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Abstract. Sometimes novel or outlier data has to be detected. The
outliers may indicate some interesting rare event, or they should be dis-
regarded because they cannot be reliably processed further. In the ideal
case that the objects are represented by very good features, the genuine
data forms a compact cluster and a good outlier measure is the distance
to the cluster center. This paper proposes three new formulations to find
a good cluster center together with an optimized �p-distance measure.
Experiments show that for some real world datasets very good classifi-
cation results are obtained and that, more specifically, the �1-distance is
particularly suited for datasets containing discrete feature values.
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1 Introduction

In this paper we consider a special classification problem in which one of the
classes is sampled well, but in which the other class cannot be sampled reliably
[1,2]. An example is machine condition monitoring, where failure of a machine
should be detected. It is possible to sample from all normal operation conditions
(called the target class), but to sample from the failure class (the outlier class)
is very hard. Furthermore it is also very expensive. Therefore a classifier should
be constructed that mainly relies on examples of healthy machines and that can
cope with a poorly sampled class of failing machines.

In the most ideal case the target class forms a tight, spherical cluster and
all outliers are scattered around this cluster. To identify outliers one has to
measure the distance from an object to the cluster center and threshold this
distance. Clearly, when the threshold on the distance (or radius of the ball) is
increased, the error on the target class decreases but at the cost of the outlier
data that is accepted. The optimal ball has a minimum volume while it still
encloses a large fraction of the target data.

According to the central limit theorem the target class has a Gaussian dis-
tribution when the target objects are noisy instantiations of one prototype dis-
turbed by a large number of small noise contributions. The Mahalanobis distance
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to the cluster center has to be used to detect outliers. But one should take care
that a robust estimate of the class shape is used, because outliers in the train-
ing set severely deteriorate the maximum likelihood estimates for the Gaussian
distribution [3]. The Minimum Determinant Covariance estimator is a practical
implementation of a robust mean and covariance estimator [4].

When the assumption of many small noise contributions does not hold, other
distance measures can be used. One flexible parameterization of a distance is
the �p-distance. This distance has one free parameter p that rescales distances
non-linearly along individual axis before adding the contributions to the final
distance. Thresholding this distance defines a �p-ball as the decision boundary
around the target class. The advantage of the ball description is that only few
parameters have to be fitted to get a good description of the target class. This
is particularly useful when the outlier detector is applied in high dimensional
feature spaces and with small training set sizes. A second advantage is that
it is possible to compute the volume captured by the ball analytically (see for
instance, [5] pg. 11). This allows for an estimate of the error on the outlier class
[6] and therefore for model evaluation between outlier detection methods.

In this paper we propose the use of the �p-distance measure to a center for
the description of a class, resulting in a ball-shaped decision boundary. Three
models are formulated in section 2. In the first formulation the volume of the �p

distance ball is minimized by weighing the features, while the parameter p and
the center of the ball are fixed. In the second we fix the p and the weights of the
features, but optimize the center to minimize the volume. In the last formulation
we optimize both the center as the p. In section 3 the methods are compared on
real world datasets and we end with a conclusion in 4.

2 Theory

We start with a training set X tr = {xi, i = 1, ..., l} containing l target objects,
represented in an n dimensional feature space: x ∈ R

n. This dataset may contain
some outliers, but they are not labeled as such. The �p-distance is defined as:

‖x − z‖p = p

√
√
√
√

n∑

j=1

|xj − zj |p, p > 0. (1)

To detect outliers with respect to the training set X tr, we threshold the distance
to some center a. This defines the classifier fp:

fp(x; a) =

{

target ‖x − a‖p
p ≤ w0,

outlier otherwise.
(2)

A well performing classifier fp minimizes both the error on the target class (i.e.
the ball encloses almost all the target objects) as the error on the outlier class
(i.e. the ball covers a minimum volume in the feature space). By a suitable
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placing of a, by minimizing the threshold (or radius) w0, weighting of features
and optimizing p the two errors are minimized. In the next three sections we
propose three formulations to optimize �p-balls.

