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Abstract. A model for probabilistic independent component subspace
analysis is developed and applied to texture description. Experiments
show it to perform comparably to a Gaussian model, and to be use-
ful mainly for problems in which the detection of little occurring, high-
frequency image elements is important.

1 Introduction

In many applications of statistical pattern recognition techniques to image data,
images (or image patches) are described as high-dimensional vectors in which
each element corresponds to a pixel position in the rectangular image grid.
A problem associated with this approach is that estimating parameters in such
a high-dimensional space is cumbersome. Furthermore, images that make sense
to human observers only form a small subset of all possible positions in this
space. The vector description of images therefore contains more parameters than
necessary. Irrespective of these problems, one would often like to model image
information locally invariant to offset, contrast, translation, rotation and scale.
However, if an image patch is just slightly brightened, contrast enhanced, trans-
lated, rotated or scaled, the distribution of the vectors will change drastically,
whereas to a human observer the image content looks very similar. That is, the
representation is not naturally invariant.

It can be shown that transformed versions of an image patch all lie on an m-
dimensional manifold in the d-dimensional space spanned by all pixel values,
where m is the number of degrees of freedom present in the transformations [10].
Although this manifold may be intrinsically low-dimensional, it is likely to be
nonlinear and lie folded up in the d-dimensional space. A good representation
would therefore be one which describes this manifold using a small number of
parameters, thereby avoiding the estimation problems in high-dimensional spaces
and enforcing invariance to elementary transformations.
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Fig. 1. The 12 Brodatz textures used in the experiments in this paper. Top:
structured textures S1–S6; bottom: natural textures N1–N6

Earlier work [2,3,4] discussed the use of mixtures-of-PCA for locally mod-
elling such manifolds, in applications to texture segmentation and image de-
scription. The main focus in this paper is on the use of independent component
analysis (ICA) for describing sets of image patches. ICA is a recently proposed
technique for finding subspaces in which the projected data distributions are in-
dependent. There have been reports of modelling sets of natural image patches
using ICA (e.g. [6]), leading to sets of wavelet-like basisvectors. However, there
have been no true applications of the subspaces thus found. In this paper, ICA
will be applied as a texture description method and compared to a full Gaussian
model.

The remainder of the paper is laid out thus: Sect. 2 discusses the texture
image data used in the experiments. Next, in Sect. 3 the Gaussian and ICA
models will be discussed. Sect. 4 describes experiments in texture description.
Questions raised by these experiments with regard to ICA will be answered in
Sect. 5, followed by some conclusions in Sect. 6.

2 Texture Data

For the experiments in this paper, two sets of textures were taken from the
Brodatz album [1], shown in Fig. 1. It is to be expected that subspace methods
will work better on the structured textures, as these exhibit stronger correlation
between pixels. The original images were rescaled to make sure texel sizes (i.e.
the sizes of the ‘structuring elements”) in the structured textures were smaller
than 16 × 16 pixels (the image patch size used in the experiments). For each
image, the grey value range was rescaled to [0, 1].

As the models will be trained on image patches rather than entire images,
training sets will have to be sampled from the images. To this end, 16× 16 pixel
windows were used. Furthermore, the notion of episodes introduced by Koho-
nen [8] was used. This artificial enlargement of the data set allows for incorpora-
tion of prior knowledge, i.e. that (subspace) models should be invariant to small
amounts of translation, rotation and scaling. Next to a sample extracted at posi-
tion (x0, y0), four translated samples are extracted at positions (x0 + x, y0 + y),
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where x ∼ U(−5, 5) and y ∼ U(−5, 5); five samples are taken at the same posi-
tion in images rotated over -45◦, -22.5◦, 0◦, 22.5◦and 45◦; and five samples are
taken at the same position in images scaled to 1.1×, 1.2×, 1.3×, 1.4× and 1.5×
the original size. This gives a total of 15 samples per episode. Data sets of 1,500
samples per texture were created in this way, containing 100 episodes.

