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Abstract. Error correcting output coding is a well known technique to decom-
pose a multi-class classification problem into a group of two-class problems
which can be faced by using a combination of binary classifiers. Each of them
is trained on a different dichotomy of the classes. The way the set of classes is
mapped on this set of dichotomies may essentially influence the obtained perfor-
mance. In this paper we present a new tool, the k-NN lookup table to optimize
this mapping in a fast way and a fast procedure to change the dichotomies in
a proper way. Experiments on artificial and public data sets show that the pro-
posed procedure may significantly improve the ECOC performance in multi-class
problems.
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1 Introduction

A common technique to solve an M class problem is to break the problem into di-
chotomies. Error Correcting Output Coding (ECOC) has arisen as one of the most eli-
gible candidates to substitute monolithic classifier with multiple outputs by an ensemble
of binary classifier. The reasons are mainly based on the stronger theoretical roots and
the good understanding we have of some binary classifiers. The method, as originally
conceived by Dietterich and Bakiri[1]], consists of associating a binary string of length
L to each of the M classes of the problem. This collection of strings is arranged into
a M x L coding matrix. Each column in this matrix defines a binary classification
problem. When a new sample is classified by the L dichotomizers, a new binary string
is obtained, which has to be matched with the existing M binary class codes, using a
suitable decoding technique. This approach has proved to provide a reliable probability
estimation and a concurrent reduction of both bias and variance[2][3]].

The original motivation for this method is based on the error correcting capabilities
of the codes and a great effort has been devoted to improve the coding effectiveness. All-
wein et al.[4] introduced a random technique for distributing the labels into the coding
matrix and defined a weighted decoding technique to improve the performance in terms
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of general classification error. The random codes proved to perform not worse than the
full code (the code containing all possible dichotomies). This leaded to the conclusion
that it is not possible to define a coding strategy which can fit every problem.

Different codes applied to the same data set can yield different results as the classes
may have an asymmetric influence on the problem. Some combinations of classes can
better not be used for a dichotomy as they demand a too complicated base classifier. So
changing the mapping of the classes on the set of dichotomies defined by the coding ma-
trix may influence the performance of the base classifiers and thereby their combination.

Although Crammer et al.[5] demonstrated that designing the best output codes for
a data set, given the set of base classifiers, is a NP-complete problem, approximate
solutions can be practised. The proposal is to define a general framework to relate the
data distribution in the space to the dichotomies and to use it to simplify the binary
subproblems defined by each columns of the code. The class distributions in the feature
space mainly determine the complexity of a classification problem. Some classes are
probably closer than others as well as overlapping in some areas. ECOC provides a new
labeling for these classes for each dichotomy, so the idea is to benefit of those which
distribute binary labels in a proper way, such that a given binary classifier easily solves
the new two class problem.

This target can be reached by permuting the rows of the code and thus changing the
association class - binary string. An improvement on the error rate of the classification
system is then expected by reducing the binary errors for each dichotomizer of the
system. In any case, the idea is extremely powerful, because it will turn useful to analyze
particular coding schemes for ECOC, like the LDPC codes[6] for example, which can
take advantage of some error correcting techniques of general coding theory.

The optimization of the mapping of classes on the set of dichotomies can be pro-
hibitively slow if it is based on retraining the base classifiers for different mappings
or on training a multiple outputs classifier[7]. Moreover, it needs a separate validation
set. We propose a much faster tool, the k-NN look-up table which simulates by k-NN
classification results the use of more advanced base-classifiers. This table looks at the
classes of the nearest k samples for each samples of the set and provides an evaluation
of how easily a sample can be misclassified.

2 ECOC Framework

The ECOC approach consists of associating an L-length binary string (codeword) to
each of the M class of the problem. This collection of strings is organized as an M x L
coding matrix. Every column of the code defines a different binary subproblem that has
to be solved by a dichotomizer as shown in Table[Il In the training phase, the new binary
labels are fed to the binary classifiers. In the operating phase, the trained dichotomizers
provide a string o(x) of L outputs for each sample which has to be classified.

