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Abstract. Dissimilarity representations are of interest when it is hard
to define well-discriminating features for the raw measurements. For
an exploration of such data, the techniques of multidimensional scaling
(MDS) can be used. Given a symmetric dissimilarity matrix, they find
a lower-dimensional configuration such that the distances are preserved.
Here, Sammon nonlinear mapping is considered. In general, this iterative
method must be recomputed when new examples are introduced, but its
complexity is quadratic in the number of objects in each iteration step.
A simple modification to the nonlinear MDS, allowing for a significant
reduction in complexity, is therefore considered, as well as a linear pro-
jection of the dissimilarity data. Now, generalization to new data can
be achieved, which makes it suitable for solving classification problems.
The linear and nonlinear mappings are then used in the setting of data
visualization and classification. Our experiments show that the nonlinear
mapping can be preferable for data inspection, while for discrimination
purposes, a linear mapping can be recommended. Moreover, for the spa-
tial lower-dimensional representation, a more global, linear classifier can
be built, which outperforms the local nearest neighbor rule, traditionally
applied to dissimilarities.

1 Introduction

An alternative to the feature-based description is a representation based on
dissimilarity relations between objects. Such representations are useful when
features are difficult to obtain or when they have little discriminative power.
Such situations are encountered in practice, especially when shapes, blobs, or
some particular image characteristics have to be recognized [6,8]. The use of
dissimilarities is, therefore, dictated by the application or data specification.

For an understanding of dissimilarity data, techniques of multidimensional
scaling (MDS) [1,10] can be used. MDS refers to a group of methods mainly used
for visualizing the structure in high-dimensional data by mapping it onto a 2-
or 3-dimensional space. The output of MDS is a spatial representation of the
data, i.e. a configuration of points, representing the objects, in a space. Such a
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display is believed to allow for a better understanding of the data, since similar
objects are represented by close points.

In the basic approach, MDS is realized by Sammon mapping [1,10]. This
nonlinear, iterative projection minimizes an error function between original dis-
similarities and Euclidean distances in a lower-dimensional space. For n objects,
it requires computation of O(n2) distances in each iteration step and the same
memory storage. However, for a lower, m-dimensional representation, only mn
variables should be determined, which suggests that a number of O(n2) con-
straints on distances is redundant and, therefore, could be neglected. The leads
to the idea that only distances to the, so-called, representation set R (a subset
of all objects), could be preserved, for which a modified version of the Sammon
mapping should be considered. A similar reduction of complexity can be ap-
plied to a linear projection of dissimilarity data, being an extension of Classical
Scaling, i.e. the linear MDS technique [1].

In this paper, we compare the linear and nonlinear projection methods, re-
duced in complexity, for data visualization and classification. Our experiments
show that for dissimilarity data of smaller intrinsic dimensionality, its lower-
dimensional spatial representation allows for building a classifier that signifi-
cantly outperforms the nearest neighbor (NN) rule, traditionally used to dis-
criminate between objects represented by dissimilarities. The NN rule, based on
local neighborhoods, suffers from sensitivity to noisy objects. The spatial rep-
resentation of dissimilarities, reflecting the data structure, is defined in a more
global way, and therefore, better results can be achieved.

The paper is organized as follows. Sections 2 and 3 give insight into linear
and nonlinear projections of the dissimilarity data. Section 4 explains how the
reduction of complexity is achieved. Section 5 describes the classification exper-
iments conducted, presents some 2D projection maps and discusses the results.
Conclusions are summarized in section 6.

2 Linear Projection of the Dissimilarity Data

Non-metric distances may arise when shapes or objects in images are compared
e.g. by template matching [8,6]. For projection purposes, the symmetry condi-
tion is necessary, but for any symmetric distance matrix, an Euclidean space is
not ’large enough’ for a distance-preserving linear mapping onto the specified
dimensionality. It is, however, always possible [4] for a pseudo-Euclidean space.

The Pseudo-Euclidean Space A pseudo-Euclidean space R(p,q) of the signa-
ture (p, q) [5,4] is a real linear vector space of dimension p+q, composed of two
Euclidean subspaces, Rp and Rq, such that R(p,q)=Rp⊕Rq and the inner prod-
uct 〈·, ·〉 is positive definite on Rp and negative definite on Rq. The inner prod-
uct w.r.t. the orthonormal basis is defined as 〈x,y〉 =Pp

i=1 xiyi −Pp+q
j=p+1 xjyj =

x
T My, M =

�
Ip×p 0
0 −Iq×q

�
, where I is the identity matrix. Using the notion of
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inner product, d2(x, y)= ||x−y||2 =〈x−y, x−y〉=(x−y)T M(x−y), can be pos-
itive, negative or zero. Note that an Euclidean space Rp, is a pseudo-Euclidean
space R(p,0).

