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Abstract. A common assumption made in the field of Pattern Recog-
nition is that the priors inherent to the class distributions in the training
set are representative of the true class distributions. However this as-
sumption does not always hold, since the true class-distributions may be
different, and in fact may vary significantly. The implication of this is
that the effect on cost for a given classifier may be worse than expected.
In this paper we address this issue, discussing a theoretical framework
and methodology to assess the effect on cost for a classifier in imbalanced
conditions. The methodology can be applied to many different types of
costs. Some artificial experiments show how the methodology can be
used to assess and compare classifiers. It is observed that classifiers that
model the underlying distributions well are more resilient to changes in
the true class distribution than weaker classifiers.

1 Introduction

Many typical discrimination problems can be expressed as a target versus non-
target class problem, where the emphasis of the problem is to recover target
examples amongst outlier or non-target ones. ROC analysis is often used to eval-
uate a classifier [9], depicting the operating characteristic in terms of the fraction
of target examples recovered (True Positive rate or T P,), traded off against the
fraction of non-target examples classified as target (False Positive rate or F'P,).
The ROC curve is a useful tool to optimise the trade-off between T P, and F'P,.
A loss matrix is often applied to these types of problems in an attempt to specify
decision boundaries well suited to the problem, as discussed in [2], and [1]. Both
TP, and FP, are invariant to changes in the class distributions [10].

TP, and FP, are not always the only costs used in assessing classifier per-
formance. Some applications are assessed with other cost measurements, typical
ones including accuracy, purity/precision, and recall, discussed in [6], and [8].
An example of this could be in automatic detection of tumours in images, where
a human expert is required to make a final decision on all images flagged by the
classifier as target (called the Positive fraction or POS frac). In this applica-
tion we could expect the number of target images (images actually depicting a
tumour) to be less abundant than non-target images, and consequently the recog-
nition system would be expected to minimise the amount of manual inspection
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Fig. 1. Scatter diagrams to illustrate the example for balanced training conditions (left
plot), but where the true class distribution is imbalanced (a prior of % with respect
to the target class simulating a real class distribution), shown in the right plot. Data
is generated by the Highleyman distribution as in [4], proposed in [7].

required by the expert post-classification. A high POS frac would result in an
inefficient automatic system, resulting in a high manual cost. Cost-based mea-
surements such as POS frac and purity are dependent on true class distributions
(as opposed to TP, and FP,) [5]. In some cases the actual distributions may
be impossible to estimate or predict, implying that these costs may vary. It has
been found that when non-target classes outnumber target classes, the effect
on the costs of interest may be worse than expected [11], [8]. An example of
this is shown in Figure 1 — here a balanced dataset is used for training (equal
priors), but the right plot depicts the situation that arises when the true class
distribution differs. Here the absolute number of non-target examples misclassi-
fied as target becomes comparable to the number of target examples correctly
classified.

In this paper we discuss the evaluation with respect to cost of two-class dis-
crimination problems between target and non-target classes in which the true
class distribution is imbalanced and may vary (i.e. the abundance of examples
for the two classes differ, called skewing). This is an important practical question
that often arises, discussed and demonstrated here using synthetic examples in
which the costs can easily be understood and compared. The objective is to for-
mulate a procedure for evaluating classification problems of this nature. We show
that in some situations where the true class distribution is extremely skewed in
favour of the non-target class, the costs measurements could degrade consider-
ably. As an example of how the proposed rationale can be applied, we choose
two costs that are important to many applications, namely TP, and POS frac.
Their relation is computed in conjunction with the ROC curve. These POS frac
representations can be used to quickly, intuitively, and fairly, assess the outcome
of the classifier for a given class distribution, or for a range of hypothetical class
distributions (if it is unknown or varying). In a similar way, Purity or another
cost measure could be used as part of the assessment procedure.

This paper is organised as follows: Section 2 introduces a theoretical frame-
work, and shows how a classifier for the target versus non-target problem can
be evaluated, discussing the construction of operating characteristics for the
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Fig. 2. A representation of the classification scheme discussed in this paper, showing
a 2-class problem between a target and non-target class.

two costs emphasised here, namely TP, and POS frac. Section 3 consists of a
discussion of the effect that skewed class-priors can have on the costs. A few
experiments are performed in section 4 to illustrate the concepts discussed in
the paper, showing direct application of the proposed methodology. Conclusions
are given in section 5.