2.1 w-Ball: The Weighted-Feature �p-Ball

In the first formulation, the feature axis are weighted such that the ball has
minimum radius w0. The center a and the parameter p are fixed beforehand.
The w0 is minimized by varying the weight wj on each individual feature. To
avoid the trivial solution of zero weights for all the features, the sum of the
weights is fixed to one and all zero-variance directions are removed. 1 To make
the solution less sensitive to outliers in the training data, the constraints are
weakened by introducing slack variables ξi:

min
w,ξ

w0 + C

l∑

i=1

ξi (3a)

s.t.
∑

j

wj |xij − aj |p ≤ w0 + ξi, ξi ≥ 0 ∀i (3b)

∑

j

wj = 1, wj ≥ 0, ∀j (3c)

A reweighted �p-distance is used for the evaluation of a new object. That means
that each term in the sum in equation (1) is multiplied by wj . This formulation
is called the ‘weighted-features’ �p-ball, or w-ball.

In the experiments center a is set to the mean vector of dataset X tr. This
formulation is a linear programming problem that can be solved efficiently us-
ing standard optimization toolboxes, even for high dimensional feature spaces.
Parameter C determines the tradeoff between w0 and ξi. A large C indicates
that ξi should remain small in comparison to w0 (see (3a)), resulting in a very
large ball. When C is small, the slack ξi is allowed to grow and the radius w0
stays reasonably small. In practice the w-ball is still not robust against outliers
[7]. This is caused by the fact that an outlier influences the location a of the
ball. Varying C has just a minor effect on the final solution. To get a robust ball
description, the center of the ball has to be optimized such that outliers do not
have any influence on the solution, even when they are located far away. This is
achieved with a formulation given in the next section.

In the left subplot of figure 1 the decision boundaries for the w-ball are shown
for p = 1, 2 and 6. The optimization reweighs the features such that the balls fit
the data best. Depending on p, the shape becomes more diamond-like (p = 1)
or more box-like (p = 6). The two objects on the far right still influence the
solution, although they are outside the decision boundary. When the outliers on
the right side are moved much further to the right, the weight for this feature
is decreased (to satisfy constraint (3b)). When this weight w1 decreased to zero,
1 When the k-th feature does not show a variance, the optimal solution is wk = 1 and

all other wi = 0, i �= k.
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Fig. 1. The decision boundaries of the w-ball (left) and the c-ball (right) on the same
dataset, and varying p, p = 1, 2, 6. The diamond-shaped boundary is obtained for p = 1.
For increasing p the boundary becomes more square. For the w-ball C = 10 and for
the c-ball f = 0.9 (see text for explanation of f).

the ball degenerates to a ‘strip’, effectively performing a feature reduction by
removing this feature from the solution.

2.2 c-Ball: The �p-Ball with Variable Center

For a robust formulation a quantile function is defined. Denote ỹ = (y(1), y(2), ...,
y(l)) the sorted version of y, with y(1) < y(2) < ... < y(l). The quantile function
is defined as:

Qf (y) = y([fl]), (4)

where [c] returns the nearest integer value of c. Thus, Q0(y) is the minimum
element of y, Q1(y) the maximum and Q0.5(y) the median.

The center a is optimized such that the object furthest away is as near as
possible to this center. To be robust against outlier objects in the training set,
we only consider a fraction f of the objects. When we define yi =

∑

j |xij − aj |p
the following optimization problem can be formulated:

min
a

Qf ((y1, y2, ..., yl)) (5)

This formulation is called the the ‘centered’ �p-ball, or c-ball. Due to the very
non-linear quantile function this optimization cannot be solved very efficiently.
In this paper we use a general purpose multivariate non-linear optimizer (based
on the Nelder-Mead minimization[8]). It should be noted that this optimization
becomes very slow for high dimensional feature spaces (say, n > 100). In these
cases a standard gradient descent method is applied 2. On the other hand, the
2 Note that the gradient and the Hessian of (5) is very simple to compute when the

f% quantile y([fl]) has been found. Define k = [fl], then the gradient becomes ∂yk
∂aj

=

p·sign(aj−xkj)|aj−xkj |p−1 and the Hessian ∂2yk
∂2aj

= p(p−1)sign(aj−xkj)|aj−xkj |p−2

and ∂2yk
∂ai∂aj

= 0 for i �= j.
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solution is insensitive to the most remote (1 − f) × 100% of the data, making it
an estimator with a breakdown value of �(1 − f)l� [9].

In the right subplot of figure 1 the decision boundaries for the c-ball’s are
shown for p = 1, p = 2 and p = 6. The models do not take the difference in
variance of the different features into account, resulting in a wider data descrip-
tion than the w-ball. On the other hand, the c-ball is robust against the outlier
objects on the right side (the centers are optimized to reject 10% of the data, i.e.
f = 0.9). Moving these objects even further away will not change the solution
as it is shown in the figure. Also notice that the locations of the centers of the
balls vary, depending on the p.

