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Abstract. Statistical inference of sensor-based measurements is inten-
sively studied in pattern recognition. It is usually based on feature repre-
sentations of the objects to be recognized. Such representations, however,
neglect the object structure. Structural pattern recognition, on the con-
trary, focusses on encoding the object structure. As general procedures
are still weakly developed, such object descriptions are often application
dependent. This hampers the usage of a general learning approach.

This paper aims to summarize the problems and possibilities of general
structural inference approaches for the family of sensor-based measure-
ments: images, spectra and time signals, assuming a continuity between
measurement samples. In particular it will be discussed when probabilis-
tic assumptions are needed, leading to a statistically-based inference of
the structure, and when a pure, non-probabilistic structural inference
scheme may be possible.

1 Introduction

Our ability to recognize patterns is based on the capacity to generalize. We
are able to judge new, yet unseen observations given our experience with the
previous ones that are similar in one way or another. Automatic pattern recog-
nition studies the ways which make this ability explicit. We thereby learn more
about it, which is of pure scientific interest, and we construct systems that may
partially take over our pattern recognition tasks in real life: reading documents,
judging microscope images for medical diagnosis, identifying people or inspecting
industrial production.

In this paper we will reconsider the basic principles of generalization, espe-
cially in relation with sensor measurements like images (e.g. taken from some
video or CCD camera), time signals (e.g. sound registered by a microphone), and
spectra and histograms (e.g. the infra-red spectrum of a point on earth measured
from a satellite). These classes of measurements are of particular interest since
they can very often replace the real object in case of human recognition: we can
read a document, identify a person, recognize an object presented on a monitor
screen as well as by a direct observation. So we deal here with registered signals
which contain sufficient information to enable human recognition in an almost
natural way. This is an entirely different approach to study the weather patterns
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from a set of temperature and air pressure measurements than taken by a farmer
who observes the clouds and the birds.

The interesting, common aspect of the above defined set of sensor measure-
ments is that they have an observable structure, emerging from a relation be-
tween neighboring pixels or samples. In fact we do not perceive the pixel intensity
values themselves, but we directly see a more global, meaningful structure. This
structure, the unsampled continuous observation in space and/or time consti-
tutes the basis of our recognition. Generalization is based on a direct observation
of the similarity between the new and the previously observed structures.

There is an essential difference between human and automatic pattern recogni-
tion, which will be neglected here, as almost everywhere else. If a human observes
a structure, he may directly relate this to a meaning (function or a concept). By
assigning a word to it, the perceived structure is named, hence recognized. The
word may be different in different languages. The meaning may be the same, but
is richer than just the name as it makes a relation to the context (or other frame
of reference) or the usage of the observed object. On the contrary, in automatic
recognition it is often attempted to map the observations directly to class labels
without recognizing the function or usage.

If we want to simulate or imitate the human ability of pattern recognition it
should be based on object structures and the generalization based on similarities.
This is entirely different from the most successful, mainline research in pattern
recognition, which heavily relies on a feature-based description of objects instead
of their structural representations. Moreover, generalization is also heavily based
on statistics instead of similarities.

We will elaborate on this paradoxical situation and discuss fundamentally the
possibilities of the structural approach to pattern recognition. This discussion is
certainly not the first on this topic. In general, the science of pattern recognition
has already been discussed for a long time, e.g. in a philosophical context by
Sayre [1] or by Watanabe on several occasions, most extensively in his book
on human and mechanical recognition [2]. The possibilities of a more structural
approach to pattern recognition was one of the main concerns of Fu [3], but it
was also clear that, thereby, the powerful tools of statistical approaches [4,5,6,7]
should not be forgotten; see [8,9,10].

Learning from structural observations is the key question of the challenging
and seminal research programme of Goldfarb [10,11,12]. He starts, however, from
a given structural measurement, the result of a ’structural sensor’ [13] and uses
this to construct a very general, hierarchial and abstract structural description
of objects and object classes in terms of primitives, the Evolving Transformation
System (ETS) [11]. Goldfarb emphasizes that a good structural representation
should be able to generate proper structures. We recognize that as a desirable,
but very ambitious direction. Learning structures from examples in the ETS
framework appears still to be very difficult, in spite of various attempts [14].

