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Abstract. High-resolution spectroscopy is a powerful industrial tool.
The number of features (wavelengths) in these data sets varies from sev-
eral hundreds up to a thousand. Relevant feature selection/extraction
algorithms are necessary to handle data of such a large dimensional-
ity. One of the possible solutions is the SVM shaving technique. It was
developed for applications in microarray data, which also have a huge
number of features. The fact that the neighboring features (wavelengths)
are highly correlated allows one to propose the SVM band-shaving algo-
rithm, which takes into account the prior knowledge on the wavelengths
order. The SVM band-shaving has a lower computational demands than
the standard SVM shaving and selects features organized into bands.
This is preferable due to possible noise reduction and a more clear phys-
ical interpretation.

1 Introduction

In pattern recognition, objects are usually described by a number of features. Not
all of them are equally informative for the problem at hand. Therefore, feature
selection is an important step in solving a classification problem. It simplifies the
classification task offering a faster and cheaper solution and, moreover, it allows
to improve the classification performance by avoiding the curse of dimension-
ality. Feature selection methods can be divided into two groups: a) univariate
approaches, where each single feature is tested for its ability to discriminate
between classes and b) multivariate approaches, where all features are ranked
according to some criterion, which takes all of them into account at once. Uni-
variate approaches are simple to implement, but multivariate approaches give
better results as they take into account the feature dependences.

Recently, a number of feature selection methods under the name of ‘shaving’
have been developed. Among them there are the SVM shaving [1] and the PCA
shaving [2, 3]. Shaving approaches are similar but not equivalent to the backward
feature elimination technique. In general, shaving algorithms remove a small
portion of features at each step based on some criterion calculated on all the
features available at that moment. During the backward feature elimination, an
importance of each feature is estimated according to a criterion calculated on the
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feature set present at that moment but this particular feature. The backward
feature elimination algorithm should theoretically provide better results than
shaving. Yet, the shaving approach is much faster, while it is still able to provide
a good solution.

Originally, shaving methods were applied to the microarray data. It has been
shown that shaving techniques are useful in finding a small group of features
(genes) significant for discrimination in high dimensional microarray data [1–
3]. In our research, we are dealing with the problem of spectra classification.
Based on the number of channels in the spectrometer, the feature sizes may
vary from several hundreds up to a thousand. It is natural to try to apply these
methods to the high-resolution spectral data. However, there is an important
difference between the spectral data and gene arrays. In spectroscopy, neighbor-
ing features (wavelengths) are often highly correlated (more than 90 percent). It
makes shaving methods first detect these correlations and only then the actual
feature selection starts. In the case of small training set, the estimation of the
local correlations may be very imprecise. This leads to a waste of the computa-
tional time and it may also result in loss of important features. The outcomes
of shaving methods are the sets of original features. However, it is more natural
for spectroscopy to select continuous bands of wavelengths and derive (possi-
bly weighted) average representative feature from each band. Such features are
easily interpretable from the physical point of view and also more robust to a
change of the measurement device.

Another family of feature extraction/selection approaches under the name of
GLDB was proposed in [4]. There, the neighboring wavelengths are combined
into one feature based on log-odds class posterior probabilities (top-down ap-
proach) or on a product of the Fisher criterion and correlation between the
features (bottom-up approach). Although these methods take features depen-
dencies into account, all the criteria are applied to the each single region of
wavelengths. Thus this family of methods is not fully multivariate.

In this paper, we propose a use of modification of the SVM shaving algo-
rithm, SVM band-shaving, which makes use of specific properties of spectral
data. Briefly, we combine neighbouring wavelengths into bands at first and then
apply the shaving algorithm to them. The paper is organized as follows. In the
section 2 we shortly describe the SVM shaving algorithm and our modification
of it. Then, in section 3 we present the results of numerical experiments and we
summarize with a short conclusion in section 4.