Linear Projection and Generalization to New Objects Let T consists
of n objects. Given a symmetric distance matrix D(T, T )∈Rn×n, a configura-
tion Xred ∈ Rn×m (m < n) in a pseudo-Euclidean space can be found, up to
rotation and translation, such that the distances are preserved as well as pos-
sible. Without loss of generality, a linear mapping is constructed such that the
origin coincides with the mean. X is then determined, based on the relation
between distances and inner products. The matrix of inner products B can be
expressed only by using the square distances D(2) [4,9]:

B = −1
2
JD(2)J, J = I − 1

n
11T ∈Rn×n, (1)

where J takes care that the final configuration has a zero mean. By the eigen-
decomposition of B=XMXT , one obtains: B = QΛQT = Q|Λ| 12

[
M

0
]
|Λ| 12 QT ,

where |Λ| is a diagonal matrix of first, decreasing p positive eigenvalues, then
decreasing absolute values of q negative eigenvalues, and finally zeros. Q is the
matrix of corresponding eigenvectors and M ∈Rk×k, k=p+q, is defined as before
(or it is equal to Ik×k if Rk is Euclidean). X is then represented in the space Rk

as X = Qk |Λk| 12 [4]. Note that X is an uncorrelated representation, i.e. given
w.r.t. the principal axes. The reduced representation Xred ∈Rn×m, m < k, is,
therefore, determined by largest p′ positive and smallest q′ negative eigenvalues,
i.e. m=p′+q′, and it is found as [4,9]:

Xred = Qm |Λm| 12 , (2)

New objects can be orthogonally projected onto the space Rm. Given the matrix
of square distances D

(2)
n ∈Rs×n, relating s new objects to the set T , a configu-

ration Xn
red is then sought. Based on the matrix of inner products Bn ∈Rs×n:

Bn = −1
2

(D(2)
n J − UD(2)J), U =

1
s
11T ∈Rs×n, (3)

Xn
red = BnXred|Λm|−1 Mm or Xn

red = BnB−1Xred. (4)

Classifiers For a pseudo-Euclidean configuration, a linear classifier f(x) =
〈v, x〉 + v0 = vT Mx + v0 can be constructed by addressing it as in the Eu-
clidean case, i.e. f(x)=〈w, x〉Eucl + v0 =wT x + v0, where w=Mv; see [4,9].

3 Nonlinear Projection of the Dissimilarity Data

Sammon mapping [10,1] is the basic MDS technique used. It is a nonlinear
projection onto an Euclidean space, such that the distances are preserved. For
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this purpose, an error function, called stress, is defined, which measures the
difference between the original dissimilarities and Euclidean distances of the
configuration X (consisting of n objects) in an m-dimensional space. Let D be
the given dissimilarity matrix and D̃ be the distance matrix for the projected
configuration X . A variant of the Sammon stress is here considered [3,10]:

S =
1∑n−1

i=1

∑n
j=i+1 d2

ij

n−1∑
i=1

n∑
j=i+1

(dij − d̃ij)2 (5)

and it is chosen since it emphasizes neither large nor small distances. To find
a Sammon representation, one starts from an initial configuration of points for
which all the pairwise distances are computed and the stress value is calculated.
Next, the points are adjusted such that the stress will decrease. This is done in
an iterative manner, until a configuration corresponding to a (local) minimum
of S is found. Here, the scaled conjugate gradients algorithm is used to search
for the minimum of S. It is important to emphasize that the minimum found
depends on the initialization. In this paper, the principal component projection
of the dissimilarity data is used to initialize the optimization procedure.

4 Reduction of Complexity

For our (non-)linear projection, although X has the dimensionality m, it is still
determined by n objects. In general, such a space can be defined by m+1 lin-
early independent objects. If they were lying one in the origin and the others
on the axes, they would determine our space exactly. Since this is unlikely to
happen, the space retrieved will be an approximation of the original one. When
more objects are used, the space becomes more filled and, therefore, better de-
fined. The question now arises how to select the representation set R ⊆ T of the
size r>m, on which the (non-)linear mapping could be based. Following [2], we
choose objects, lying in the areas of higher density, i.e. with relatively many close
neighbors. For a dissimilarity representation D(T, T ), a natural way to proceed
is the K-centers algorithm. It looks for K center objects, i.e. examples that min-
imize the maximum of the distances over all objects to their nearest neighbors,
i.e. it minimizes the error EK−cent = maxi (mink dik). It uses a forward search
strategy, starting from a random initialization. (Note that the K-means [3] can-
not be used since no potential feature representation is assumed.)