We think that starting from such a structural representation denies the quan-
titative character of the lowest level of senses and sensors. Thereby, we will again
face the question how to come to structure, how to learn it from examples given
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the numeric outcomes of a physical measurement process, that by its organiza-
tion in time and space respects this structure. This question will not be solved
here, as it is one of the most basic issues in science. However, we hope that
a contribution is made towards the solution by our a summary of problems and
possibilities in this area, presented from a specific point of view.

Our viewpoint, which will be explained in the next sections, is that the feature
vector representation directly reduces the object representation. This causes a
class overlap that can only be solved by a statistical approach. An indirectly
reducing approach based on similarities between objects and proximities of their
representations, may avoid, or at least postpone such a reduction. As a conse-
quence, classes do not overlap intrinsically, by which a statistical class descrip-
tion can be avoided. A topological- or domain-based description of classes may
become possible, in which the structural aspects of objects and object classes
might be preserved. This discussion partially summarizes our previous work on
the dissimilarity approach [15], proximities [16], open issues [17] and the science
of pattern recognition [18].

2 Generalization Principles

The goal of pattern recognition may be phrased as the derivation of a general
truth (e.g. the existence of a specified pattern) from a limited, not exhaustive set
of examples. We may say that we thereby generalize from this set of examples, as
the establishment of a general truth gives the possibility to derive non-observed
properties of objects, similar to those of observed examples.

Another way to phrase the meaning of generalization is to state that the truth
is inferred from the observations. Several types of inference can be distinguished:

Logical inference. This is the original meaning of inference: a truth is derived
from some facts, by logical reasoning, e.g.
1. Socrates is a man.
2. All man are mortal.
3. Consequently, Socrates is mortal.

It is essential that the conclusion was derived before the death of Socrates.
It was already known without having observed it.

Grammatical inference. This refers to the grammar of an artificial language
of symbols, which describes the ”sentences” that are permitted from a set of
observed sequences of such symbols. Such grammars may be inferred from
a set of examples.

Statistical inference. Like above, there are observations and a general, ac-
cepted or assumed, rule of a statistical (probabilistic) nature. When such
a rule is applied to the observations, more becomes known than just the
directly collected facts.

Structural inference. This is frequently used in the sense that structure is
derived from observations and some general law. E.g. in some economical
publications, ”structural inference” deals with finding the structure of a sta-
tistical model (such as the set of dependencies) by statistical means [19]. On
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the contrary, ”structural inference” can also be understood as using struc-
tural (instead of statistical) properties to infer unobserved object properties.

Empirical inference. This term is frequently used by Vapnik, e.g. in his re-
cent revised edition of the book on structural risk minimization [20]. It means
that unnecessary statistical models are avoided if some value, parameter, or
class membership has to be inferred from observational data. It is, however,
still based on a statistical approach, in the sense that probabilities and ex-
pectations play a role. The specific approach of empirical inference avoids
the estimation of statistical functions and models where possible: do not
estimate an entire probability density function if just a decision is needed.

It should be noted that in logical, statistical and empirical inferences object
properties are inferred by logical, statistical and empirical means, respectively.
In the terms of ”grammatical inference” and ”structural inference”, the adjective
does not refer to the means but to the goal: finding a grammar or a structure.
The means are in these cases usually either logical or statistical. Consequently,
the basic tools for inference are primarily logic and statistics. They correspond
to knowledge and observations. As logic cannot directly be applied to sensor
data, statistical inference is the main way for generalization in this case.

We will discuss whether in addition to logic and statistics, also structure can
be used as a basic means for inference. This would imply that given the structure
of a set of objects and, for instance, the corresponding class labels, the class label
of an unlabeled object can be inferred. As we want to learn from sensor data,
this structure should not be defined by an expert, but should directly be given
from the measurements, e.g. the chain code of an observed contour.

Consider the following example. A professor in archeology wants to teach
a group of students the differences in the styles of A and B of some classical
vases. He presents 20 examples for each style and asks the students to determine
a rule. The first student observes that the vases in group A have either ears or
are red, while those of group B may also have ears, but only if they are blue (a
color that never occurs for A). Moreover, there is a single red vase in group B
without ears, but with a sharp spout. In group A only some vases with ears have
a spout. The rule he presents is: if (ears ∧ not blue) ∨ (red ∧ no ears ∧
no spout) then A else B. The second student measures the sizes (weight and
height) of all vases, plots them on a 2D scatter plot and finds a straight line that
separates the vases with just two errors. The third student manually inspects
the vases from all sides and concludes that the lower part is ball-shaped in group
A and egg-shaped in group B. His rule is thereby: if ball-shaped then A, if
egg-shaped then B.