2 Classifier Evaluation between Two Classes

2.1 Notation and Problem Formulation

Consider the representation of a typical classification problem in Figure 2. Here
it can be seen that a trained classifier analyses each incoming example, and
labels each one as either positive (POS) or negative (NEG).

After classifying objects, four different object classifications can be distin-
guished (see Table 1). Data samples labeled by the tested classifier as target
(the POSfrac) fall into two categories: true positives TP (true targets) and
false positives F'P (true non-targets). Corresponding true positive and false pos-
itive ratios T'P, and F' P, are computed by normalising TP and F'P by the total
amount of true targets N; and non-targets N,, respectively.

Table 1. Defining a confusion matrix.

estimated labels

target| non-target
true labels  target TP FN
non-target| FP TN

Data samples labeled by the classifier as non-target also fall in two categories,
namely true negatives TN and false negatives F'N. Note that TN, =1 — FP,,
and FN, = 1 — TP,. The examples labeled by the classifier as target are de-
noted POS, and those classified as non-target are denoted N EG. The fraction of
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objects which are positively labeled is the ‘Positive Fraction’, POS frac, defined
in equation 1.

POS POS 1)
N  POS+NEG (
where N is the total number of objects in the test set. The fraction of ex-
amples in the POS output of the classifier that are really target is called the
purity/precision of the classifier, defined as Purity = g—(%. TP, can be written
as (TP, = TPZ%), and is equivalent to Recall. A TP, of 90% implies that 90%
of all the target objects will be classified positive by the classifier (classified in
the left branch in Figure 2). The POS frac tends to increase with T P, for over-
lapping problems, indicating a fundamental trade-off between the costs. If P(C})
is very low it would be expected that the POS frac will be very small. However
it will be shown in the experiments that this is not always the case — overlapping
classes and weak classifiers can result in a very undesirable POS frac, depending

on the operating condition.

POS frac =

2.2 ROC Analysis and POS frac Analysis

Given a two class problem (target vs non-target), a trained density-based clas-
sifier and a test set, the ROC curve is computed as follows: the trained classifier
is applied to the test set and the aposteriori probability is estimated for each
data sample. Then, a set of thresholds © is applied to this probability estimate
and corresponding data labelings are generated (this can be conceptualised as
shifting the position of the decision boundary of a classifier across all possibil-
ities). The confusion matrix is computed between each estimated set of labels
and the true test-set labeling. The ROC curve now plots the T'P,. as a function
of the F'P, (see the left plot in Figure 3).

Note that the ROC curve is completely insensitive to the class priors, de-
pending only on the class conditional probabilities. When the prior of one of the
classes is increased (and therefore the probability of the other class is decreased),
both the TP, and the F'P, stay exactly the same (for a fixed classifier), although
the absolute number of target and non-target objects change. Costs dependent
on class distribution such as POS frac are considered, the ROC curve alone is
not sufficient to assess performance.

In order to compute the corresponding POS frac operating characteristic for
the classifier, the same set of thresholds © are used. Equation 1 can be written
as equation 2, which can then be posed in terms of the ROC thresholds as in
equation 3.

TP+ FP TP+ FP TP.Ny+ FP.N,
P = = = 2
05 frac N TP+ FP+FN+TN N 2)
TP.(©)Ny+ FP.(O)N,,
POS frac(e) = T O ITO) (3)
Similarly the Purity cost can be derived as in Equation 4.
TP(O TP.(O)N,
Purity(©) = ©) = O)N: (4)

- TP(O)+FP(©) TP.(O)N;+ FP.(O)N,
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Fig. 3. ROC and POS frac plots for a linear discriminant classifier applied to High-
leyman data, where P(C;) = 0.1. Plots are made with respect to the target class.

3 The Effect of Class Imbalance on Classifier Performance

POS frac and Purity are two costs that are dependent on the skewness (im-
balance) of the true class distribution. Define the true prior probability for the
target class as P(C}), and for the non-target class as P(C,,). Equations 3 and 4
can be written in terms of prior probabilities as shown in equations 5 and 6 re-

spectively. Note that P(C;) = %, P(Cy) = %, and i((g;”)) = IJ\\[,—;L = skewratio.