2.3 p-Ball: The �p-Ball with Variable Center and Metric p

In the last formulation also the p in the �p-distance is optimized, together with
the ball center, while fixing the weight per feature. Because p changes, the met-
ric changes and it is not possible to compare solutions in different spaces by
just comparing the radii of the balls. To compare balls in different spaces, the
volumes of the balls have to be compared. The unit ball of �p is defined as
Bn

p = {x ∈ R
n; ‖x‖p ≤ 1}. The volume of the unit ball is given by [5]:

vol(Bn
p ) =

(2Γ (1 + 1/p))n

Γ (1 + n/p)
(6)

The volume of a ball with radius r is vol(Bn
p )rn. Using this, the following opti-

mization problem can now be formulated:

min
a,p,r

vol(Bn
p )rn (7a)

s.t. Qf ((‖xi − a‖n
p )) ≤ rn, p > 0 (7b)

where r is the ball radius. This is called the p-optimized �p-ball, or p-ball. Again,
the optimization is made more robust by considering the f -fraction quantile.

Notice that in this formulation both the degree p and the center of the ball
are optimized, resulting in an even more complex optimization problem. Again
a general multivariate nonlinear optimizer has to be used 3. To avoid problems
with the constrained variable p (p > 0), a variable substitution is applied and a
new unconstrained variable q = log(p) is introduced. This makes it possible to
use an unconstrained optimization procedure.

In figure 2 the decision boundaries for the p-ball are shown for the same
data as used in figure 1. The fraction f is set to f = 0.9, f = 0.8, f = 0.5.
Both the location as the shape of the balls is adapted to capture 90%, 80%
or 50% of the data. The resulting optimized values for p are 1.26, 2.21 and 5.39
respectively. Objects outside the decision boundary are completely ignored in the
minimization of the ball volume, and can therefore be randomly moved around
without affecting the solution.
3 Here also the gradient and Hessian can be computed, but this is considerably more

complicated than in section 2.2.
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Fig. 2. The decision boundaries of the p-
ball for different values of f , f = 0.9, f =
0.8, f = 0.5
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3 Experiments

The three methods, the w-ball, c-ball and p-ball, are compared with some stan-
dard classifiers on datasets, mainly taken from the UCI repository [10]. These
datasets are standard multiclass problems and to convert them into an outlier
detection problem, we use one of the classes as target class, and all other classes
are considered outlier. Furthermore, we consider datasets for which the target
class is reasonably clustered: it does not contain several clusters, and is not dis-
tributed in a subspace. The datasets are preprocessed to have unit variance for
all features (where the scaling factors are obtained from the training set).

Table 1. Characteristics of the datasets: the number of objects in the target class and
the outlier class, and the dimensionality of the data

nr dataset tar/out dim.
1 Iris virginica 50/100 4
2 Breast malignant 458/241 9
3 Breast benign 241/458 9
4 Heart diseased 139/164 13
5 Heart healthy 164/139 13
6 Biomed diseased 67/127 5
7 Arrhythmia normal 237/183 278
8 Ecoli periplasm 52/284 7

nr dataset tar/out dim.
9 Concordia16 digit 3 400/3600 256
10 Colon 2 40/22 1908
11 Thyriod normal 93/3679 21
12 Waveform 1 300/600 21
13 Pageblocks text 4913/560 10
14 Satellite, cotton crop 479/3956 36
15 Satellite, damp grey soil 415/4020 36

In table 1 the list of datasets with their characteristics is shown. For the two-
class Breast and Heart datasets, each of the two classes is used as the target
class once. This is to show that for each class separately, different optimal so-
lutions are found. On the datasets some standard classifiers are fitted. First a
simple Gaussian distribution is applied, using the maximum likelihood estimates
for the mean and covariance matrix. The second method uses the Minimum Co-
variance Determinant algorithm to estimate a robust covariance matrix [4]. The
third method is the Parzen density estimator, that optimizes its width parameter
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Table 2. AUC performances of the one-class classifiers on 15 real world datasets. The
best performances (and the ones that are not significantly worse according to a t-test,
at a 5% confidence level) are indicated in bold. The experiments are done using five
times ten-fold stratified cross-validation. The standard deviations are given between
brackets.

datasets
classifiers 1 2 3 4 5

Gauss 97.8 (0.5) 98.5 (0.1) 82.2 (0.2) 63.8 (0.7) 80.0 (0.7)
Min.Cov.Determinant 97.6 (0.2) NaN (0.0) 73.5 (0.1) 66.7 (1.8) NaN (0.0)

