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Abstract. To improve weak classifiersbaggingand boostingcould be used.
Thesetechniquesarebasedon combiningclassifiers.Usually, a simplemajority
vote or a weightedmajority vote are usedas combiningrules in baggingand
boosting.However, other combiningrules suchas mean,productand average
are possible. In this paper, we study bagging and boosting in Linear
DiscriminantAnalysis (LDA) and the role of combiningrules in baggingand
boosting.Simulationstudies,carriedout for two artificial datasetsandonereal
dataset,show that baggingandboostingmight be useful in LDA: baggingfor
critical training samplesizesand boostingfor large training samplesizes.In
contrastto a commonopinion, we demonstratethat the usefulnessof boosting
doesnotdirectlydependon theinstabilityof aclassifier. It is alsoshown thatthe
choice of the combining rule may affect the performanceof bagging and
boosting.

1    Introduction

Whenthetrainingsamplesizeis smallcomparedto thedatadimensionality, the
trainingdatamayoftengive a distortedrepresentationof the realdatadistribution. A
classificationrule, constructedon suchtraining data,may be biasedandhave a large
variance.Consequently, onecangeta lousyclassifier, having a poorperformance[1].
In order to improve a weak classifier by stabilizing its decision, a number of
techniquescould be used, for instance,regularization [2] or noise injection [3].
Anotherapproach,whichallowsusto improveaweakclassifier, consistsin combining
classifiers,obtainedon the modified versionsof the original training set (e.g., by
sampling[4] or weighting).Thisapproachis implementedin bagging[5] andboosting
[6], however, in differentways.In bagging,onesamplesthe training set,generating
randomindependentbootstrapreplicatesof thetrainingset,constructstheclassifieron
eachof thesebootstrapreplicatesandaggregatesthemby simplemajority vote in the
final decisionrule. In boosting,classifiersareconstructedon weightedversionsof the
trainingset,which areobtainedsequentelyin thealgorithm.Initially, all objectshave
equalweights,andthefirst classifieris constructedon this dataset.Thenweightsare
changedaccordingto theperformanceof theclassifier. Erroneousclassifiedobjectsget
largerweightsandthenext classifieris boostedon thereweightedtrainingset.In this
wayasequenceof trainingsetsandclassifiersis obtained,whicharethencombinedby
the simple majority or the weighted majority vote in the final decision.

As a rule, baggingand boostingare applied to classificationand regression
trees(CART) [7],[8],[9],[10], whereit is difficult to imply othercombiningrulesthan



simplemajority voteor weightedmajority vote.However, baggingandboostingmay
alsoperformwell in lineardiscriminantanalysis[11], [12]. Linearclassifiersallow us
to useothercombiningrulessuchastheaverage(whenthefinal classifieris obtained
by averagingthecoefficientsof thecombinedclassifiers),themean(whendecisionis
made according to the mean of posteriori probabilities given by the combined
classifiers)andthe productrule (whendecisionis madeby the productof posteriori
probabilities presentedby the combined classifiers). It may happen that these
combiningrulesperformbetterthanmajority vote,especiallyfor bagging.Moreover,
theaveragerulehasanadvantageto othercombiningrules,becauseit requiresto keep
only the coefficients of classifiers instead of all posteriori probabilities of each
combined classifier.

In this paperwe investigatetherole of five mentionedcombiningrules(simple
majority vote, weightedmajority vote, average,meanand product)for baggingand
boostingin lineardiscriminantanalysis.TheNearestMeanClassifier(NMC) [13], also
known asthe Euclideandistanceclassifier, is usedin our study. This choiceis made
becausethe NMC is often a weak,unstableclassifierfor datasetshaving an other
distribution than Gaussianwith equal variances.Therefore,baggingand boosting,
which we recite in the next section, may be useful in order to improve it’s
performance.To performour simulationstudy, we have chosentwo artificial datasets
andonerealdataset,whicharedescribedin section3. Theartificial datasetspresenta
2-classproblem.Therealdatasetconsistsof a 2-classproblemanda 4-classproblem.
The results of our simulation study are presentedin section 4. Conclusionsare
summarized in section 5.

2    Bagging and Boosting

In order to improve the performanceof unstableregressionor classification
rules,anumberof combiningtechniquescanbeused.In recentyears,themostpopular
onesbecamebaggingand boosting.They both modify the training data set, build
classifierson thesemodifiedtrainingsetsandthencombinetheminto a final decision
ruleby simpleor weightedmajority vote.However, they performit in adifferentway.

