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Abstract. Pairwise proximities describe the properties of objects in
terms of their similarities. By using different distance-based functions
one may encode different characteristics of a given problem. However, to
use the framework of statistical pattern recognition some vector repre-
sentation should be constructed. One of the simplest ways to do that is
to define an isometric embedding to some vector space. In this work, we
will focus on a linear embedding into a (pseudo-)Euclidean space.

This is usually well defined for training data. Some inadequacy, how-
ever, appears when projecting new or test objects due to the resulting
projection errors. In this paper we propose an augmented embedding
algorithm that enlarges the dimensionality of the space such that the
resulting projection error vanishes. Our preliminary results show that it
may lead to a better classification accuracy, especially for data with high
intrinsic dimensionality.

1 Introduction

Pattern recognition relies on the description of regularities in observations of
classes of objects. How this knowledge is extracted and represented is of im-
portance for learning. Representations which are alternative to feature-based
descriptions should be studied as they may capture different characteristics of a
problem we want to analyze [1,4].

An example of such a representation is a proximity representation, where
every object is described by some continuous nonnegative symmetric function
of two variables. Learning from such representations relies on embedding of the
proximity data into some vector space. It is usually desirable to find a mapping
such that the initial topology is preserved as much as possible. The simplest
way to do that is to construct an isometric mapping, which preserves all given
distances.

However the broad range of proximity functions, satisfying only the conditions
described above, may not allow one to construct an isometric embedding into
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Euclidean space. In that case one needs to look for a more general space, with
smaller number of restrictions. The solutions might be to design a mapping into
pseudo-Euclidean space.

Embedding algorithms are usually defined on the basis of some representation
objects, called prototypes. The projection accuracy for new data is proportional
to the number of dominated intrinsic dimensions, described by them. If one has
sufficient amount of prototypes, the projection error is of a little significance.
But, if the cost to get more data for a space representation is very high, aug-
mented embedding might be a good solution. It reconstructs given proximity
information by means of one (Euclidean) or two (pseudo-Euclidean) extra di-
mensions. Nevertheless, it does not help much in cases when data has large
intrinsic nonlinearities, since it is based on a global linear projection.

The paper is organized as follows. In section 2, a linear embedding of distance
data into a pseudo-Euclidean space is presented. In section 3 augmented embed-
ding for proximity data is presented. Data sets with experiments are described
in Section 4. Conclusions are presented in Section 5.

2 Linear Embedding in (pseudo-) Euclidean Spaces

In this section we focus on linear isometric embedding of distance-based infor-
mation into pseudo-Euclidean spaces. The results also hold for Euclidean cases,
i.e. when the Gram operator derived from distances is positive definite, and co-
incide with the classical scaling [7,8]. The technique described in this chapter is
standard and can be found in [1,4].

The formalism is as follows. Suppose we have a pair (X, d), where X is a finite
set of n elements equipped with a pairwise continuous non-negative symmetric
distance functions dij . These distance functions define a matrix D of size n × n.

Having these properties of proximity functions, the whole finite representation
D can be embedded into pseudo-Euclidean space.

By definition, a pseudo-Euclidean space R
(p+q) [4] of signature (p, q) is a pair

(V,Φ), where V is a vector space under the field of real numbers of dimension
(p + q) and Φ is a non-degenerate symmetric bilinear form, which represents
the generalized inner product in V . Given an orthonormal (w.r.t Φ) basis e =
(e1, e2, · · · , en), the generalized inner product between two vectors in x,y ∈ V
is expressed as

〈x,y〉pq =
p∑

i=1

x(i)y(i) −
p+q∑

j=p+1

x(j)y(j). (1)

Any pseudo-Euclidean space admits a decomposition into a direct orthogonal
sum of two non-commensurate Euclidean subspaces of dimensions p and q re-
spectively, i.e. R

(p+q) = R
p �R

q. The inner product is positive definite in R
p and

negative definite in R
q. The pseudo-Euclidean space corresponds to a Euclidean

space in case of q = 0.
From the definition it is clear that the notion of inner product in pseudo-

Euclidean spaces is relative, since its is not necessary positive definite and the
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square-distance, defined as ‖x − y‖2 = 〈x − y,x − y〉 = (x − y)T Jpq(x − y) can

be negative. Here, Jpq =
(
Ip×p 0

0 −Iq×q

)
is the canonical matrix of the symmetric

bilinear form, corresponding to the orthogonal (w.r.t Φ) basis e = (e1, e2, · · · , en)
of V and I represents an identity matrix.

