical training sample sizes.

Boostingis useful for large training samplesizes,when the objectson the
border between data classesare enough representafie to separatedata classes
correctlyandtheclassifieris able(by its compleity) to distinguishthemwell. By that,
boosting sometimesallows us to achieve the performanceof the support vector
classifier The performanceof boostingdoesnot dependon the instability of the
classifier

The choice of the combining rule might be important. However, it strongly



depends on the data and the training sample size.
When comparingthe performanceof baggingandboosting,it shouldbe done
on the &ir background, when the same combining rule is used in both methods.
As a rule, simple majority vote is the worst possiblechoiceof the combining
rule. The weightedmajority vote rule is often a good choice as for baggingas for
boosting.The averagemean,andproductcombiningrulesmay alsoperformwell and
sometimes better than the weighted majoritevcombining rule.
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