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Abstract. Non-metric dissimilarity measures may arise in practice e.g.
when objects represented by sensory measurements or by structural de-
scriptions are compared. It is an open issue whether such non-metric
measures should be corrected in some way to be metric or even Eu-
clidean. The reason for such corrections is the fact that pairwise metric
distances are interpreted in metric spaces, while Euclidean distances can
be embedded into Euclidean spaces. Hence, traditional learning methods
can be used.
The k-nearest neighbor rule is usually applied to dissimilarities. In our
earlier study [12, 13], we proposed some alternative approaches to general
dissimilarity representations (DRs). They rely either on an embedding to
a pseudo-Euclidean space and building classifiers there or on construct-
ing classifiers on the representation directly. In this paper, we investigate
ways of correcting DRs to make them more Euclidean (metric) either by
adding a proper constant or by some concave transformations. Classi-
fication experiments conducted on five dissimilarity data sets indicate
that non-metric dissimilarity measures can be more beneficial than their
corrected Euclidean or metric counterparts. The discriminating power
of the measure itself is more important than its Euclidean (or metric)
properties.

1 Introduction

For learning purposes, objects can be described by dissimilarities to some chosen
examples. Such representations can be derived from raw (sensor) measurements,
e.g. images or spectra [10, 7], feature-based representations, e.g. for objects rep-
resented by mixed variables, or they can result from structural descriptions, e.g.
when objects are defined by strings or trees [2].

Assume a collection of objects, a representation set R :={p1, p2, . . . , pr} and
a dissimilarity measure d, capturing the notion of closeness between two objects.
d is required to be nonnegative and to obey the reflexivity condition, d(x, x)=0,
yet, it might be non-metric. A dissimilarity representation (DR) of an object
x is defined as a vector of dissimilarities between x and the objects of R, i.e.
D(x, R) = [d(x, p1), d(x, p2), . . . , d(x, pr)]. Hence, for a set of objects from T , it
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extends to a dissimilarity matrix D(T, R). The set R (R ⊆ T or R ∩ T = ∅),
consisting of representative objects for the domain, should be relatively small.

A direct approach to dissimilarities leads to the k-nearest neighbor (k-NN)
method. This rule is applied here to D (Tt, R), so test objects of Tt become mem-
bers of the class the most frequently occurring among the k nearest neighbors
from R. The k-NN rule can learn complex boundaries and generalize well for
large representation sets, yet, at high computational costs. In practice, it might
also be difficult to get a sufficiently large R to reach a satisfactory accuracy.
Moreover, the performance of the k-NN rule may be affected by presence of
noisy examples.

Alternative approaches to DRs can be more computationally advantageous
than the k-NN method, especially for a small R. The embedding approach builds
an embedded pseudo-Euclidean configuration such that the dissimilarities are
preserved. In the dissimilarity space approach, D(x, R) is considered as a data-
depending mapping to the so-called dissimilarity space, where each dimension
corresponds to a dissimilarity to a particular object from R [12]. Various classi-
fiers can be constructed in both embedded and dissimilarity spaces [11–13].

The k-NN method is often applied to metric distances, where based on metric
properties also fast approximating NN rules can be constructed; see e.g. [9]. Our
approaches to DRs can handle quite arbitrary measures. Still, an open question
refers to possible benefits of correcting a measure to make it metric or even
Euclidean [4, 14]. Metric or Euclidean distances can be interpreted in appro-
priate spaces, which posses many algebraical properties and where an arsenal
of discrimination functions exists. Here, we investigate some ways of making a
dissimilarity measure ‘more’ Euclidean (or ‘more’ metric) and the influence of
such corrections on the performance of some classifiers. We will show that the
corrected measures do not necessarily guarantee better performances.

2 Interpretations of the Dissimilarity Data

Embedding. Given any symmetric D(R, R), a configuration X can be found
such that the distances between the vectors of X reflect the original ones. In
general, a Euclidean space is not ‘large enough’ for such a distance-preserving
mapping, but a pseudo-Euclidean space is [5]. It is a (p+q)-dimensional non-
degenerate indefinite inner product space E :=R(p,q) such that the inner product
〈·, ·〉E is positive definite (pd) on Rp and negative definite on Rq. Therefore,
〈x, y〉E =

∑q
i=1 xiyi−

∑p+q
i=p+1 xiyi =xTJpqy,, where Jpq =diag (Ip×p;−Iq×q) and

I is the identity matrix. Consequently, d2
E (x, y)== 〈x−y, x−y〉E =d2

Rp(x, y)−
d2
Rq (x, y). Since E is a linear space, many inner product based properties can

be appropriately extended from the Euclidean case. Yet, the interpretations are
different [5, 11].