Based on linear relations between square pseudo-Euclidean distances D2 =
(d2

ij) and inner products in R
(p+q) space [4], one can write:

D2 = diag(G)1T + 1diag(G)T − 2G, (2)

where 1 is a column vector of ones and G is a Gram operator, defined as:

G = XJpqXT . (3)

Here, X is a matrix of object coordinates in that space.
Assuming that only distances between a set of objects are given, the sought

coordinates can be determined based on the relations between distances and in-
ner products, as presented above. Note that having found one set of coordinates,
another one can be created by a rotation and(or) a translation.

The mapping is constructed such that the origin coincides with the mean of
X. It is done by using a centering matrix J = I− 1

n11T . So, G = − 1
2JD2J. The

underlying configuration X can be found as an eigendecomposition:

G = Q|Λ|1/2 ( Jpq

0

)
|Λ|1/2QT , (4)

where Λ is a diagonal matrix of the first decreasing p positive and q negative
eigenvalues (k = p + q), followed by zero(s). Q is a matrix of the corresponding
eigenvectors. Consequently,

X = QkΛ
1
2
k PT , k ≤ n, (5)

where only k eigenvectors are taken into account. Here, P is some matrix, which
brings the unique solution by fixing the rotation and satisfying the constraint:

PJpqPT = Jpq. (6)

X in a k-dimensional space is determined from the matrix D. If k � n then a
smaller D could be used to determine this k-dimensional space. The projections
of new objects, represented by the distances to objects from X can be done by
linear operations.

3 Augmented Embedding

Suppose we have selected k prototype patterns xi ∈ X . We may construct (k−1)
dimensional pseudo-Euclidean space based on them, where each object from
this set of selected objects has coordinates xi = (x(1)

i , x
(2)
i , . . . , x

(p)
i , x

(p+1)
i , . . . ,
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x
(p+q)
i )T , p + q = (k − 1) and i = 1, . . . , k. Let us now assume that our con-

figuration lives in a (k+1)-dimensional space such that we add one dimension
to represent the positive subspace p and one dimension to represent the neg-
ative subspace q. The configuration (5) stays the same, except that the coor-
dinates for these two extra dimensions are zeros. Objects from some new set
X̃ may be projected on this space by given their distances to xi. For every
xs ∈ X̃ (s = 1, . . . , m) it can be done as follows:

d2
si =

p∑

l=1

(
x(l)

s − x
(l)
i

)2
−

k−1∑

l=p+1

(
x(l)

s − x
(l)
i

)2
+ ε2, (7)

where ε2 = ε2
p − ε2

q stands for the projection error and might be negative. We
also assume that the center of mass lies in the origin:

∑k+1
i=1 xi = 0, remembering

that the last coordinates for each prototype in our space are x
(k)
i = x

(k+1)
i = 0.

Summing up among all k prototypes we receive the following equation:
k∑

i=1

d2
si =

k∑

i=1

p∑

l=1

(
x(l)

s − x
(l)
i

)2
−

k∑

i=1

k−1∑

l=p+1

(
x(l)

s − x
(l)
i

)2
+ kε2 (8)

Opening brackets and recalling that the norm of any vector xs can be expressed
as:

‖xs‖2 =
p∑

l=1

(
x(l)

s

)2
−

k−1∑

l=p+1

(
x(l)

s

)2
+ ε2 (9)

we receive:

‖xs‖2 =
1
k

k−1∑

i=1

(
d2

si − ‖xi‖2) (10)

Substituting this result into equations (7) and after some computations we re-
ceive the following solution for the projected object xs into (k − 1)-dimensional
space as xs

′
:

x
′

s =
1
2
|Λ|−1JpqX

′

i

T (
diag(Gi) − d2

s

)
, (11)

Here X
′

i is a matrix of prototype coordinates, Gi is a Gram matrix for objects
from X

′

i and d2
s is a vector of distances from an object xs to all prototypes xi.