Bagging is basedon the bootstrapping[4] and aggregating conceptsand
presentedby Breiman [5]. Both, bootstrappingand aggregating may be beneficial.
Bootstrappingis basedon randomsamplingwith replacement.Therefore,taking a

bootstrapreplicate (the randomselectionwith replacement

of N objects from the set of N objects) of the training sample set

, one can sometimesavoid or get less misleadingtraining
objectsin the bootstraptraining set. Consequently, a classifierconstructedon such
training set may have a betterperformance.Aggregating actually meanscombining
classifiers.Often a combinedclassifiergivesbetterresultsthanindividual classifiers,
becauseof combining in the final solution advantagesof the individual classifiers.
Therefore,baggingmight be helpful to build betterclassifieron training samplesets
with misleaders. In bagging, bootstrapping and aggregating techniques are
implemented in the following way.
1. Repeat forb=1,2,...,B.
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a) Take a bootstrap replicate  of the training data set .
b) Construct a classifier  on .

2. Combine classifiers by simple majority vote to a final decision rule.
Boosting, proposedby Freund and Schapire [6], is another techniqueto

combineunstableandweakclassifiersin orderto geta classificationrule with a better
performance.In contrastto bagging,wherebootstraptraining setsandclassifiersare
independentand random,in boosting,classifiersand training setsare obtainedin a
strictly deterministic way. Both, training data sets and classifiers are obtained
sequentelyin thealgorithm.At eachstep,trainingdataarereweightedin suchwaythat
incorrectlyclassifiedobjectsgetlargerweightsin anew modifiedtrainingset.By that,
oneactuallymaximizesmargins betweentraining objects.It suggeststhe connection
betweenboostingandVapnik’s SupportVectorClassifier(SVC) [7],[14]. Boostingis
organized in the following way.
1. Repeat forb=1,2,...,B.

a) Construct the classifier on the weighted training data set

, usingweights , i=1,...,n ( for b=1).

b) Compute probability estimates of the error ,

, and .

c) Set , i=1,...,n, and renormalize so that .

2. Combineclassifiers by weightedmajority votewith weights to afinal
decision rule.

3    Data

Two artificial data setsand one real data set are usedfor our experimental
investigations.

• The first set is a 30-dimensionalcorrelatedGaussiandatasetconstitutedby
two classeswith equalcovariancematrices.Eachclassconsistsof 500 vectors.The
meanof thefirst classis zerofor all features.Themeanof thesecondclassis equalto
3 for thefirst two featuresandequalto 0 for all otherfeatures.Thecommoncovariance
matrix is a diagonalmatrix with a varianceof 40 for the secondfeatureand a unit
variancefor all other features.The intrinsic classoverlap (Bayeserror) is 0.064.In

orderto spreadtheseparabilityover all features,this datasetis rotatedusinga 30 30

rotationmatrix which is for thefirst two featuresandtheidentity matrix for all

other features.We call thesedata further “Gaussiancorrelated data”. Its first two
features are presented in Fig. 1.

• Theseconddatasetconsistsof two 8-dimensionalclasses.Thefirst two features
of the data classesare uniformly distributed with unit variancesphericalGaussian
noisealongtwo 2π/3 concentricarcswith radii 6.2and10.0for thefirst andthesecond
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class respectively.

, ,

whereρ1 = 6.2,ρ2 = 10, , , ; k = 1,2. Theother

six featureshavethesamesphericalGaussiandistributionwith zeromeanandvariance
0.1 for bothclasses.Both classesconsistof 500objectseach.We will call thesedata
“banana-shaped data”(BSD). Its first two features are presented in Fig. 2.

Fig. 1. The scatterplot of a two-dimensionalprojection of the 30-dimensionalGaussian
correlated data
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Fig. 2. Scatter plot of a two-dimensional projection of the 8-dimensional banana-shaped data