Single errors on some of the L outputs not necessarily lead to the wrong final de-
cision. Some of them can be recovered during the decoding phase performed on the
outputs. Consider the Hamming Distance between two words of the code, i.e. the num-
ber of labels they differ from each other:
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Table 1. Example of an exhaustive coding matrix for a 5 classes problem

classes codewords
f1 f5 f3 £4 £5 f6 £ fs fo fig f11 f12 fi3 fi4 fi5
w1 1111111111111 11
w2 0000 O0OO0OO0ODO0OT1TT1TT1T1TT1TT1:1
w3 OO0 O0OOT17 1T 1 1 0O0O0O0OT1TT11
we OO0 1 1 001 1 001 1 001
ws O 1 01 01 01 O01O0T1O0T1O0
L
Du(cic)) = lein — cjnl- )]
h=1

A decoding technique is applied at the output of the dichotomizers and a sample is
assigned to the k-th class if the Hamming distance between the output word o(x) and
the k-th codeword is minimum:

wk = arg m}}n Dy(cp,0). 2)

The minimum Hamming distance (MHD) between two codewords of a defined code
d = min; j Dg(c;, ¢;) is the most important parameter to take into account, because
it tells how many binary errors can be corrected by the decoding rule. If the MHD
is d, the code is able to correct |(d — 1)/2] single errors from the base classifiers. A
good coding matrix should therefore have a large MHD as possible between the rows
of the code. A second demand, as observed by Dietterich himself, is to have also a good
distance between the columns of the code. Similar columns produce high correlated
classifiers that can easily provide the same errors on the same sample.

It is worth noting that MHD approach ignores the magnitude of prediction. Another
approach based on computing the loss function for each base classifier, combining these
measures into a total loss and minimizing the value has been successfully proposed in
[4]. Notice that the choice of the decoding approach is not important for this paper and
it has been analyzed in other papers [8]] so we opted for the easiest criterion defined
in eq.

3 Reducing the Complexity of the Binary Problems

ECOC operates by binarization of multi class labels. Our aim is to estimate how good
these binarizations/groupings of labels are in the feature space. It is easy to imagine that
some dichotomies lead to simpler binary problems, separable by less complex classi-
fiers, and some other to more complex ones that are hard to solve and quite complicated
for a linear classifier.

It is worth noting that, once a random coding matrix C' for a multi class problem is
defined, the association between class label and binary codeword has an important role
in the final performance of the system for the above given reason. The problem can be
seen as a matter of finding the best grouping out of all possible labelings. The main
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Fig. 1. An example of a 4 classes problem and some possible kind of binary coding for classes

idea is that a good relabeling is the one that groups together close classes in the feature
space, so as to define the simplest possible binary problems.

In Fig. [T a four class problem is shown in the top left corner. Each class is perfectly
separable from the others. It is possible to solve this problem using the ECOC tech-
nique and given a low complexity classifier (a logistic one for example). Intuitively
some grouping of labels are easier to solve. Putting together classes AB vs CD (top
right), adopting a [0011]7 dichotomy, or AC vs BD (bottom left), adopting a [0101]7
dichotomy, the logistic classifier easily solves the problem, while it is not able to come
up with a solution for the dichotomy [1001]%" (bottom right).

What is needed is a tool to evaluate the difference between these dichotomies and
possibly rank them. Notice that we assume that the coding matrix is given, and that we
only want to optimize the association of the rows with the classes. We do not consider
the problem of finding the best coding matrix as in some previous works|[[1]] (4].

Moreover it is useful to move toward an optimized view of the problem. If it is
possible to define a tool to evaluate the re-labeling effects of the matrix, it will be
possible to understand which dichotomies are good and which are not for a certain data
distribution. The general problem of ECOC can be somewhat reformulated. It can be no
more necessary to train a lot of classifiers to have very long codewords to be safe against
binary errors, but, employing a suitable relabeling, few classifiers can grant the same
performance obtained from a longer code. On the other hand simpler dichotomies imply
the possibility to use simpler base classifiers. This is an additional reason to choose a
linear classifier in the experiments.
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Once fixed a code C for a M classes problem a fast way to change groupings of
labels is to permute the rows to change the association multi class label - binary label.
We look for the best of this association class-row by evaluating a measure to rank all
the possible matrices obtained by permutations of the rows. A measure m to distinguish
the “quality” of the binary subproblems will be defined in the next section.