Parzen 96.8 (0.9) 99.1 (0.1) 68.1 (0.5) 65.6 (0.6) 79.3 (0.4)
k-center 96.0 (0.9) 98.4 (0.2) 72.6 (13.6) 67.3 (2.6) 79.3 (2.3)

Support vector DD 97.3 (0.4) NaN (0.0) 69.8 (1.0) 64.4 (0.5) 78.4 (0.6)
w-ball p = 1 98.3 (0.4) 98.0 (0.1) 97.4 (0.2) 78.9 (0.8) 73.3 (1.7)
w-ball p = 2 98.0 (0.5) 97.7 (0.2) 97.7 (0.1) 71.3 (3.2) 45.9 (1.3)
w-ball p = 6 97.0 (0.4) 97.5 (0.4) 91.1 (0.5) 70.9 (2.7) 40.2 (6.5)
c-ball p = 1 96.4 (0.9) 99.3 (0.1) 97.5 (0.1) 77.4 (0.4) 83.9 (0.6)
c-ball p = 2 96.5 (0.5) 99.0 (0.1) 97.3 (0.1) 73.0 (0.3) 82.6 (0.9)
c-ball p = 6 96.0 (0.6) 98.5 (0.2) 91.6 (0.2) 63.3 (0.4) 79.5 (0.7)

p-ball 96.0 (0.6) 99.3 (0.1) 96.6 (0.3) 72.9 (0.8) 82.6 (0.7)
classifiers 6 7 8 9 10

Gauss 60.8 (0.8) 76.8 (0.4) 92.9 (0.3) 91.3 (0.0) 68.4 (3.6)
Min.Cov.Determinant 53.5 (1.2) NaN (0.0) NaN (0.0) NaN (0.0) NaN (0.0)

Parzen 48.3 (0.5) 77.3 (0.5) 92.9 (0.5) 92.4 (0.0) 63.6 (22.4)
k-center 46.9 (5.2) 77.8 (1.1) 87.0 (2.3) 91.0 (0.6) 68.1 (2.1)

Support vector DD 53.0 (2.1) 52.7 (9.4) 92.2 (1.0) 36.7 (0.5) 63.6 (22.4)
w-ball p = 1 71.8 (1.2) 70.4 (0.8) 91.6 (0.7) 84.4 (0.0) 57.1 (3.6)
w-ball p = 2 69.0 (1.1) 80.9 (0.5) 91.5 (0.5) 82.9 (0.0) 56.8 (3.0)
w-ball p = 6 62.3 (1.1) 70.3 (1.9) 90.1 (0.4) 65.0 (1.1) 56.2 (4.0)
w-ball p = 1 72.7 (0.6) 78.4 (0.4) 95.3 (0.4) 92.6 (0.0) 66.9 (2.1)
w-ball p = 2 67.9 (0.4) 78.2 (0.3) 94.6 (0.5) 90.5 (0.0) 71.1 (1.5)
w-ball p = 6 61.1 (1.0) 76.2 (0.3) 93.3 (0.4) 85.2 (0.2) 77.2 (0.9)

p-ball 66.0 (0.5) 76.5 (0.4) 93.3 (0.4) 92.6 (0.0) 70.2 (1.1)
classifiers 11 12 13 14 15

Gauss 84.3 (0.0) 89.9 (0.0) 59.9 (5.9) 88.0 (0.0) 83.0 (0.0)
Min.Cov.Determinant NaN (0.0) 89.9 (0.0) 93.5 (0.0) 89.6 (0.2) 78.6 (0.1)

Parzen 90.6 (0.0) 90.0 (0.0) 50.6 (5.1) 99.0 (0.0) 39.9 (0.0)
k-center 53.3 (3.0) 87.8 (1.8) 55.9 (3.7) 97.5 (1.5) 85.0 (1.5)