The professor asked the first student why he did not use characteristic paint-
ings on the vases for their discrimination. The student answered that they were
not needed as the groups could have perfectly been identified by the given prop-
erties. They may, however, be needed if more vases appear. So, this rule works
for the given set of examples, but does it generalize?

The second solution did not seem attractive to the professor as some mea-
surement equipment is needed and, moreover, two errors are made! The student
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responded that these two errors showed in fact that his statistical approach was
likely better than the logical approach of the first student, as it was more gen-
eral (less overtrained). This remark was not appreciated by the professor: very
strange to prove the quality of a solution by the fact that errors are made!

The third student seemed to have a suitable solution. Moreover, the shape
property was in line with other characteristics of the related cultures. Although
it was clear what was meant by the ball-ness and the egg-ness of the vase shapes,
the question remained whether this could be decided by an arbitrary assistant.
The student had a perfect answer. He drew the shapes of two vases, one from
each group, on a glass window in front of the table with vases. To classify a given
vase, he asked the professor to look through each of the two images to this vase
and to walk to and from the window to adjust the size until a match occurs.

We hope that this example makes clear that logic, statistics and structure can
be used to infer a property like a class label. Much more has to be explained
about how to derive the above decision rules by automatic means. In this paper,
we will skip the logical approach as it has little to do with the sensory data we
are interested in.

3 Feature Representation

We will first shortly summarize the feature representation and some of its ad-
vantages and drawbacks. In particular, it will be argued how this representation
necessarily demands a statistical approach. Hence, this has far reaching conse-
quences concerning how learning data should be collected. Features are object
properties that are suitable for their recognition. They are either directly mea-
sured or derived from the raw sensor data. The feature representation represents
objects as vectors in a (Euclidean) feature space. Usually, but not always, the
feature representation is based on a significant reduction. Real world objects
cannot usually be reconstructed from their features. Some examples are:
– Pieces of fruit represented by their color, maximum length and weight.
– Handwritten digits represented by a small set of moments.
– Handwritten digits represented by the pixels (in fact, their intensities) in

images showing the digits.
This last example is special. Using pixel values as features leads to pixel repre-
sentations of the original digits that are reductions: minor digit details may not
be captured by the given pixel resolution. If we treat, however, the digital picture
of a digit as an object, the pixel representation is complete: it represents the ob-
ject in its entirety. This is not strange as in handling mail and money transfers,
data typists often have to recognize text presented on monitor screens. So the
human recognition is based on the same data as used for the feature (pixels)
representation.

Note that different objects may have identical representations, if they are
mapped on the same vector in the feature space. This is possible if the fea-
ture representation reduces the information on objects, which is the main cause
for class overlap, in which objects belonging to different classes are identically
represented.
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The most common and most natural way to solve the problem of class overlap
is by using probability density functions. Objects in the overlap area are assigned
to the class that is the most probable (or likely) for the observed feature vector.
This not only leads to the fully Bayesian approaches, based on the estimation
of class densities and using or estimating class prior probabilities, but also to
procedures like decision trees, neural networks and support vector machines that
use geometrical means to determine a decision boundary between classes such
that some error criterion is minimized.

In order to find a probability density function in the feature space, or in order
to estimate the expected classification performance for any decision function that
is considered in the process of classifier design, a set of objects has to be available
that is representative for the distribution of the future objects to be classified
later by the final classifier. This last demand is very heavy. It requires that the
designer of a pattern recognition system knows exactly the circumstances under
which it will be applied. Moreover, he has to have the possibility to sample
the objects to be classified. There are, however, many applications in which
it is difficult or impossible. Even in the simple problem of handwritten digit
recognition it may happen that writing habits change over time or are location
dependent. In an application like the classification of geological data for mining
purposes, one likes to learn from existing mining sites how to detect new ones.
Class distributions, however, change heavily over the earth.

Another problem related to class overlap is that densities are difficult to es-
timate for more complete and, thereby, in some sense better representations,
as they tend to use more features. Consequently, they have to be determined in
high-dimensional vector spaces. Also the geometrical procedures suffer from this,
as the geometrical variability in such spaces is larger. This results in the paradox
of the feature representation: more complete feature representations need larger
training sets or will deteriorate in performance [21].