Moreover, it is worth noting that not all the possible permutations for a fixed coding
matrix need to be examined, because a lot of them are effectively the same matrix
with the same columns/dichotomies, but with different indexes. In order to simplify the
search, we use a simple procedure of switching only two rows and analyze the resulting
coding matrix. This means that, on the first stage of the algorithm, M x (M — 1)
possible codes are created by switching two rows and the top one in terms of the quality
parameter m is picked. The procedure which switches two rows is repeated on the new
candidate code until there is no improvement. The following algorithm summarizes our
procedure:

Algorithm 1. Permute and Search C

Compute m for C'
while m is not improved do
fori=1to M do
forj=1to M, j #ido
Swap i-th and j-th rows generating C™*
Compute the new quality measure m*
if m* < m then
SetC =C*",m=m"
end if
end for
end for
end while

4 Measuring the Quality of the Coding

The next step is to define how to measure the parameter m for algorithm [Il To this
aim, a k-NN look-up table (example shown on the left of fig.2)) is built, where, for each
sample of the set, all the labels of the first k nearest neighbors are stored.

The defined coding matrix C' gives the correspondence between the multi class labels
and the binary ones for each dichotomy. Consider a training set S = {(x1,y1), .-,
(xn,yn)}, where x; is a sample and y; € {1, .., M} is the class label. As shown in fig.
[l for each dichotomy j of the coding matrix, the multi class label of the k-NN look-up
table can be substituted by the binary one and the £-NN rule (f;) can be evaluated for
each sample. The error rate is then computed by:

1 N
£ = NZI(fj(xi) # ) forj=1,.., L. 3)

i=1
It is worth noting that this procedure does not go through massive training and com-
bining of base classifiers, but the most expensive computations are done on the look-up
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Fig. 2. k-NN look-up table

table itself. The value we wish to minimize is then the mean of this error rate over the
L dichotomies:

1 L
m= Zlglj. @)
=

It could be argued that also the error rate on computing the multi class labels could
be computed at this stage. By evaluating the Hamming distance between the code and
the collection of outputs of the binarized look-up tables a decoding technique has to
be applied similarly to what is done with the ECOC itself. This measure has not been
employed for two reasons. First the computation of the Hamming distance strongly
enlarges the complexity of the framework, reducing all the benefits we had for the
evaluation of many different codes in a fast way by replacing multi class labels with
binary labels on the table. Second it is far too optimistic to think that this error rate
computed at this stage and on the training set will behave like a typical ECOC scheme,
which usually employs dichotomizers other than k-NN classifiers.

Attention must be paid to the choice of k. A big k can generate a lot of errors for the
minority classes, while a little £ can not be helpful to understand if some dichotomies
have better performances. Experiments showed that a good rule of thumb, for now, is
to choose a k next to the number of samples of the minority class. This way it should
be avoided the possibility that some classes are encapsulated by others, while the effec-
tiveness of the method is still maintained.

5 Experiments

In order to validate our tool, experiments have been made for an artificial data set and
for two different multi class data sets from the UCI repository [9]. Notice that the given
search algorithm outputs a temporary best code for every while iteration which eval-
vates M x (M — 1) different matrices per time. Every output code for each of these
iterations has been used as coding matrix for an ECOC system. We employed a logistic
linear classifier as base classifier embedding the ECOC framework in the PR tools suite
(http://www.prtools.org). Then, we observed the evolution of the test error at
each step and studied how effective our tool is in providing a reliable evaluation for
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Fig. 3. Concurrent reduction of m and of the test error for the artificial dataset

coding and dichotomies. In fig. Blan example of the concurrent reduction of the quality
parameter m and of the test error for each while iteration of the algorithm [Ilis shown
for one run of experiments on the artificial data set. On the rest of the experimental sec-
tion the results of training and test error are shown only at the starting and at the ending
point of this algorithm.