2 Shaving Algorithms

All shaving algorithms rely on a computation of the ranking vector w ∈ Rd,
where d is the number of features. The absolute value of the element w(i) esti-
mates the importance of i-th feature e.g. for a discrimination task. After remov-
ing the least important feature or some portion of such features, the algorithm
recalculates the weight vector for the reduced feature set. Recalculation on the
data set with reduced dimensionality is desirable or even necessary, since the
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algorithm starts from the complete set of features, for which the estimated im-
portance values can be very imprecise due to the curse of dimensionality. The
algorithm continues the reduction of feature set size until the specified number of
features is reached. It is also possible to estimate the classification error at each
step on the current feature set and choose the one which offers a good tradeoff
between the small number of features and an acceptable classification error.

It is possible to use as a ranking vector the weight vector w of a linear
classifier

f(x) = sgn((w, x) + b) (1)

In [1], the usage of the SVM classifier was proposed due to its reputation of
being robust to the curse of dimensionality and being able to provide better
estimations at early steps of shaving.

In [1], the SVM shaving was applied to microarray data. The relations be-
tween gene expression levels are either unknown or very complicated. In our
case, we have extra prior information about spectra: the order of the features
(wavelengths) is meaningful. The spectral values of the neighboring features are
typically highly correlated (of course, this is only true for data with a sufficiently
high spectral resolution). We use the word connectivity to name this property of
spectral data sets.

The use of any additional information about a data set is similar to (but
more specific than) regularization and in a similar way can help to reach better
generalization abilities. In this article, we propose a modification of the SVM
shaving technique which takes into account connectivity in the feature set. First
we combine features into continuous groups (bands). For this purpose, we use
absolute values |w(i)| of the weights w(i) obtained by training linear SVM on all
the features. The bands are separated from each other by local minima of |w(i)|.
To find local minima we estimate the first and the second derivates of |w(i)| using
Savitsky-Golay filter [6] with the second order polynomials. By averaging data
in each band we create a new feature set to which the standard SVM shaving
algorithm will be applied. The small number of features in the new feature set
allows us to remove them one by one instead of removing some percentage of
them. In all cases we use the ν-SVM algorithm [5], because its parameter ν has
a more convenient interpretation (the estimation of the classification error) than
the parameter C of the standard C-SVM algorithm.

As input parameters of the algorithm, additionally to the ν parameter of
SVM, the minimum number of bands (stopping criterion) and the size of smooth-
ing window for Savitsky-Golay filter should be specified. The selection of the
meaningful minimum number of bands is a matter of the experiment and can
be only roughly estimated beforehand e.g. as the number of significant principal
components. It is worth to notice that classes can overlap substantially for the
small numbers of bands which leads to the long execution times of SVM routines.
All these problems are also present in the standard SVM shaving. The size of
smoothing window should be selected as a largest interval on which |w(i)| (or
spectra themselves) can be well fitted by the second order polynomials for any i.
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The pseudo-code of the proposed algorithm is presented below:

Input:
the training data set D,
the complete feature set F,
the parameter ν of the ν-SVM classifier,
minimum number of bands min bn,
maximum smoothing window size max ws.

Output:
the sequence of feature sets F1 ⊃ ... ⊃ Fn.

Algorithm:

1. Calculate the weight vector w for the full feature set F
using ν-SVM algorithm.

2. Calculate the absolute values of the weight vector elements
wa(i) = |w(i)|.

3. Find the set of bands B = {b1, ..., bm} which are separated by the
minima in wa(i). Use Savitsky-Golay [6] algorithm with the
second order polynomials and with the smoothing window less or
equal to max ws to estimate the first and the second
derivatives of wa.

4. Create a new feature set F1 such that each feature z(i) is a
signed mean value of features x(j) which belong to the band bi.

z(i) =
1
|bi|

∑

j∈bi

sgn(w(j)) ∗ x(j) (2)

5. Perform the standard SVM shaving (using ν-SVM algorithm) on F1

removing each time one band producing the sequence of feature
sets F1 ⊃ F2... until no more than min bn bands left.

One can use a validation data set to estimate the classification error on the
resulting sequence F1 ⊃ ... ⊃ Fn to judge which subset has the smallest number
of bands while yielding a suitable performance.