There is a fundamental question of how to handle the statistical problem of over-
lapping classes in case no prior information is available about the possible class dis-
tributions. If there is no preference, the No-Free-Lunch-Theorem [22] states that
all classifiers perform similarly to a random class assignment if we look over a set
of problems on average. It is necessary to restrict the set of problems significantly,
e.g. to compact problems in which similar objects have similar representations. It
is, however, still an open issue how to do this [23]. As long as the set of pattern
recognition problems is based on an unrealistic set, studies on the expected perfor-
mance of pattern recognition systems will yield unrealistic results. An example is
the Vapnik-Chervonenkis error bound based on the structural risk minimization
[20]. Although a beautiful theoretical result is obtained, the prescribed training
set sizes for obtaining a desired (test) performance are far from being realistic. The
support vector machine (SVM), which is based on structural risk minimization, is
a powerful classifier for relatively small training sets and classes that have a small
overlap. As a general solution for overlapping classes, as they arise in the feature
space, it is not suitable. We will point this out below.
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We will now introduce the idea of domain-based classifiers [24]. They construct
decision boundaries between classes that are described just by the domains they
cover in the feature space (or in any representation space) and do not depend
on (the estimates of) probability distributions. They are, thereby, insensitive to
ill-sampled training sets, which may even be selectively sampled by an expert.
Such classifiers may be beneficial for non-overlapping, or slightly overlapping
classes and are optimized for distances instead of densities. Consequently, they
are sensitive to outliers. Therefore, outliers should be removed in the firs step.
This is possible as the training set can be sampled in a selective way. Domain-
based classification may be characterized as taking care of the structure of the
classes in the feature space instead of their probability density functions.

If Vapnik’s concept of structural risk minimization [20] is used for optimizing
a separation function between two sets of vectors in a vector space, the resulting
classifier is the maximum margin classifier. In case no linear classifier exists to
make a perfect separation, a kernel approach may be used to construct a non-
linear separation function. Thanks to the reproducing property of kernels, the
SVM becomes then a maximum margin hyperplane in a Hilbert space induced
by the specified kernel [25]. The margin is only determined by support vectors.
These are the boundary objects, i.e. the objects closest to the decision boundary
f(x; θ) [26,25]. As such, the SVM is independent of class density models. Multiple
copies of the same object added to the training set do not contribute to the
construction of the SVM as they do for classifiers based on some probabilistic
model. Moreover, the SVM is also not affected by adding or removing objects of
the same class that lie further away from the decision boundary. This decision
function is, thereby, a truly domain-based classifier, as it optimizes the separation
of class domains and class density functions.

For nonlinear classifiers defined on nonlinear kernels, the SVM has, however, a
similar drawback as the nonlinear neural network. The distances to the decision
boundary are computed in the output Hilbert space defined by the kernel and
not in the input space. A second problem is that the soft-margin formulation [26],
the traditional solution to overlapping classes, is not domain-based. Consider a
two-class problem with the labels y∈{−1, +1}, where y(x) denotes the true label
of x. Assume a training set X = {xi, y(xi)}n

i=1. The optimization problem for
a linear classifier f(x) = wTx + w0 is rewritten into:

minw ||w||2 + C
∑

xi∈X ξ(xi),
s.t. y(xi)f(xi) ≥ 1 − ξ(xi),

ξ(xi) ≥ 0,

(1)

where ξ(xi) are slack variables accounting for possible errors and C is a trade-off
parameter.

∑
xi∈X ξ(xi) is an upper bound of the misclassification error on the

training set, hence it is responsible for minimizing a sum of error contributions.
Adding a copy of an erroneously assigned object will affect this sum and, thereby,
will influence the sought optimum w. The result is, thereby, based on a mixture
of approaches. It is dependent on the distribution of objects (hence statistics)
as well as on their domains (hence geometry).
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A proper domain-based solution should minimize the class overlap in terms of
distances and not in terms of probability densities. Hence, a suitable version of
the SVM should be derived for the case of overlapping domains, resulting in the
negative margin SVM [24]. This means that the distance of the furthest away
misclassified object should be minimized. As the signed distance is negative,
the negative margin is obtained. In the probabilistic approach, this classifier
is unpopular as it will be sensitive to outliers. As explained above, outliers are
neglected in domain-based classification, as they have to be removed beforehand.