• The last dataset consistsof the measurementsobtainedfrom four kinds of
water-pumpoperatingstates:a normalbehaviour (NB), a bearingfault (BF) (a fault in
theouterring of theuppermostsinglebearing),an imbalancefailure (IF) anda loose
foundationfailure (LFF), wherethe running speed(46, 48, 50, 52 and 54 Hz) and
machineload (25, 29 and 33 KW) are varied. To measurepump vibrations,a ring
accelerometeris used.For theobtainedtime seriesof thepumpvibrationpatterns,we
determinedthecoefficientsof anorder128autoregressive model.The128coefficients
of this modelareusedasthefeaturesdescribingthepumpvibrationpatterns.For each
operatingmode15 128-dimensionalvectorsareobtained,which arenormalizedw.r.t.
themeanandthestandarddeviation.Thenthedataarecombinedeitherin 4 classes(a
normalbehaviour, a bearingfault,animbalancefailureanda loosefoundationfailure)
consistedof 225 observations each,or in 2 classes(the normal behaviour and the
abnormalbehaviour). In the latter case,the normalbehaviour classconsistedof 225
observationstheabnormalbehaviour classconsistedof 675observationsrepresenting
all three failures: bearing,imbalanceand loose foundation.The first two principal
componentsof the autoregressive model coefficients for four operatingstatesare
presented in Fig. 3. We call these data“pump data” in the experiments.

Trainingdatasetswith 3 to 400(with 3 to 200for pumpdata)samplesperclass
arechosenrandomlyfrom a total set.The remainingdataareusedfor testing.These
andall otherexperimentsarerepeated50 timesfor independenttraining samplesets.
In all figures the averagedresultsover 50 repetitionsare presentedand we do not
mention that anymore.

The standarddeviations of the meangeneralizationerrors of the NMC, the
baggedNMC, theboostedNMC andtheSVC wereof thesimilar orderfor eachdata
set. When increasingthe training samplesize, they were decreasingapproximately
from 0.015to 0.005,from 0.015to 0.009,from 0.01to 0.008andfrom 0.02to 0.01for
30-dimensionalGaussiancorrelateddata,for 8-dimensionalbanana-shapeddataand
for 128-dimensional pump data with 4 and 2 classes, respectively.
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Fig. 3. Scatter plot of the first two principal components of the pump data with four classes



4 The Effect of the Combining Rule in Bagging and Boosting

Let us now study the usefulnessof bagging and boosting in LDA on the
exampleof theNMC andlook at theeffectof thecombiningruleontheirperformance.
In orderto understandbetter, whenbaggingandboostingmight be beneficial,it may
beusefulto considertheinstability of a classifier[11]. Theinstability of a classifieris
measuredby us by calculatingthe changesin classificationof a training data set
causedby the bootstrapreplicateof the original learning data set. Repeatingthis
procedureseveral times on the training set (we did it 25 times) and averagingthe
resultsanestimateof theclassifierinstability is obtained.Themeaninstability of the
NMC (on 50 independenttraining sets)definedin this way is presentedin Fig. 4 for
the datasetsdescribedin the previous section.Onecanseethat the instability of the
NMC is distinct for differentdatasets.However, for all datasets,the classifieris the
most unstablewhen the training samplesize is small. Then the instability of the
classifier decreases as the training sample size increases.

Fig. 4. The instability of the NMC for 30-dimensionalGaussiancorrelateddata (a), 8-
dimensionalbanana-shapeddata (b), 128-dimensionalpump data with 2 classes(c) and 4
classes (d)
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Simulation resultsobtainedon the 30-dimensionalGaussiancorrelateddata
(seeFig. 5) show thatbaggingandboostingarevery usefulfor theNMC on this data
set.Baggingimprovesalmosttwice the generalizationerror of the NMC for critical
trainingsamplesizes,whenthedatadimensionalityis comparablewith thenumberof
trainingobjects,andtheclassifieris unstable.Whentrainingsetsarevery small,often
they representthe distribution of the entire dataset incorrectly. Bootstrappingsuch
trainingsets,onecanhardlygeta bettertrainingset.Therefore,baggingis uselessfor
very small trainingsamplesizes.Whenthetrainingsamplesizeis large,theclassifier
is stable.Large training setsrepresentthe distribution of the entire dataaccurately.
Therefore,perturbationsin the compositionof the training set do not changethe
training set very much.By this reason,baggingis uselessfor large training sample
sizes.One also can seethat the performanceof baggingis strongly affectedby the
choiceof the combiningrule. Baggingwith the simple majority vote rule, which is