The inner product (Gram) matrix S of the underlying configuration X can
be expressed by using the square dissimilarities D∗2 = (d2

ij) as S = − 1
2JD∗2J ,

where J =I− 1
r11T [5, 13, 11]. So, X is determined by the eigendecomposion

of S =QΛQT =Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT , where |Λ| is a diagonal matrix of
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first decreasing p′ positive eigenvalues, then decreasing magnitudes of q′ negative
eigenvalues, followed by zeros. Q is a matrix of the corresponding eigenvectors. X
is then uncorrelated [5, 13] and represented in Rk, k=p′+q′, as X =Qk|Λk|1/2.
Since only some eigenvalues are large (in magnitude), the remaining ones, if
close to zero, can be disregarded as non-informative. By their removal, the data
are not only de-noised, but the curse of dimensionality is also avoided. So, the
reduced representation Xred = Qm |Λm|1/2, m = p+q < k, is determined by the
largest p positive and the smallest q negative eigenvalues. New objects D(Tt, R)
are orthogonally projected onto Rm; see [5, 13, 11] for details.

Inner product based classifiers can appropriately be redefined in a pseudo-
Euclidean space. A linear classifier f(x) = vTJpqx + v0 is e.g. constructed by
addressing it as f(x)=wT x + v0, where w=Jpqv; see also [5, 13, 11].

Dissimilarity Spaces. In a dissimilarity space, each dimension corresponds
to a dissimilarity D(·, pi). The property that dissimilarities should be small for
similar objects (belonging to the same class) and large for distinct objects, gives
a possibility for a discrimination. Thereby, D(·, pi) can be interpreted as an
attribute. This reasoning justifies the usage of traditional classifiers, e.g. linear
ones, built in dissimilarity spaces. They can outperform the k-NN rule since they
become more global in their decisions by making use of a larger training set T ,
while maintaining a small R. By using weighted combinations of dissimilarities,
such classifiers suppress the influence of noisy examples [12, 13].

3 Going More Euclidean or More Metric

The Gram matrix S = − 1
2JD∗2J is pd iff D is Euclidean [12, 11, 5]. If S has

negative eigenvalues, then D is non-Euclidean and a Euclidean configuration X
preserving the distances perfectly cannot be constructed. However, D can be
corrected to be Euclidean, which makes the corresponding S pd. Some possible
approaches to address this issue are [4, 14, 11]:

– Clipping - only p positive eigenvalues are considered yielding a p-dimensional
configuration X =Qp Λ

1/2
p . Now, after neglecting the negative contributions,

the resulting Euclidean representation overestimates the actual dissimilari-
ties.

– Adding 2τ - there exists a positive τ ≥ −λmin, where λmin is the smallest
(negative) eigenvalue of S, such that Dcorr =[D∗2 + 2 τ (11T −I)]∗1/2 is Eu-
clidean [6, 13, 11]. This means that the corresponding Scorr is pd. In practice,
the eigenvectors of S and Scorr are identical, but the value τ is added to the
eigenvalues, giving rise to the new diagonal eigenvalue matrix Λcor :=Λk+τ I.
The distortion is significant if τ is large. If reduced representations of a fixed
dimensionality are considered, different eigenvectors will be selected (based
on significant eigenvalues) for the original and corrected dissimilarities.

– Adding κ - there exists a positive κ≥λmax, where λmax is the largest eigen-
value of

[
On×n 2 S (D∗2)
−In×n −4 S (D)

]
, S(A) :=− 1

2JAJ , such that Dcorr =D+κ (11T−I)
is Euclidean [6, 13, 11]. The corresponding Gram matrix Scorr yields eigen-
vectors which are different than these of S.
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Fig. 1. The performance of the LDC for the Pen-angle dissimilarity data.

– Power/Sigmoid - there exists a parameter p such that Dp = (g(dij ; p)) is
Euclidean for a concave function g such as g(x)=xp with p<1 or a sigmoid
g(x)=2/(1+e−x/s)−1 [4, 11]. In practice, p is determined by trial and error.

These approaches transform D such that a Euclidean configuration X can be
found. It is, however, still possible that the corrections applied are less than
required for Euclideaness. In such cases, the measure is simply made ‘more’
Euclidean (hence, also ‘more’ metric), since the influence of negative eigenvalues
will become smaller after applying the above transformations.