Our conclusion is that the use of features yields a reduced representation.
This leads to class overlap for which a probabilistic approach is needed. It relies
on a heavy assumption that data are drawn independently from a fixed (but
unknown) probability distribution. As a result, one demands training sets that
are representative for the probability density functions. An approach based on
distances and class structures may be formulated, but conflicts with the use of
densities if classes overlap.

4 Proximity Representation

Similarity or dissimilarity measures can be used to represent objects by their
proximities to other examples instead of representing them by a preselected set
of features. If such measurements are derived from original objects, or from raw
sensor data describing the objects fully (e.g. images, time signals and spectra
that are as good as the real objects for the human observer), then the reduction in
representation, which causes class overlap in the case of features, is circumvented.
For example, we may demand that the dissimilarity of an object to itself is
zero and that it can only be zero if it is related to an identical object. If it
can be assumed that identical objects belong to the same class, classes do not
overlap. (This is not always the case, e.g. a handwritten ’7’ may be identical to
a handwritten ’1’).

In principle, such proximity representations may avoid class overlap. Hence,
they may offer a possibility to use the structure of the classes in the representa-
tion, i.e. their domains, for building classifiers. This needs a special, not yet well
studied variant of the proximity representation. Before a further explanation, we
will first summarize two variants that have been worked out well. This summary
is an adapted version of what has been published as [16]. See also [15].

Assume we are given a representation set R, i.e. a set of real-world objects that
can be used for building the representation. R={p1, p2, . . . , pn} is, thereby, a set
of prototype examples. We also consider a proximity measure d, which should
incorporate the necessary invariance (such as scale or rotation invariance) for the
given problem. Without loss of generality, let d denote dissimilarity. An object
x is then represented as a vector of dissimilarities computed between x and the
prototypes from R, i.e. d(x, R)= [d(x, p1), d(x, p2), . . . , d(x, pn)]T. If we are also
given an additional labeled training set T = {t1, t2, . . . , tN} of N real-world
objects, our proximity representation becomes an N × n dissimilarity matrix
D(T, R), where D(ti, R) is now a row vector. Usually R is selected out of T (by
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various prototype selection procedures) in a way to guarantee a good tradeoff
between the recognition accuracy and the computational complexity. R and T
may also be different sets.

The k-NN rule can directly be applied to such proximity data. Although it
has good asymptotic properties for metric distances, its performance deteriorates
for small training (here: representation) sets. Alternative learning strategies rep-
resent proximity information in suitable representation vector spaces, in which
traditional statistical algorithms can be defined. So, they become more beneficial.
Such vector spaces are usually determined by some local or global embedding
procedures. Two approaches to be discussed here rely on a linear isometric em-
bedding in a pseudo-Euclidean space (where necessarily R ⊆ T ) and the use of
proximity spaces; see [16,15].

Pseudo-Euclidean linear embedding. Given a symmetric dissimilarity ma-
trix D(R, R), a vectorial representation X can be found such that the distances
are preserved. It is usually not possible to determine such an isometric embed-
ding into a Euclidean space, but it is possible into a pseudo-Euclidean space E =
R

(p,q). It is a (p+q)-dimensional non-degenerate indefinite inner product space
such that the inner product 〈·, ·〉E is positive definite on R

p and negative definite
on R

q [10]. Then, 〈x,y〉E =xTJpqy, where Jpq =diag (Ip×p; −Iq×q) and I is the
identity matrix. Consequently, d2

E(x,y)== 〈x−y,x−y〉E =d2
Rp(x,y)−d2

Rq(x,y),
hence d2

E is a difference of square Euclidean distances found in the two subspaces,
R

p and R
q. Since E is a linear space, many properties related to inner products

can be extended from the Euclidean case [10,15].
The (indefinite) Gram matrix G of X can be expressed by the square dis-

tances D�2 = (d2
ij) as G = − 1

2JD�2J , where J = I − 1
n11T [10,27,15]. Hence,

X can be determined by the eigendecomposion of G, such that G = QΛQT =
Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT. |Λ| is a diagonal matrix of first decreasing p′ pos-
itive eigenvalues, then decreasing magnitudes of q′ negative eigenvalues, followed
by zeros. Q is a matrix of the corresponding eigenvectors. X is uncorrelated and
represented in R

k, k = p′+q′, as X = Qk|Λk|1/2 [10,27]. Since only some eigen-
values are significant (in magnitude), the remaining ones can be disregarded as
non-informative. The reduced representation Xr =Qm |Λm|1/2, m=p+q <k, is
determined by the largest p positive and the smallest q negative eigenvalues. New
objects D(Ttest, R) are orthogonally projected onto R

m; see [10,27,15]. Classi-
fiers based on inner products can appropriately be defined in E . A linear classifier
f(x)=vTJpqx+v0 is e.g. constructed by addressing it as f(x)=wTx+v0, where
w=Jpqv in the associated Euclidean space R