The models used in this paper cannot be fitted when certain dimensions do
not contain data, i.e. when there is zero variance. Therefore, directions in which
there is little or no variance (assumed to contain noise) can be removed using
PCA. This is called pre-mapping; the data is projected onto the eigenvectors
corresponding to the set of largest eigenvalues explaining more than 90% of the
variance. The data is not whitened. For 16×16 windows taken out of structured
textures, this leaves 50 dimensions on average; out of natural textures, on average
70 dimensions remain.

3 Models

This section discusses two basic models that can be applied to texture descrip-
tion: the Gaussian model and the independent component analysis (ICA) model.
The basis for the discussion will be the log-likelihood, which in segmentation
algorithms would be used to assign image windows to models. A data set of d-
dimensional vectors x will be denoted by L = {xn}, n = 1, . . . , N . For the ICA
model, m will denote the number of independent components.

3.1 Gaussian

The log-likelihood of a sample z belonging to a Gaussian distribution is:

LGauss(z|µ, C) = −d

2
ln(2π)− 1

2
ln | det(C)| − 1

2
(z − µ)T C−1(z − µ) (1)

where µ is the mean and C the covariance matrix, estimated on all x ∈ L. For
a number of texture data sets, the inverse of C cannot be calculated in a 256D
space; hence PCA pre-mapping (see the previous section) was applied.

3.2 Independent Component Analysis

Lately, independent component analysis or ICA [7] has enjoyed considerable
attention. In its most basic form, this method tries to find directions in which
the data is independent (rather than just decorrelated as in principal component
analysis, PCA). The linear ICA model is u = W (x−µ), in which u are the m-
dimensional projected vectors. As ICA was originally applied to blind separation
of various signals (or sources) s under an additive model, the matrix W is often
called the unmixing matrix and the backprojection matrix A the mixing matrix.
This backprojection is defined as x = As + µ. Note that in the notation here,
u is used to denote an estimate of the sources s.
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Several (related) iterative algorithms have been proposed to perform ICA.
For this work, an algorithm was developed as a variation on the extended infomax
ICA algorithm of Lee et al. [9]. Lee’s algorithm is a maximum likelihood (ML) fit
of a set of distributions, in which for each component ui it is learned whether to
fit a sub-Gaussian or a super-Gaussian distribution. The number of independent
components m is assumed to be equal to the number of dimensions in the data d.
The log-likelihood can be expressed as [9]

LICA(z|A) = − ln | det(A)| + ln p(u) (2)

where u = Wz and W = A−1, which is possible since m = d and therefore A
is a square matrix. For notational simplicity, µ is assumed to be 0. An ICA base
can be found using a generalised EM algorithm to maximise Eqn. 2, in which
the estimate for W is updated by a gradient descent learning rule. This batch
learning rule, for the entire dataset (where U is the matrix containing the source
approximations u as its columns and X likewise contains the data vectors), is

∆W = η
[
NAT + φ(U )XT

]
(3)

where η is a learning rate and φi(ui) = ∂ ln pi(ui)
ui

, with pi(ui) a sub-Gaussian or
super-Gaussian distribution:

pi(ui) =
{

fsub (ui) = 1
2 (fGauss(ui; 1, 1) + fGauss(ui;−1, 1))

fsup (ui) = c fGauss (ui; 0, 1) sech (ui)
(4)

with fGauss(ui;µ, σ2) the Gaussian distribution function and c a normalisation
constant. Rule 3 was (approximately) found by various authors (e.g. [?]); note
that the assumptions made to find it were (a) that there is no noise and (b) that
matrix A is full rank, i.e. there are as many sources m as there are mixtures d.

The main limitation of this ML algorithm is that it works only for m = d.
In the case of texture description, it is not to be expected that there are that
many ICs. Therefore, a new learning rule was derived for the undercomplete case
where m < d, by modelling the remaining dimensions as Gaussian noise [2]. This
violates the assumptions necessary for the learning rule derived above.