4 Experiments

Five dissimilarity data sets are used in our study. The first two refer to DRs built
on the contours of pen-based handwritten digits [1]. All digits are represented by
strings of vectors between the contour points for which an edit distance with a
fixed insertion and deletion costs and with some substitution cost is computed.
The substitution costs such as an angle and a Euclidean distance between vectors
lead to two different DRs, denoted as Pen-dist and Pen-angle, respectively; see
also [2]. Here, only a part of the data of 3488 examples, is considered. The
values are also scaled by some constant to bound the dissimilarities. The digits
are unevenly represented; the class cardinalities vary between 334 and 363.
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Fig. 2. The performances of the LDC and RQDC for the Pen-dist dissimilarity data.

Another dissimilarity data set, consisting of 2000 examples evenly distributed
in ten classes, represents the NIST digits [15]. Here, the asymmetric similarity
measure, based on deformable template matching, as defined in [8], is used. Let
S = (sij) denote the similarities. The symmetric dissimilarities D = (dij) are
derived as dij =(sii+sjj−sij−sji)1/2 for i �= j and dii =0.

The last two DRs are derived for randomly generated polygons. They consist
of convex quadrilaterals and general heptagons. The polygons are first scaled and
then the Hausdorff and modified Hausdorff distances [10] between their corners
are computed. The two classes are equally represented by 2000 objects.

If a dissimilarity d is Euclidean, then for a symmetric D=(dij), all eigenvalues
λi of the corresponding Gram matrix S are non-negative. Hence, the magnitudes



1150 Elżbieta Pȩkalska et al.

Table 1. Non-Euclidean and non-metric aspects of some DRs. The ranges of rmm,
rneg and c indicate the smallest and largest values found for D(R, R), where |R| varies
between 30−500 or 10−200 for the digit and polygon data, respectively. As a reference,
the last two columns show the average and maximum dissimilarity for the complete
data.

DR rmm (in %) rneg (in %) c avr. dissim. max dissim.

Pen-angle [10.6, 12.2] [ 9.4, 24.1] [0.0, 0.3] 7.1 20.0
Pen-dist [13.8, 14.3] [14.2, 27.8] [0.3, 1.0] 4.0 12.5
NIST-matching [27.5, 35.5] [10.6, 35.5] [0.1, 0.5] 0.6 1.0
Polygon-hausd [13.0, 25.5] [ 5.4, 31.6] 0 1.2 3.1
Polygon-mhausd [ 5.0, 13.0] [ 1.8, 24.6] [0.0, 0.1] 0.7 1.6
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Fig. 3. The LDC performance for the NIST-matching dissimilarity data.

of negative eigenvalues manifest the deviation from Euclideaness. An indication
of such a deviation is given by rmm := |λmin|/λmax, i.e. the ratio of the smallest
negative eigenvalue to the largest positive one. The overall contribution of neg-
ative eigenvalues can be estimated by rneg :=

∑
λi<0 |λi|/

∑r
j=1 |λj |. Any sym-

metric D can also be made metric by adding a suitable value c to all off-diagonal
elements of D. Such a constant can be found as c = maxp,q,t |dpq +dpt−dqt|. A
smaller value making D metric was determined by us in a binary search. Ta-
ble 1 provides suitable information on the Euclidean and metric aspects of the
measures considered:
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– Pen-angle is moderately non-Euclidean and nearly metric.
– Pen-dist is both moderately non-Euclidean and non-metric.
– NIST-matching is highly non-Euclidean and highly non-metric.
– Polygon-hausd is highly non-Euclidean, yet metric.
– Polygon-mhausd is moderately non-Euclidean and slightly non-metric.

The experiments are repeated 50 times for representations sets of various
sizes and the results are averaged. |R| varies from 3 to 50 examples per class
(ten classes) for the digit DRs and from 5 to 100 examples per class (two classes)
for the polygon DRs. For each |R|, two cases for the training set T are consid-
ered: T = R or T consists of 100/200 objects per class for the digit/polygon
DRs, respectively. In the latter case, the ratio of |T |/|R| becomes smaller with
a growing |R|. The test sets consist of 2488/1000/3600 examples for the pen-
digit/NIST/polygon data, correspondingly. For each DR, the k-NN rule is con-
sidered, as well as the linear discriminant built in both embedded and dissim-
ilarity spaces. The embedding is derived from D(R, R), but additional objects
T\R, if available, are projected there and used for constructing classifiers. To
denoise the data and avoid the curse of dimensionality, the dimensionality of the
embedded space was fixed to 0.3|R|, so the dimensions corresponding to small
eigenvalues (in magnitude) are neglected. Also the principal component analysis
was applied in the dissimilarity space D(·, R) to reduce the dimensionality to
0.3|R|. In both cases, although the dimensionalities are reduced, the spaces are
still defined by all the objects of R.