One should remember that the solution for x
′

s is unique within the fixed
rotation: x

′

s = Q|Λ|1/2PT , that satisfies the constraint (6). Finally, the sought
vector of coordinates for the projected object can be derived as follows:

‖xs‖2 = ‖x′

s‖2 + ε2 (12)

On the other hand, recalling (10) and rewriting it in the matrix form:

‖xs‖2 = −1T

k
(diag(Gi) − d2

s), (13)

we can derive ε2.
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However,
ε2 = ε2

p − ε2
q. (14)

It means, that the all possible solutions for εp and εq, lie on a hyperbola (14) in
the augmented subspace.

Our task is to optimize both positive and negative parts simultaneously to get
a unique solution. It can be done in different ways. First, in a non-regularized
version, one may just check the sign of ε2 and depending on that assume the

existence of only one εp or εq of the variable, calculating it as sign(ε2)
√

|ε2|. It
means that the only one εp or εq encodes the projection error while the other
is zero. As a result the objects will be projected directly on the axes of the
augmented 2D subspace.

More advanced techniques, taking some assumptions about possible solutions,
could also be constructed, assuming the simultaneous existence of both εp and εq

variables. We will focus on looking for the so-called regularized normal solutions
(solutions near the origin) that take the history into account, i.e. values close to
the positive and negative class means, averaged among all axis in the space of
dimension (p + q). For this we will minimize the following functional:

F (εp, εq) = (εp − μ̂p)2 + (εq − μ̂q)2 �→ min, (15)

where

μ̂p =
| μp |

p

μ̂q =
| μq |

q

(16)

expresses the averaged absolute values of positive and negative distribution
means for each class in the (k − 1)-dimensional space. This functional by the
construction is convex and has a unique solution. It should be noted that the
overall positive and negative means of the representation set is at the origin due
to the centering procedure we have done. But, once the projection is made for
the training set, the mean values μp and μq shift.

Moreover, in our regularization algorithm we choose to optimize the position
of the test objects taking into account the class means from the training set.
For each test object, the closest class mean is determined based on the pseudo-
Euclidean distances. It means that μ̂p and μ̂q constitute now the mean vector of
that class.

So, for every new object to project, the task (15) can be solved by the standard
method of Lagrangian multipliers, taking into account the restriction (14).

L = F (εp, εq) + λ
(
ε2 − ε2

p + ε2
q

)
, (17)

where λ is some constant. Constructing Euler equations we receive:

∂L

∂εp
: ε2

p =
μ̂p

2

(1 − λ)2

∂L

∂εq
: ε2

q =
μ̂q

2

(1 + λ)2

(18)
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Substituting ε2
p and ε2

q we receive the following equations with respect to λ:

ε2 =
μ̂p

2

(1 − λ)2
− μ̂q

2

(1 + λ)2
(19)

Solving this fourth-order equation, we get four solutions. Two of them we reject
since they are imaginary. Among remaining two we select the one that brings
the minimum to our functional (15).

4 Experimental Setup

Ionosphere data set. The data set describes radar returns from the ionosphere
and is obtained from the UCI repository [5]. The targets are free electrons in
the ionosphere. “Good” radar returns are those showing evidence of some type
of structure in the ionosphere. “Bad” returns are those that do not; their signals
pass through the ionosphere.

Received signals were processed using an autocorrelation function whose ar-
guments are the time of a pulse and the pulse number. There were 17 pulse
numbers for the used system. Instances in this database are described by 2 at-
tributes per pulse number, corresponding to the complex values returned by the
function resulting from the complex electromagnetic signal.

The number of instances is 351, the number of attributes is 34 plus the class
attribute. All 34 predictor attributes are continuous; the 35th attribute is either
“good” or “bad”. This is a binary classification task with no missing values.

The dissimilarity matrix computed on the Ionosphere data set and used in
our experiments is Euclidean. Moreover, distances in the matrix are scaled to be
in [0, 1].

Chicken pieces data set. This data set consists of 446 images of chicken pieces
[2]. Each piece belongs to one of five categories, which represents specific parts
of the chicken: wing (117 samples), back (76), drumstick (96), thigh and back
(61), and breast (96). Each image is in binary format containing the silhouette
of a particular piece. Pieces were placed in a natural way without considering
orientation.