3 Numerical Experiment

For a demonstration of our algorithm we use the data from the CD of [7]. This
is a 191-channel airborne multispectral scanner data set which contains a hy-
perspectral image of Washington DC Mall. The sensor system used in this case
measured a response in 0.4 to 2.4 µm region of the visible and infrared spec-
trum. The task is to discriminate between seven classes of pixels: Roofs, Roads,
Paths, Trees, Grass, Water and Shadows. We demonstrate our algorithm on the
Roofs/Paths classification. For our calculations we have selected 30 spots of each
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Fig. 1. Upper plot: lower and upper quartiles (25% and 75% levels of a distribution) for
each wavelength for both classes. Radiance units are arbitrary. Bottom plot: absolute
values of the weights w(i) resulting from training of the SVM classifier on a feature set
containing all 191 wavelengths.

class. Each spot consists of 9 pixels. The spots were manually selected to guar-
antee a representative examples and placed faraway from each other. We used a
5-fold cross-validation to estimate classification errors. The parameter ν = 0.05
of ν-SVM algorithm was selected after a few probe runs and proved to be a good
choice. The values of ν greater than ν = 0.05 lead to larger classification errors
due to the insufficient penalizing of the classification error. At smaller values,
the solutions of the SVM problem start to show early signs of overtraining with
the decreasing of the number of features in the shaving procedure. This happens,
because in low dimensional data sets classes start to overlap, so unreasonably
high penalization of margin errors (ν is much smaller than Bayes error) leads to
narrow margin and a bad generalization ability. See [8] for more details.

In Fig. 1, the spectra of both classes are shown, as well as the result of SVM
applied to the non-reduced feature set. After a few experiments, we have selected
the upper limit for the smoothing window max ws = 11. The result of the band
extraction is shown in Fig. 2.
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Fig. 2. Absolute values of the weights w(i) after the step 4 of the SVM band-shaving
algorithm (band extraction). The cumulative weight of each band is equally distributed
among features from this band.
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Fig. 3. The classification errors for the feature sets selected by shaving algorithms. The
x-axis represents the number of effective features, i.e. the dimensionalities of spaces in
which classifiers were trained and tested.

The total classification errors on the feature sets selected by the standard
SVM shaving and the SVM band-shaving are shown in Fig 3. Both methods
start from the same entire feature set (191 original features). Then, the standard
procedure gradually removes the least important features by portions of 5% of
the remaining features. The classification error remains almost the same during
the shaving. It reaches minimum at 49 features. The number of features equal to
6 seems to be an optimal choice because of a significant dimensionality reduction
(from 191 to 6 features) and still a low classification error.

The absolute values of weights w(i) of the SVM trained on the selected 6
features are shown in Fig. 4. The classification performance for the number of
features less than 4 is very bad due to overlap.
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Fig. 4. Absolute values of SVM weights w(i) which are the result of the training SVM
classifier on a feature set containing 6 features selected by the SVM shaving procedure.
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Fig. 5. The absolute values of SVM weights w(i) trained on 5 bands selected by SVM
band-shaving. The weight of each band is equally distributed among features from this
band.

The SVM band-shaving immediately jumps from the entire feature set to
a feature set containing only approximately 10 features. This number varies
slightly in each cross-validation run. The results suggest that only by combining
the features into the bands, the classification performance can be improved.
Moreover, this performance can be better than one of a classifier trained on
the same number of features selected by the standard procedure. During the
removing the least important bands, the classification error becomes smaller. It
reaches the minimum at the number of bands equal to 5 (see Fig. 5). At lower
numbers of bands results show the clear signs of a substantial overlap between
classes.
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4 Conclusion

We proposed a variant of the SVM shaving algorithm, the SVM band-shaving,
which takes into account the connectivity property of the spectra. The conducted
experiment shows that our algorithm may outperform the standard SVM shaving
technique. The SVM band-shaving removes the whole band at once. Thus the
number of retrainings of the classifier is smaller than in the standard SVM
shaving procedure. On the other hand, our algorithm requires the specification of
an additional parameter: the maximum size of smoothing window. A few runs of
the whole procedure or an expert knowledge on the nature of data are necessary
to select a proper value of this parameter. It is also worth to mention that 5 bands
selected by the SVM band-shaving contain in total about 90 original features
(wavelengths). So the application of some band shrinking algorithm would be
useful. Our results, although preliminary, are very encouraging. We plan to study
these techniques further on and apply them to other data sets.
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