Adding a constant to the dissimilarities or applying a concave transformation
preserves their order, hence it does not influence the k-NN rule. However, by
clipping (neglecting all negative eigenvalues in the embedding), the re-computed
Euclidean distances differ non-monotonically from the original ones, hence the k-
NN rule behaves differently. Also both embedded and dissimilarity spaces change,
so a linear classifier will change as well. (Adding a constant is not worth doing
in dissimilarity spaces, since a constant shift is applied to all Dij , but the self-
dissimilarity Dii =0. This is expected to worsen a classifier performance). In our
experiments, we study the influence of such corrections on the given measures
for various R. For this purpose, proper κ and τ guaranteeing Euclideaness are
chosen. Two concave transformations are considered: the square root (which
makes the measures close to Euclidean, yet still not Euclidean) and the sigmoid
with the slope s := avr(D(R, R)). Such measures are non-Euclidean, but less
than the original ones as judged by magnitudes of negative eigenvalues in the
embeddings.

The results of our experiments compare the averaged performance of the
linear discriminant (LDC) and 1-NN rule and the best k-NN rule. They are
presented in Fig. 1-5. The standard deviations (for all the data) reach on average
0.3% and maximally 0.8 − 1.4% for very small R. Due to lack of space, the
performance of the RQDC02 (regularized quadratic classifier with a relative
regularization of 0.2) is shown in Fig. 2 for the Pen-dist data only to indicate
that such a classifier can reach even better accuracy than the LDC. The notation
in figures refers to:
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Fig. 4. The LDC performance for the Polygon-hausd dissimilarity data.

– orig - original dissimilarities; no transformation applied.
– add κ/2τ - a constant added to the dissimilarities; makes D(R, R) Euclidean.
– sqrt/sigm - a square root/sigmoid transformation of the dissimilarities;

makes D(R, R) ‘more’ Euclidean.
– clip - only positive eigenvalues are used; a new Euclidean Deu is derived

from D.

The following general conclusions can be made by analyzing our results:

1. The correction by adding 2τ yields worse results than by adding κ (the former
results are missing on some plots since they are out of the given scales).

2. The LDC and the RQDC in (corrected or not) dissimilarity spaces perform
similarly or better than in pseudo-Euclidean spaces (compare right vs. left
columns in all the figures).

3. For larger T and smaller R, the LDC/RQDC in both embedded and dissimi-
larity spaces (original or transformed by a square root or a sigmoid function)
significantly outperform the k-NN and clip k-NN rules (bottom rows in all
the figures). For T =R, this phenomenon is much less pronounced; the k-NN
might even become somewhat better as observed for the Pen-angle data,
Fig. 1.

4. Concave transformations of dissimilarities have a minor effect on the
LDC/RQDC constructed in dissimilarity spaces. On the contrary, ’clipping’
can deteriorate their performance.
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Fig. 5. The LDC performance for the Polygon-mhausd dissimilarity data.

5. The LDC/RQDC built in pseudo-Euclidean spaces derived from concave
transformations of the dissimilarities may perform better than for the orig-
inal dissimilarities or than the LDC/RQDC built in Euclidean spaces ob-
tained from the corrections by clipping or by adding a constant. Still, the
results reached by the LDC/RQDC in dissimilarity spaces are comparable
or better.

5 Conclusions

If the k-NN is far from optimal for small representation sets, it can be signif-
icantly outperformed by linear (quadratic) classifiers built in both embedded
or dissimilarity spaces. Concave transformations of dissimilarities are somewhat
beneficial for classifiers in the embedded spaces, however, they may have no es-
sential effect in dissimilarity spaces. None of the transformations considered here
allows for reaching a considerably better performance than the results in orig-
inal dissimilarity spaces. However, the transformations may influence the error
and reject tradeoff [3]. We conclude that the potential advantages of imposed
Euclideaness are doubtful. It is simply more important that the measure itself
describes compact classes. This can be influenced by concave transformations
which aim at diminishing the relative effect of large dissimilarities and not by
making them really Euclidean or metric.
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9. F. Moreno-Seco, L. Micó, and J. Oncina. A modification of the LAESA algorithm
for approximated k-nn clasification. Pattern Recogn. Letters, 24(1-3):47–53, 2003.

10. Dubuisson M. P. and Jain A. K. Modified Hausdorff distance for object matching.
In 12th Int. Conf. on Pattern Recognition, volume 1, pages 566–568, 1994.
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