To extract string representations, some preprocessing had been done and pro-
vided to us by the group of prof. Bunke [6]. First, edge detection was performed.
Secondly, the edges were approximated by straight line segments of fixed length.
The sequence of angles between the segments were chosen as the string repre-
sentation. Such string representations are then compared by edited distances.
The cost of substitution is the absolute difference between the angles, while the
costs of insertion and deletions are fixed. In our experiments we have used the
segments of length 25 and the insertion and deletion costs 60. Final dissimilarity
matrix computed on a data set appears to be non-Euclidean. Again, distances
are rescaled to be in [0, 1].

In all our experiments we use the classification error of the 1-NN classifier
averaged over 20 repetitions as a performance criterion for our embedding tech-
niques. For both data sets we set uniform prior probabilities for each of the
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(a) Ionosphere data set
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(b) Chicken pieces data set

Fig. 1. Averaged classification error (over 20 repetitions) for 1-NN classifier. Euclidean
distance matrix is computed on Ionosphere data set, while pseudo-Euclidean distances
are computed for Chicken pieces data set.

classes. Training data is divided into two parts. The first part is used for the
representation, randomly chosen from the training set, and defining the pseudo-
Euclidean embedding described in section 2. The remaining part is projected in
this space. In such an augmented space the complete training data is used for
the performance evaluation of the 1-NN rule. The test data are also projected to
this augmented space and the distances to the training objects are recomputed
according to the pseudo-Euclidean distance of that space. The obtained results
are averaged out.

The choice of the 1-NN is justified since all high level classifiers require the
construction of probabilistic models in pseudo-Euclidean spaces, which are not
defined yet in pattern recognition literature, while the 1-NN rule operates di-
rectly with distances obtained via an embedding algorithm. However, the whole
idea described in this paper should be seen as a first step towards the con-
struction of advanced classification methods which are left for our future re-
search.

In figure 1 we use the following notation. “ES” and “PES” denote the usage
of Euclidean or pseudo-Euclidean spaces. The entire training data is denoted
as “DTR”, while for the selected representation set as “DR”. The regularized
or not regularized versions of the augmented embedding are denoted either as
“AR” or “ANR”.

In figure 1 for both different data sets the idea of augmentation helps, es-
pecially when one wants to operate with sufficiently small-dimensional spaces.
However, in pseudo-Euclidean spaces the projection of the training set does
not lead to better classification accuracy, like traditionally in Euclidean spaces.
Moreover, it decreases drastically. Our opinion is that the data is linearly pro-
jected on a very nonlinear space, possibly equipped with curvature and torsion.
In cases the representation set is small to describe all nonlinearities present in
data, the classification possibilities are weak.
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Standard deviations for the Ionosphere data set are less than 0.0251, while
for the Chicken data set are less 0.0182.

Figures 2(a) and 2(b) illustrate the regularized vs. non-regularized versions of
the augmented embedding in pseudo-Euclidean spaces, and bring an intuition
behind them for future high-level pseudo-Euclidean classifiers, despite the fact
that for the 1-NN rule the difference is of little significance. Here, the axes
represent two augmented dimensions, the positive and the negative ones. These
plots visualize how objects from the chicken pieces data are projected into this
2D augmented subspace in both cases: on the axes themselves (non-regularized
version) or when their positions are optimized (regularized version).

Of course, other regularization of the augmented embedding may be con-
structed within this framework. For example, the position on the augmented
subspace may be found in such a way, that some trained distortion function for
projected training objects is minimal and applied to test data. However, this
is only feasible when one has small number of prototypes (to make use of the
whole idea of augmentation) but sufficiently large number of projected training
objects (to train distortion parameters).
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Fig. 2. Chicken pieces data set. Projection of test objects in a space, spanned by
10 prototypes. Two pictures represent augmented subspaces, constructed either with
and without regularization. The use of regularization helps to prevent object overlap.

5 Conclusion

In this paper we have presented an idea of an augmented embedding which can be
seen as a first step towards statistical learning in pseudo-Euclidean spaces. The
method helps to reconstruct projection errors made by existing linear embedding
algorithms. It may bring higher level of topology preservation than the standard
methods, especially in cases of small amount of prototypes to construct a proper
space. We have showed that by adding one (in a Euclidean case) or two (in a
pseudo-Euclidean case) extra dimensions it becomes possible to retrieve projec-
tion errors back made by existing linear embedding methods, leading to better
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classification. Our experiments support this statement. However, we should ac-
cept that the projection distortion may take high values, especially in spaces
with large initial non-linearities between objects.
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