TP.(O)N, , FE,(O)No _ ,

POS frace(6) = — & (C)TP.(0)+P(Cy)FP.(O) (5)
. _ TP.(0)
Purity(€) TP,(6) + HEL FP.(O) ©)

Interestingly it is clear from equation 5 that the POS frac tends to F'P, as the
skew ratio increases, and thus for extremely low P(C}) the ROC representation
could be used alone in depicting the trade-off between costs. Now given an actual
class-distribution and an operating condition, the POS frac and Purity can be
calculated. For example, the corresponding ROC and POS frac curves for the
example in Figure 1 is shown in Figure 3 for a linear discriminant classifier.
Here P(C;) = 0.1. It can be seen that for this condition, a TP, of 80% would
result in a POS frac of just under 30%. However, it could be that the exact class
distribution is not known, and in fact sometimes the class distribution can vary
from very small to extremely high levels. In these cases it can still be possible
to evaluate and compare classifiers by investigating the operating characteristics
across a range of priors in implementation. For example in the overlapping class
problem in Figure 1, if the actual class distribution is completely unknown, it
could be of value to investigate the T'P,. and POS frac operating characteristic
for a range of operating conditions. In Figure 4 the operating characteristic is
shown for P(C;) = 0.5, 0.1, and 0.001. The results for the linear classifier are
shown in the left plot (the ROC plot remains constant as in the left plot of
Figure 3). The right plot then shows the operating characteristic for a quadratic
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Fig. 4. POS frac plots for a linear discriminant (left plot) and quadratic discriminant
(right plot) classifier applied to Highleyman data, where P(C:) = 0.5, 0.1, and 0.001.
The values on each curve represent different true class distributions.

classifier under the same conditions. It is clear that this classifier is much more
resilient to changes in the true class distribution. Clearly as the linear classifier
reaches a TP, of 75% for a POS frac of 0.1, the quadratic classifier is substan-
tially better at over 90%. Considering the case at which the classifiers are set
to operate at a T'P,. of 80%, a balanced dataset results in a POS frac of 54.9%,
and a Purity of 77.9% for the linear classifier. These may be acceptable results.
However when the class distribution changes such that P(C;) = 0.01 (1 example
in 100 is a target) the results become much worse. Whereas it could be expected
that the POS frac should also drop by two orders of magnitude since the priors
did so, for the linear classifier the POS frac only dropped to 24.8%. Conversely
the quadratic classifier shows much better performance and resilience to changes
of the true class distribution (in this case).

The simple example discussed shows that even if the true class distribution
is unknown (or varies), two classifiers can still be compared to an extent. This
becomes more useful when the underlying structure of the data is unknown and
the choice of classifier less obvious. One example of this type of problem is in the
field of geological exploration where the prior probabilities of different minerals
change geographically, and often only a range of true class distributions is known.

4 Experiments

A number of experiments on artificial data are carried out in order to illustrate
the effect (and indeed severity) that skewed data can have on costs in a number
of situations. Four different classifiers are implemented for each data set, trained
using a 30-fold cross-validation procedure. Each classifier is trained with equal
training priors. For each classifier an ROC plot is generated such as in Figure 3,
as well as the T'P, versus POS frac relation for the same thresholds as the ROC
plot, generated for the following class distributions (as in Figure 4): P(C) =
0.5, 0.1, and 0.001. Thus each classifier is assessed from the case of balanced
class distribution, to cases where the sampling is extremely skewed. In order to
easily compare results a case study is performed for each classifier to estimate
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Fig. 5. Scatter diagrams of the 2-class experiments (the Highleyman plot is shown in
Figure 1).

the effect on cost when the TP, operating condition is fixed at 80% (in the
same way POS frac or Purity could be used as the independent variable as
the specification for the classifier). This allows each classifier to be compared
easily, but still keeping cognisant that the results are for a specific operating
condition only!. Note here that the objective of the classifier is to maintain
the specified TP,, and at the same time minimise the POS frac (and in some
cases it could be more important to maximise Purity, but they are inversely
dependent, i.e. a low POS frac results in a high Purity, since it can be shown

_ TP __1
that POS frac = -3 Purity)'

The following classifiers are trained and evaluated for each data set: Lin-
ear Discriminant (LDC), Quadratic Discriminant (QDC), Mixture of Gaussian
(GAUSSM), trained using the standard Expectation-Maximisation procedure,
and the Parzen Classifier, as in [3] where the width parameter is optimised by
maximising the log-likelihood with a leave-one-out procedure. The classifiers
range from low to high complexity, the complex ones hypothetically capable
of handling more difficult discrimination problems. These are all density-based
classifiers, capable of utilising prior-probabilities directly, and can be compared
fairly. The datasets are illustrated in Figure 5, corresponding to the following
experiments, where 1500 examples are generated for each class: TwoGaussians
with two overlapping homogenous Gaussian classes with equal covariance ma-
trices and a high Bayes error is high at around 15.3%; Highleyman consisting
of two overlapping Gaussian classes with different covariance matrices according
to the Highleyman distribution (as in the prtools toolbox [4]); Multimodal, a
multi-modal dataset with two modes corresponding to the first class, and three
to the second; Lithuanian where two rather irregular classes overlap. All are
computed under the prtools library [4].