For a chosen R, the linear mapping onto m-dimensional space is defined by
formulas (1)–(2) based on D(R, R). The remaining objects D(T\R, R) can then
be added by the use of (3) and (4). In this way, the complexity is reduced from
O(mn2) (computing m eigenvectors and eigenvalues) to O(mr2) + O(nr).

In case of the Sammon mapping, a modified version should be defined, which
generalizes to new objects. Following [2], first the Sammon mapping of D(R, R)
onto the space Rm is performed, yielding the configuration XR.The remaining
objects can be mapped to this space, while preserving the dissimilarities to the
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set R, i.e. D′ = D(T\R, R). This can be done via an iterative minimization
procedure of the modified stress SM , using the found representation XR:

SM =
1∑n

i=1

∑r
j=1(d′ij)2

n∑
i=1

r∑
j=1

(d′ij − d̃′ij)2 (6)

This procedure allows for adding objects to an existing map, which can now be
used for classification purposes. Its complexity reduces from O(mn2), computing
O(n2) distances in the Rm space, to O(nmr+nr2) in each iteration step.

5 Experiments

Two datasets are used in our study.

Fig. 1. Examples of the polygons

The first data consists of randomly gen-
erated polygons (see Figure 1): 4-edge
convex polygons and 7-edge convex and
non-convex polygons. The polygons are
first scaled and then the modified Haus-
dorff distance [8] is computed. The second data describes the NIST digits [11],
represented by 128×128 binary images. Here, the symmetric dissimilarity, based
on deformable template matching, as defined by Zongker and Jain [7], is used.

The experiments are performed 50/10 times for the polygon/digit data and
the results are averaged. In each run, both datasets are randomly split into
equally sized the training and testing sets. Each class is represented by 50/100 ob-
jects (i.e. n=100/1000) for the polygon/digit data. In each experiment, first the
dimensionality m of the projection is established. In case of the linear mapping,
one may predict the intrinsic dimensionality based on the number of significant
eigenvalues [4,9] (similarly to the principal component analysis [3]). However,
this might be different for Sammon mapping. Therefore, a few distinct dimen-
sionalities are used. For the dimensionality m, representation sets of the size r,
varying from m+1 to n are considered. Each set R is selected by the K-centers
algorithm, except for R equal to the training set T (i.e. r = n). Next, an ap-
proximated space, defined by objects from R is determined (i.e. the (non-)linear
mapping is based on D(R, R)). The remaining T\R objects are then mapped
to this space, as described in section 4 and the Fisher linear classifier (FLC)
is trained on all n objects (a quadratic classifier has also been used, but the
linear one performs better). The test data is then projected to the space and
the classification error is found. For a new object, only r distances have to be
computed and the complexity of the testing stage becomes O(mr) for the linear
projection and O(max (mr, r2)) in each iteration step for Sammon mapping.

The results of our experiments on the polygon/digit data are presented in
Figure 2. For the polygon data, the best performance of the FLC is achieved
when the dimensionality of the projected space is 15 for Sammon mapping or 20
for the linear mapping. For the set R consisting of only 20 training objects, the
FLC built in both linear and nonlinear projected spaces (i.e. using distances to
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Fig. 2. The NN rule on dissimilarities (marked by ’*’) and the FLC on the spatial
representations for the polygon data (top) and the digit data (bottom)

the set R only), outperforms the 1-NN rule and the best 9-NN rule, both based
on 100 objects. This shows that by making use of the structure information
present in the data, a less noise-sensitive decision rule than, the NN method,
can be constructed. When R contains 30 − 40% of the data, the error of nearly
0.02 is reached, which is close to the error of 0.015− 0.018 gained when R=T .

For the digit data, the best accuracy is found when m = 100 or m = 200
for the Sammon mapping or the linear projection, respectively. For the set R,
consisting of 10% of the training objects only, the FLC built in both nonlinear
and linear 50-dimensional spaces, outperforms the 1-NN rule and the best 3-NN
rule, both based on all 1000 objects. When r = 400 objects are chosen to the
set R, an error of 0.05 can be reached; when R=T , an error of 0.04 is achieved.

In Figure 3, one can also observe that for both data, the stress S changes only
slightly when R is larger than half of the training set. For the linear mapping,
the stress values are not shown for r=m+1, since some of the pseudo-Euclidean
distances are negative and S becomes complex. For larger r, the imaginary part
of S becomes nearly zero and can, therefore, be neglected. The stress is, of
course, relatively large for the linear mapping, but this does not disturb a good
classification performance. Apparently, the variance present in the data, revealed
by the linear projection, is good enough for discrimination purposes, since major
differences in classes are captured.