Fig. 5. Thegeneralizationerrorof theNMC, thebaggedNMC (left plot) andtheboostedNMC
(right plot) using different combining rules for 30-dimensional Gaussian correlated data
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Fig. 6. Thegeneralizationerrorof theNMC, thebaggedNMC (left plot) andtheboostedNMC
(right plot) using different combining rules for 8-dimensional banana-shaped data



usuallyusedasa combingrule in bagging,performsthe worst.For this dataset,the
bestcombiningrulesfor baggingaretheaverage,theweightedmajority voteandthe
product.Comparingthe left plot for baggingandtheright plot for boostingin Fig. 5,
one can clearly see that boosting outperformsbagging for each combining rule
respectively. In boosting,wrongly classifiedobjectsget larger weights.Mainly, they
areobjectson the borderbetweenclasses.Therefore,boostingperformsthe bestfor
large training sample sizes, when the border between classesbecomesmore
informative. In this case,boostingtheNMC performssimilar to the linearSVC [14].
However, whenthe training samplesizeis large, the NMC is stable.It putsus on an
ideathat,in contrastto bagging,theusefulnessof boostingdoesnotdependdirectlyon
thestabilityof theclassifier. It dependson the“quality” of thewrongclassifiedobjects
(usually, the border betweendata classes)and on the ability of the classifier (its
complexity) to distinguishthemcorrectly. As concernscombiningrules,we seethat

Fig. 8. Thegeneralizationerrorof theNMC, thebaggedNMC (left plot) andtheboostedNMC
(right plot) using different combining rules for 128-dimensional pump data with 4 classes
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Fig. 7. Thegeneralizationerrorof theNMC, thebaggedNMC (left plot) andtheboostedNMC
(right plot) using different combining rules for 128-dimensional pump data with 2 classes
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thechoiceof thecombiningrule is lessimportantfor boosting,thanfor bagging.When
boostingthe NMC on the 30-dimensionalGaussiancorrelateddata,all combining
rulesperformsimilar to eachotherwith theexceptionof simplemajority vote,which
is reasonably worse.

On the 8-dimensionalbanana-shapeddata(seeFig. 6), baggingandboosting
arealso useful for the NMC. However, due to non-Gaussiandatadistribution anda
lower instability of theNMC, theobtainedimprovementis not sospectacularasin the
previous case. Bagging outperforms boosting for critical training sample sizes.
However, boostingperformsslightly betteron largetrainingsamplesizesachieving the
performanceof the SVC. One can also seethat somesmall differenceexists when
differentcombiningrulesareusedin baggingandboosting.Simplemajority vote is
again theworstcombiningrule for bagging.For thisdataset,theproductcombingrule
is thebestwhenbaggingtheNMC. In boosting,theweightedmajorityvotecombining
rule is slightly betterthanothercombiningruleswhentraining samplesizesarenot
large.

When considering128-dimensionalpump data for a 2-classand a 4-class
problem,onecanseethattheNMC is morestable(Fig. 4) onthisdatasetthanonother
datasets,andbaggingis almostuseless(Fig. 7 andFig. 8). Boostingbecomesuseful
only whenthenumberof trainingobjectsis largerthanthedatadimensionality. In this
case,boosting performs better for a 2-classproblem than for a 4-classproblem,
becauseto solve a 2-classproblemis easierthana 4-classproblem.However, to make
moreconclusionsabouttheperformanceof boostingfor largetrainingsamplesizesis
difficult, asonly limited amountof datais available(225objectsperclass).Therefore,
it is impossibleto checkwhethertheboostedNMC performssimilar to theSVC,when
the numberof training objectsexceeds200 per class.Nevertheless,the resultsalso
show that thechoiceof thecombiningrule might be important.In a 4-classproblem,
using the weightedmajority vote in baggingand boostingis more preferablethan
using other combining techniques.In a 2-classproblem,boostingwith the simple
majority vote combiningrule performsbetter than with the weightedmajority vote
combiningrule, which is surprisinglytheworst for this dataset.It seemsthat it does
not exist the unique combining rule which is the best for all data setsand for all
training sample sizes.

5    Conclusions

Summarizingsimulation results presentedin the previous section, we can
conclude the following:

Bagging and boosting may be useful in linear discriminant analysis.
Bagging helps in unstable situations, for critical training sample sizes.
Boosting is useful for large training samplesizes,when the objectson the

border between data classesare enough representative to separatedata classes
correctlyandtheclassifieris able(by its complexity) to distinguishthemwell. By that,
boosting sometimesallows us to achieve the performanceof the support vector
classifier. The performanceof boostingdoesnot dependon the instability of the
classifier.

The choice of the combining rule might be important.However, it strongly



depends on the data and the training sample size.
Whencomparingthe performanceof baggingandboosting,it shouldbe done

on the fair background, when the same combining rule is used in both methods.
As a rule, simplemajority vote is the worst possiblechoiceof the combining

rule. The weightedmajority vote rule is often a good choiceas for baggingas for
boosting.Theaverage,mean,andproductcombiningrulesmayalsoperformwell and
sometimes better than the weighted majority vote combining rule.
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