(p+q) [10,27,15].

Proximity spaces. Here, the dissimilarity matrix D(X, R) is interpreted as
a data-dependent mapping D(·, R): X → R

n from some initial representation
X to a vector space defined by the set R. This is the dissimilarity space (or a
similarity space, if similarities are used), in which each dimension D(·, pi) corre-
sponds to a dissimilarity to a prototype pi ∈ R. The property that dissimilarities
should be small for similar objects (belonging to the same class) and large for
distinct objects, gives them a discriminative power. Hence, the vectors D(·, pi)
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can be interpreted as ’features’ and traditional statistical classifiers can be de-
fined [28,15]. Although the classifiers are trained on D(·, R), the weights are still
optimized on the complete set T . Thereby, they can outperform the k-NN rule
as they become more global in their decisions.

Normal density-based classifiers perform well in dissimilarity spaces [27,28,15].
This especially holds for summation-based dissimilarity measures, summing over
a number of components with similar variances. Such dissimilarities are approxi-
mately normally distributed thanks to the central limit theorem (or they approx-
imate the χ2 distribution if some variances are dominant) [15]. For instance, for a
two-class problem, a quadratic normal density based classifier is given by
f(D(x, R)) =

∑2
i=1

(−1)i

2 (D(x, R)−mi)TS−1
i (D(x, R)−mi) + log p1

p2
+ 1

2 log |S1|
|S2| ,

where mi are the mean vectors and Si are the class covariance matrices, all esti-
mated in the dissimilarity space D(·, R). pi are the class prior probabilities. By re-
placing S1 and S2 by the average covariance matrix, a linear classifier is obtained.

The two learning frameworks of pseudo-Euclidean embedding and dissimi-
larity spaces appear to be successful in many problems with various kinds of
dissimilarity measures. They can be more accurate and more efficient than the
nearest neighbor rule, traditionally applied to dissimilarity data. Thereby, they
provide beneficial approaches to learning from structural object descriptions for
which it is more easy to define dissimilarity measures between objects than to
find a good set of features. As long as these approaches are based on a fixed
representation set, however, class overlap may still arise as two different objects
may have the same set of distances to the representation set. Moreover, most
classifiers used in the representation spaces are determined based on the tradi-
tional principle of minimizing the overlap. They do not make a specific use of
principles related to object distances or class domains. So, what is still lacking
are procedures that use class distances to construct a structural description of
classes. The domain-based classifiers, introduced in Section 3, may offer that in
future provided that the representation set is so large that the class overlap is
(almost) avoided. A more fundamental approach is described below.

Topological spaces. The topological foundation of proximity representations
is discussed in [15]. It is argued that if the dissimilarity measure itself is un-
known, but the dissimilarity values are given, the topology cannot, as usual, be
based on the traditional idempotent closures. An attempt has been made to use
neighborhoods instead. This has not resulted yet in a useful generalization over
finite training sets.

Topological approaches will aim to describe the class structures from local
neighborhood relations between objects. The inherent difficulty is that many of
the dissimilarity measures used in structural pattern recognition, like the nor-
malized edit distance, are non-Euclidean, and even sometimes non-metric. It has
been shown in a number of studies that straightforward Euclidean corrections are
counter productive in some applications. This suggests that the non-Euclidean
aspects may be informative. Consequently, a non-Euclidean topology would be
needed. This area is still underdeveloped.
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A better approach may rely on two additional sources of information that are
additionally available. These are the definition of the dissimilarity measure and
the assumption of class compactness. They may together tell us what is really
local or how to handle the non-Euclidean phenomena of the data. This should
result in a topological specification of the class structure as learned from the
training set.