In summary, in terms of the stress, a nonlinear configuration preserves the
data structure better than the linear one. The nonlinear mapping requires less
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Fig. 3. Sammon stress for the spatial representations of the polygon data (top)
and the digit data (bottom)

dimensions for about the same performance of the FLC than the linear mapping,
although for the latter, a bit higher accuracy can overall be reached.

Visualization From all the linear mappings of the fixed dimensionality, our lin-
ear projection preserves the distances in the best way [1,4]. Since it is constructed
to explain the maximum of the (generalized) variance in the data, some details in
the structure might remain unrevealed. When data lies in a nonlinear subspace,
Sammon mapping is preferred since it provides an additional information.

The difference between the original (non-)linear 2D maps and the maps based
on smaller representation sets can be observed in Figure 4, where the results for
four datasets are shown. The first two examples are illustrative: banana dataset
is an artificial 2D dataset for which the theoretical, nearly-Euclidean distance
is found; for the 4D Iris dataset, the Euclidean distance is considered. The last
two datasets refer to data from our classification experiments.

Each subfigure presents plots for the linear and nonlinear projections. Those
plots show the difference between the original (non-)linear maps and the maps,
constructed while preserving the dissimilarities to the set R only. From Figure 4,
one can observe that the (non-)linear maps, based on a smaller R resemble well
the original maps, based on all objects. The Sammon stress computed for those
configurations reveals the loss up to 20%. This is reasonable, given that the
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Modified Sammon map

Stress: 0.133

Original Sammon map

Stress: 0.122

Modified linear map

Stress: 0.435

Original linear map

Stress: 0.381

(d) Digit data; r = 50

Fig. 4. Linear and nonlinear 2D maps; set R marked in black ’o’ when feasible

chosen R consists of less than 10% of all objects, which means that around 90%
of distances are not taken into account during the mapping process.

6 Discussion and Conclusions

The presented mappings of finding a faithful spatial configuration do not make
use of class labels. So, the class separability could potentially be enhanced by
using such information. This remains an open issue for further research.

To reduce noise in the data, in a mapping process, the distances are preserved
approximately. By this, the class separability may be somewhat improved, al-
though, in general, it is reflected in a similar way as given by all the dissimilarity
relations. The advantage of building e.g. a linear classifier in such a projected
space over the k-NN is that the data information is used in a more complex
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and comprehensive way, based on relations between a number of objects both
in the mapping process and in the classifier construction. Since the k-NN rule
is locally noise sensitive, for dissimilarity data, noisy in local neighbourhoods,
our approach can be beneficial. It is important to emphasize, however, that the
generality of our approach holds for data of a lower intrinsic dimensionality.

A number of conclusions can be drawn from our study. First of all, the
modified Sammon algorithm allows for adding new data to the existing map.
Secondly, the (non-)linear mapping onto m dimensions, based on the set R of
the size r, reduces its complexity both in the training and testing stage. For
an evaluation of a novel object, only r dissimilarities have to be computed, and
for the linear mapping O(mr) operations are needed, while for the Sammon
mapping, O(max (mr, r2)) operations are necessary in each iteration step.

Thirdly, the projections considered, allow for obtaining a spatial configura-
tion of the dissimilarity data, which can be beneficial for the classification task.
Our experiments with dissimilarity representations of the polygon and digit data
show that such spaces offer a possibility to build decision rules that significantly
outperform the NN method. Based on the set R consisting of 45% of the training
objects, the FLC, constructed in a projected space defined by the dissimilarities
to R only, reaches an error of 0.02/0.05, while the best NN rule makes an error
of 0.11/0.088 and makes use of all objects.

Next, the 2D spatial representations of dissimilarity data, obtained by the
linear and modified Sammon projections, resemble the original maps. A similar
structure is revealed in the data when R consists of 10% of objects, chosen by
the K-centers algorithm, as well as of all of them. These approaches are especially
useful when dealing with large datasets. In general, Sammon maps provide an
extra insight into the data and can be preferred for visualization. Our experience
shows also that the use of the K-centers is not crucial; what is important is the
choice of significantly different objects to represent the variability in the data.

Finally, the FLC built on the linear configuration yields about the same
(somewhat better) classification results as the FLC on the modified-Sammon
representation, but in a space of a larger dimensionality than for the nonlin-
ear case. However, since no iterations are involved for an evaluation of novel
examples, the linear projection can be recommended for the classification task.
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