Support vector DD 56.0 (0.0) 41.7 (0.0) 50.1 (5.6) 37.6 (0.0) 21.1 (0.0)
w-ball p = 1 96.9 (0.0) 91.2 (0.0) 91.7 (0.1) 99.1 (0.0) 91.2 (0.0)
w-ball p = 2 99.0 (0.0) 91.6 (0.0) 91.8 (0.1) 98.8 (0.0) 92.3 (0.0)
w-ball p = 6 99.1 (0.0) 90.5 (0.0) 91.0 (0.1) 98.4 (0.0) 92.4 (0.0)
c-ball p = 1 93.1 (0.0) 92.1 (0.0) 92.2 (0.0) 98.7 (0.0) 92.6 (0.0)
c-ball p = 2 88.5 (0.0) 93.0 (0.0) 93.0 (0.0) 98.5 (0.0) 92.7 (0.0)
c-ball p = 6 83.4 (0.0) 91.6 (0.0) 93.8 (0.0) 96.9 (0.0) 91.4 (0.0)

p-ball 93.6 (0.0) 93.0 (0.0) 93.0 (0.1) 98.5 (0.0) 92.6 (0.0)

using leave-one-out on the training set [11]. The fourth method uses the k-
centroid method that places several centers and minimizes the largest distance
from any training object to its nearest center. Finally, the support vector data
description [12] is used, that is fitting a ball in a Gaussian kernel space. The
features are rescaled to unit variance, and therefore the width parameter σ in
the RBF kernel was fixed to σ = 1 which gave acceptable results in most cases.

These standard methods are compared to the w-ball, c-ball and p-ball with
varying values for p (when applicable). Five times ten-fold stratified cross-
validation is applied, and the average Area Under the ROC curve [13] is re-
ported. The results are shown in table 2. In some cases the classifier could not
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be trained (for instance, the minimum covariance determinant classifier has a
constraint that it cannot be estimated on datasets with more than 50 features).
For these cases NaN outputs are shown.

The first observation that can be made is that for many datasets, datasets 1,
2, 4, 5, 6 and 8, the �1-metric outperforms all the others, even when a different
formulation is used (i.e. c-ball instead of w-ball). It appears that all these classes
have discrete features, suggesting that the �1 (city-block) distance is indeed
very suited for the description of discrete data. This is tested by discretizing
the features of dataset 15 (where the w-ball performs better for higher p) and
training an w-ball with p = 1, 2, 6. The AUC performances are shown in figure 3.
It shows that by reducing the number of bins, the relative performance of the �1
metric improves while that of the �2 and �6 significantly decreases.

Secondly, for high dimensional data, like datasets 7, 10 and 11, the ball-shaped
models appear to be simple enough (and therefore stable enough) to outperform
more complex models. Often the performance is not that significantly better than
that, for instance, of the Gaussian model, but in some cases it can be significant
(see dataset 11). The difference in performance between w-ball and c-ball can
often be traced to the number of outliers (or the noise) present in the training
set. When the ball center can be represented well by the mean of the training
set, like in datasets 1, 3, 4, 7, and 14, the w-ball is to be preferred. In other
datasets, like 2 and 8, the target class shows a long tail with remote outliers,
shifting the mean of the target class out of the main cluster. In these cases the
more robust center estimate has to be used.

Finally, the most flexible approach, the p-ball, rarely shows the very best
performance, models with a fixed p perform on average slightly better. The
p-ball slightly overfits, but fortunately, the optimized value for p is always close
to the p of the best performing ball. Clearly, a validation set has to be used to
finally judge the best value for p in the w-ball or c-ball. When this validation
data is not available, the p-ball is to be preferred.

4 Conclusions

For many outlier detection problems for which the target data is characterized
by good features, outliers can be detected well by measuring the distance to a
suitable cluster center and thresholding this distance. This paper proposes three
new approaches to optimize the cluster center and the distance measure, such
that the genuine data is described well by an �p ball. In the first formulation
the feature weights are optimized, by solving a linear programming problem.
The second formulation optimizes the cluster center in a robust gradient descent
approach. In the last formulation not only the center but also the parameter p
is optimized, using a general multivariate nonlinear optimizer.

The results on real world data show that datasets with discretized feature
values benefit from the use of the �1 metric. On the other hand, the optimization
of the p in the �p metric appears to be sensitive to overtraining. When one
considers relatively outlier-free data, it is advantageous to fix the center of �p ball
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and optimize the scaling of the features. When significant outliers are present,
or the target class distribution is significantly asymmetric, the �p ball has to
optimized using a robust procedure.

Obviously, the single ball solution can be extended to a set of balls by us-
ing the standard k-means clustering algorithm. In k-means clustering often the
Euclidean distance to cluster prototypes is used. This can be replaced by the
�p-distance to cluster centers resulting in a generalized Lloyds algorithm [14].
The cluster centers, the feature weights and possibly the p can be optimized
using one of the three ball fitting approaches as they are presented in this paper.
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