5 Structural Representation

In the previous section we arrived at a structure of a class (or a concept), i.e. the
structural or topological relation of the set of all objects belonging to a partic-
ular class. This structure is influenced by the chosen representation, but is in
fact determined by the class of objects. It reflects, for instance, the set of con-
tinuous transformations of the handwritten digits ’7’ that generate exclusively
all other forms that can be considered as variants of a handwritten ’7’. This
basically reflects the concept used by experts to assign the class label. Note,
however, that this rather abstract structure of the concept should be clearly dis-
tinguished from the structure of individual objects that are the manifestations
of that concept.

The structure of objects, as presented somewhere in sensory data of images,
such as time signals and spectra, is directly related to shape. The shape is a
one- or multi-dimensional set of connected boundary points that may be lo-
cally characterized by curvature and described more globally by morphology
and topology. Note that the object structure is related to an outside border
of objects, the place where the object ends. If the object is a black blob in a
two-dimensional image (e.g. a handwritten digit) then the structure is expressed
by the contour, a one-dimensional closed line. If the grey-value pixel intensities
inside the blob are relevant, then we deal with a three-dimensional blob on a
two-dimensional surface. (As caves cannot exist in this structure it is sometimes
referred to as a 2.5-dimensional object).

It is important to realize that the sensor measurements are characterized by a
sampling structure (units), such as pixels or time samples. This sampling struc-
ture, however, has nothing to do with the object structure. In fact, it disturbs
it. In principle, objects (patterns describing real objects) can lie anywhere in
an image or in a time frame. They can also be rotated in an image and appear
in various scales. Additionally, we may also vary the sampling frequency. If we
analyze the object structure for a given sampling, then the object is “nailed”
to some grid. Similar objects may be nailed in an entirely different way to this
grid. How to construct structural descriptions of objects that are independent of
the sampling grid on which the objects are originally presented is an important
topic of structural pattern recognition.

The problem of structural inference, however, is not the issue of representation
itself. It is the question how we can establish the membership of an object to a given
set of examples based on their structure. Why is it more likely that a new object X
belongs to a set A than a set B? A few possible answers are presented below.
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1. X is an example of A, because the object in A ∪ B that is most similar to
X belongs to A. This decision may depend on the accidental availability of
particular objects. Moreover, similarity should appropriately be defined.

2. X is an example of A, because the object from A ∪ B that is most easily
transformed to X belongs to A. In this case similarity relies on the effort
of transformation. This may be more appropriate if structures need to be
compared. The decision, however, still depends on a single object. The entire
sets or classes simply store examples that may be used when other objects
have to be classified.

3. X is an example of A, because it can more easily be generated by trans-
forming the prototype of set A than by transforming the prototype of set B.
The prototype of a set may be defined as the (hypothetical) object that can
most easily be transformed into any of the objects of the set. In this assign-
ment rule (as well as in the rule above) the definition of transformation is
universal, i.e. independent of the considered class.

4. X is an example of A, because it can more easily be transformed from a (hy-
pothetical) prototype object by the transformations TA that are used to
generate the set A than by the transformations TB that are used to gen-
erate the set B. Note that we now allow that the sets are generated from
possibly the same prototype, but by using different transformations. These
are derived (learnt) from the sets of examples. The transformations TA and
TB may be learnt from a training set.

There is a strong resemblance with the statistical class descriptions: classes may
differ by their means as well as by the shape of their distributions. A very
important difference, however, between structural and statistical inference is
that for an additional example that is identical to a previous one changes the
class distribution, but not the (minimal) set of necessary transformations.

This set of assignment rules can easily be modified or enlarged. We like to em-
phasize, however, that the natural way of comparing objects, i.e. by accounting for
their similarity, may be defined as the effort of transforming one structure into an-
other. Moreover, the set of possible transformations may differ from class to class.
In addition, classes may have the same or different prototypes. E.g. a sphere can
be considered as a basic prototype both for apples as well as for pears. In general,
classes may differ by their prototypes and/or by their set of transformations.

What has been called easiness in transformation can be captured by a measur-
able cost, which is an example of a similarity measure. It is, thereby, related to the
proximity approaches, described above. Proximity representations are naturally
suitable for structural inference. What is different, however, is the use of statis-
tical classifiers in embedded and proximity spaces. In particular, the embedding
approach has to be redefined for structural inference as it makes use of averages
and the minimization of an expected error, both statistical concepts. Also the use
of statistical classifiers in these spaces conflicts with structural inference. In fact,
they should be replaced by domain-based classifiers. The discussed topological ap-
proach, on the other hand, fits to the concept of structural inference.