4.1 Results of Experiments

For conciseness only the case study results are presented, showing the effect on
POS frac cost for a single operating point, across a number of different class
distributions. However the ROC and POS frac representations for the linear
classifier in the Highleyman experiment have been shown before in the left plots

LA different operating point could for example be in favour of a different classifier.
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Table 2. POS frac results (with standard deviations shown) for the four data sets,
where the classifiers are fixed to operate to recover 80% of target examples. Results

are shown for three different class distributions.

Experiment |P(C;)|LDC QDC MOGC PARZEN
TwoGaussians|0.5 46.08 + 0.51%(45.99 + 0.50%(47.86 + 0.77%|45.58 £+ 0.54%
0.1 18.94 £ 0.92%]18.78 4 0.90%22.14 + 1.38%]|18.05 + 0.98%
0.001 {12.22 £ 1.02%]12.05 4= 1.00%|15.78 4+ 1.53%|11.24 + 1.08%
Highleyman (0.5 52.14 4+ 1.23%|40.00 % 0.00%|40.00 + 0.00%40.00 £ 0.00%
0.1 29.85 4+ 2.22%)]|8.00 & 0.00% |[8.00 + 0.00% [8.00 &+ 0.00%
0.001 {24.33 £ 2.46%]0.08 £ 0.00% [0.08 & 0.00% [0.08 & 0.00%
Multimodal |0.5 69.00 + 1.06%(50.25 + 0.94%(41.20 + 0.22%40.93 + 0.21%
0.1 60.21 + 1.90%(26.46 + 1.68%10.15 £ 0.40%9.68 + 0.38%
0.001 |58.03 £ 2.11%]20.57 & 1.87%](2.47 & 0.45% |1.94 & 0.42%
Lithuanian 0.5 46.81 + 0.81%(42.10 + 0.33%(40.16 + 0.04%|40.06 £ 0.04%
0.1 20.26 + 1.45%|11.77 + 0.59%|8.28 + 0.07% [8.11 + 0.07%
0.001 {13.68 & 1.61%]4.27 £ 0.65% [0.39 & 0.08% [0.21 & 0.08%

of Figures 3 and 4 respectively. Table 2 shows the POS frac results for the three
different class distributions for the chosen operating point. In the TwoGaussians
all the classifiers show an extreme effect on cost as the skewness is increased.
The POS frac remains above 10% even when the distribution is such that only
one example in a thousand are target. Here the overlap between the classes does
not allow for any improvement (a high Bayes error). In the Highleyman experi-
ment it can be seen that only the linear classifier is severely affected by different
class distributions for the given operating condition. This experiment suggests
that an inappropriate or weak classifier can be disastrous in extreme prior con-
ditions, even though it may have seemed acceptable in training (classifiers are
often trained assuming balanced conditions). The Multimodal experiment pre-
sented a multimodal overlapping problem, and as expected the more complex
classifiers fared better. Whereas the linear and quadratic classifiers showed a
POS frac of over 20% with extreme priors, the mixture-model and parzen clas-
sifiers performed a lot better. Similar results were obtained in the Lithuanian
experiment.

5 Conclusion

This paper discussed the effect of imbalanced class distributions on cost, con-
centrating on 2-class problems between a class of interest called a target class,
and a less interesting non-target class. A methodology was proposed in order to
compare classifiers with respect to cost under conditions in which training con-
ditions are fixed (often balanced), and true class distributions are imbalanced or
varying.

It was shown that even though costs such as the true and false positive rates
are independent of the true class distributions, other important costs such as
POS frac and Purity are dependent on it. Thus for these types of problems we
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proposed that in addition to traditional ROC analysis, a similar analysis of the
other costs should be made simultaneously, evaluating the effect of a changing
class distribution.

Following some simple experiments, it was observed that in some cases,
classifiers that appeared to perform well on balanced class distribution data
failed completely in imbalanced conditions. Conversely some classifiers showed
resilience to the imbalance, even when extreme conditions were imposed. Thus
we conclude that especially in cases in which the underlying data structure is
complex or unknown, an analysis of the effect of varying and imbalanced class
distributions should be included when comparing and evaluating classifiers.
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