The revised model contains an added noise term, x = As+µ+ε, with s now
an m-dimensional vector, A a d × m matrix and ε Gaussian i.i.d. distributed
noise with C = σ2I = 1

β I. The log-likelihood now becomes

LICA(z|A, β) ≈ d

2
ln

β

2π
− β

2
(x−Au)T (x−Au)− 1

2
ln | det(AT A)|+ln p(u) (5)

and the batch learning rule changes to

∆W = η
[
βNAT C (I − AW ) + NAT + φ(U )XT

]
(6)

The first term is an orthogonalisation term which works in the space rotated
and scaled by C. Note that in this model W = A−1 no longer holds since A is
not a square matrix; instead, W = (AT A)−1AT .
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(a) σ2 ≈ 0.2872 (b) σ2 = 0.01 (c) σ2 = 0.10

(d) σ2 = 0.2872 (e) σ2 = 1.0 (f) σ2 = 2.5

Fig. 2. (a) A simple 2D data set. (b)-(f) LICA as a function of W . For small σ2,
the local maxima (dark spots) correspond to the independent component (hori-
zontal); for large σ2, they correspond to the Gaussian component (vertical)

Eqn. 6 gives the basic learning rule for W . However, the noise parameter β
has to be estimated as well. This can easily be done using the GEM algorithm.
In each step, estimate the current parameters in the E-step by:

un = Wxn, n = 1, . . . , N (7) vn = W�xn, n = 1, . . . , N (8)

β−1 = (d − m)−1
∑d−m

i=1
var(vi) (9) A = W T (W W T )−1 (10)

where W� is the nullspace of W , i.e. β corresponds to the inverse of the average
noise outside the subspace (cf. probabilistic PCA [11]). In the M-step, the log-
likelihood is then maximised by applying the learning rule (Eqn. 6) to W .

The estimation of β has a large influence on convergence. It controls the
trade-off between finding a subspace (the 2nd term in Eqn. 5) and independent
components (the 4th term). This is illustrated in Fig. 2. The data set consists of
2D samples of which the x-coordinate is drawn from a U(−0.5, 0.5) distribution
with σ2 ≈ 0.2872 and the y-coordinate is drawn from a Gaussian distribution
with µ = 0 and variable σ2. If β is fixed at σ−2, the algorithm converges for any
setting of σ. However, if β is learned, this is not always the case. For various
settings of σ2, Fig. 2 indicates LICA as a function of W . Clearly, as σ increases,
finding the independent component becomes less likely than finding the Gaussian
component, depending on initialisation of W .
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Fig. 3. Predicted error ε on texture sets, for the Gaussian model and ICA models
of varying dimensionalities

This exposes a problem of most ICA algorithms: to find only independent
components, the role variance plays will have to be eliminated. Although alter-
natives exist, the easiest method is by whitening the data before applying the
ICA subspace algorithm, i.e. using x′ = C− 1

2 x. This will make the data variance
1 in all directions. Pre-whitening also simplifies the algorithm in a number of
ways: β can be fixed at 1; the rows of W and columns of A can be constrained
to have unit length; and in the batch learning rule (Eqn. 6), the first term drops
out, as C = I, so the learning rule is identical to the one originally proposed by
Lee at al. (Eqn. 3). The ICA subspace model essentially changes to a Gaussian
model in which m directions should contain non-Gaussian distributions.

4 Experiments

In a simple experiment, the Gaussian model and ICA were compared on their
ability to describe texture1. Individual models Mi (i = 1, . . . , 6) were trained
on the 6 individual Brodatz texture images, for both the structured and the
natural texture set. After training, the negative log-likelihood of each pixel in
each texture image Ij of belonging to each model Mi was calculated. This gives a
set of distances Fij between model Mi and texture image Ij . As these distances
are approximately normally distributed2, a simple performance measure is [5]:

ε = med
i=1,...,6; j �=i

1
2
− 1

2
erf

(
1
2

√
F(Fii, Fij)

)
(11)

where F(F1, F2) is the Fisher distance between two distributions F1 and F2 and
ε ∈ [0, 0.5] is the median predicted Bayes error, assuming normally distributed
features with equal variance and equal prior probabilities3. The median is taken
over all models and all textures to prevent outliers from having too much influ-
ence.
1 For details on experimental settings, see [2].
2 The distribution of a likelihood calculated in d dimensions can be approximated by

a χ2
d distribution, which for large d can be approximated by a normal distribution.