The idea that transformations may be class-dependent has not been worked
out by us in the proximity-based approach. There is, however, not a fundamental
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objection against the possibility to attribute set of objects, or even individual
objects in the training set with their own proximity measure. This will very likely
lead to non-Euclidean data, but we have shown ways how to handle them. What
is not studied is how to optimize proximity measures (structure transformations)
over the training data. A possibility might be to normalize for differences in class
structure by adapting the proximity measures that determined these structures.

There is, however, an important aspect of learning from structures that cannot
currently be covered by domain-based classifiers built for a proximity represen-
tation. Structures can be considered as assemblies of more primitive structures,
similarly as a house is built from bricks. These primitives may have a finite
size, or may also be infinitesimally small. The corresponding transformations
from one structure into another become thereby continuous. In particular, we
are interested in such transformations as they may constitute the compactness
of classes on which a realistic set of pattern recognition problems can be defined.
It may be economical to allow for locally-defined functions in order to derive (or
learn) transformations between objects. For instance, while comparing dogs and
wolves, or while describing these groups separately, other transformations may
be of interest for the description of ears then for the tails. Such a decomposition
of transformations is not possible in the current proximity framework, as it starts
with relations between entire objects. A further research is needed.

The automatic detection of parts of objects where different transformations
may be useful for the discrimination (or a continuous varying transformation
over the object) seems very challenging, as the characteristics inside an object
are ill-defined as long as classes are not fully established during training. Some
attempts in this direction have been made by Pacĺık [29,30] when he tries to
learn the proximity measure from a training set.

In summary, we see three ways to link structural object descriptions to the
proximity representation:
– Finding or generating prototypical objects that can easily be transformed

into the given training set. They will be used in the representation set.
– Determining specific proximity measures for individual objects or for groups

of objects.
– Learning locally dependent (inside the object) proximity measures.

6 Discussion and Conclusions

In this paper, we presented a discussion of the possibilities of structural inference
as opposed to statistical inference. By using the structural properties of objects
and classes of a given set of examples, knowledge such as class labels is inferred
for new objects. Structural and statistical inference are based on different as-
sumptions with respect to the set of examples needed for training and for the
object representation. In a statistical approach, the training set has to be rep-
resentative for the class distributions as the classifiers have to assign objects to
the most probable class. In a structural approach, classes may be assumed to be
separable. As a consequence, domain-based classifiers may be used [18,24]. Such
classifiers, which are mainly still under development, do not need training sets
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that are representative for the class distributions, but which are representative
for the class domains. This is greatly advantageous as these domains are usually
stable with respect to changes in the context of application. Training sets may
thereby be collected by a selective, instead of unselective sampling.

The below table summarizes the main differences between representations
based on features (F), proximities (P) and structures (S) for the statistical and
structural inference.

Statistical inference Structural inference

F
Features reduce; statistical inference The structural information is lost by
is almost obligatory. representing the aspects of objects by

vectors and/or due to the reduction.

P

Proximity representations can be Transformations between the
derived by comparing pairs of objects structures of objects may be used to
(e.g. initially described by features build proximity representations.
or structures). Statistical classifiers Classes of objects should be separated
are built in proximity spaces or in by domain-based classifiers.
(pseudo-Euclidean) embedded spaces.

S

Statistical learning is only possible Transformations might be learnt by
if a representation vector space is built using a domain-based approach that
(by features or proximities), in which transforms one object into another
density functions can be defined. in an economical way.

This paper summarizes the possibilities of structural inference. In particular,
the possibilities of the proximity representation are emphasized, provided that
domain-based learning procedures follow. More advanced approaches, making
a better usage of the structure of individual objects have to be studied further.
They may be based on the generation of prototypes or on trained, possibly local
transformations, which will separate object classes better. Such transformations
can be used to define proximity measures, which will be further used to construct
a proximity representation. Representations may have to be directly built on
the topology derived from object neighborhoods. These neighborhoods are con-
structed by relating transformations to proximities. The corresponding dissimi-
larity measures will be non-Euclidean, in general. Consequently, non-Euclidean
topology has to be studied to proceed in this direction fundamentally.
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