3 Note that the per-model pre-mapping makes this measure pessimistic; in a true
segmentation application, PCA pre-mapping would be performed on the entire data
set rather than single textures. However, relative performance is not influenced.
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The results (Fig. 3) show, firstly, that the predicted error indeed is pes-
simistic; in [2], the Gaussian model is applied in a mixture model setting and
gives very good segmentation results. However, of interest for this paper is the
fact that the Gaussian and ICA models give nearly equal performance. Further-
more, for an increasing number of independent components performance hardly
changes. This raises the question as to what exactly the advantage of modelling
dimensions by non-Gaussian distributions is.

5 Independent Component Analysis

Investigation of the kurtoses of the distributions of data projected onto the
extracted independent components shows that non-Gaussian directions have in-
deed been found: the kurtoses of the projected data distributions deviated sig-
nificantly from 3 for any model. The algorithm works.

If the ICA model really fits better than the Gaussian, its likelihood LICA

(Eqn. 5) should be significantly larger than that of the Gaussian, LGauss. How-
ever, for nearly all textures, the average increase in likelihood (over all pixels)
was negligible. To get a better idea of why these increases are so low, the “straw”
natural texture N2 (Fig. 1) is considered. Fig. 4 (a) shows the ICA basis vectors
found after training a 16D ICA model. Clearly, they correspond to directed edge
detectors, which one would expect to be of use in segmenting the straw image.
To see their effect, for each pixel in the original image the likelihood of the win-
dow of which it is the center can be plotted, again as an image. Figs. 4 (b) and
(c) show these likelihood images for both the 64D ICA model and the Gaussian
model. At first glance, there is no difference between the two. However, there is a
difference, albeit small; Fig. 4 (d)-(i) shows this difference for an increasing num-
ber of independent components in the ICA model. For presentation purposes,
negative differences (which fell in the range [−2, 0]) have not been shown.

It now becomes obvious why the ICA model shows no improvement over the
Gaussian model. In general, the independent components correspond to charac-
teristic but more or less unique high-frequency events in images. For this image,
these are the few straws that have a different orientation than the majority. The
first few independent components (2D-4D models) correspond to the straws be-
low the center of the image; as more dimensions are added, the straws at the top
of the image get modelled better as well. Finally, as more and more independent
components are found, all straws with non-standard orientations are singled out
(relative to the Gaussian model), whereas the main structure of the texture be-
comes slightly more likely, but in a noise-like fashion. In fact, this happens for
all textures.

6 Conclusions

A probabilistic subspace ICA model was developed and compared to a Gaussian
model on the task of texture description. It was shown that data pre-whitening
is necessary to be able to train the ICA model, which effectively makes the ICA
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Fig. 4. (a) ICA basis vectors found on texture N2; (b) log-likelihood of each
pixel belonging to a 64D ICA model; (c) same for a Gaussian model and (d)-(i)
the difference between LICA of various dimensionalities and LGauss

model a Gaussian one in which a subset of dimensions have non-Gaussian dis-
tributions. Subsequently, both models were shown to perform equally well on
texture description. Experimental observations led to the conclusion that: (a)
the increase in likelihood is generally so low, that the Gaussian model may be
considered as good a model as ICA for a data set consisting of texture image
patches; (b) ICA – given its high computational complexity – is not useful as a
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Fig. 5. A useful application of ICA: left, a seismic image; right, thresholded
(LICA − LGauss), for m = 8

texture description tool. For segmentation, the goal is to find models which de-
scribe textures in a shift-invariant way. To this end, non-standard regions should
be ignored rather than modelled. The Gaussian model does this by modelling
the data by (co)variance only, ignoring outliers. Under the ICA model, as it fo-
cuses on non-Gaussianity alone, outliers are more probable (for super-Gaussian
sources); in fact, the sources are indirectly optimised to make outliers more likely.

The main conclusion is that, where many authors have suggested ICA might
be useful for image processing, its application area is limited to problems in
which the detection of unique, characteristic events is of importance. As an
example, consider the seismic image shown in Fig. 5. The Gaussian model will
pick up only on the two dominant directions present. However, the ICA model
is better at description of some faint – yet to a human observer clearly visible –
discontinuities and bifurcations in the image.
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