5.1 Artificial Data Set

The artificial data set is formed by sixteen different classes uniformly distributed in a
square region of a two dimensional feature space, which can be divided in a 4 x 4 pattern
of squares as in fig. [ (Ieft). The ideal coding for this data set is represented by columns
c1 to cg of the code in fig. @ (right), where c; to c3 lead to three horizontal classifier and
c4 to cg to the three vertical, always shown on the same figure.
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Fig. 4. Artificial data set in the two features space and a possible binary coding of the 16 classes
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Table 2. Training and Test error for the Artificial Data Set: (a) ideal code (b) redundant code

P. Simeone et al.

(2)

Artificial Data set
Training Error ~ Test Error
0.7289 0.5045 0.7239 0.5042
0.9629 0.6869 0.9589 0.6815
0.8253 0.5453 0.8240 0.5546
0.9008 0.4865 0.9002 0.4998
0.8652 0.0000 0.8634 0.0007
0.9038 0.7737 0.9055 0.7719
0.9049 0.6224 0.9058 0.6254
0.8818 0.7569 0.8811 0.7583
0.9283 0.0000 0.9269 0.0013
0.8467 0.6858 0.8484 0.6875

(b)

Artificial Data set
Training Error ~ Test Error
0.8278 0.5298 0.8267 0.5289
0.9109 0.7355 0.9098 0.7339
0.8124 0.5449 0.8133 0.5519
0.9004 0.5656 0.8998 0.5436
0.8654 0.5553 0.8638 0.5656
0.8600 0.6303 0.8628 0.6384
0.8176 0.3927 0.8123 0.3863
0.8424 0.4178 0.8457 0.4030
0.8738 0.4381 0.8741 0.4310
0.8467 0.4637 0.8484 0.4711

We scramble ten times these multi class labels in order to have a casual row associ-
ated to a class and for each of these random initialization of the labels we run the search
algorithm. We then wish to process and analyze different codings by permuting rows
of these matrixes through the algorithm[Il Every time the optimum will be to reach the
association multi class labels - binary labels shown in the figure, which correspond to
an error rate of 0.0017.

Results in terms of error rate on the training and the test set are shown on table2}-(a):
each row is one of the ten random initialization, while the train and test error column
presents the values of the error rate, before and after running the algorithm [l Other
experiments were done with a redundant code, where two other columns are added to
the ideal coding and corresponding to a diagonal split of the feature space. This coding
is accomplished by the dichotomies 71 and 75 of the code in fig. [ (right). Results of
these experiments are on table PH(b). The best error rate attainable with the entire code
(c1 - cg and rq - 7r2) is 0.0785.

Observing the tables it is clear how the procedure always performs a reduction of
both the error rates and we obtain the best performance on two runs for the code ¢; — cg.
In order to obtain the best association class-row we suggest then to carry out the random
initialization procedure. The redundant code results also shows how the method always
reduce the error rate, but the best performance is not reached because of the algorithm,
which is only suboptimal and does not analyze a sufficient number of permutations to
succeed. In both tables the best error rate attainable is bolded.

5.2 Public Data Sets

Differently from the previous set of experiments two real data sets from a public repos-
itory are chosen (characteristics showed in tab. ) and ten cross validation folders are
created for them. To fix the perfect choice of a coding matrix for the ECOC is beyond
the purposes of this paper. We are interested in demonstrating that the tool is useful
in understanding the best coding scheme for the ECOC. A random and short matrix
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Table 3. Public data sets and coding matrices used in the experiments

Data Sets # Classes # Features Coding Matrix Length (L) # Samples
Satlmage 6 36 Random 15 5470
Letter 26 16 Die. 26-15 15 2970

is fixed for the SatImage data set, while for the Letter data set a code is selected from
the set provided by Dietterich on his web page, just to make even more clear that the
performance improvement does not involve the choice of the coding matrix. Even in
this case, a multiple initialization procedure is done, randomly associating the classes
to the rows of the coding, providing this way a different starting point for each run of
the experiments.

Each row of table Ml is one of the initialization of the multi class labels, while train
and test error columns are split into two columns: the first indicates the original error
rate and the second is the error rate reached by the suboptimal procedure operated by
the algorithm[Il It is clear that on SatImage data set (table[3l-(a)) the error rate is always
reduced as it happens for the parameter m, while this is not always true for the Letter
data set (table Bl(b)).

These experiments show how the procedure is only suboptimal, because it always
analyzes a number of coding matrices equal to M x (M — 1) x W, where W is the
number of while cycles of the algorithm[Il For the Letter data set , for example, the total
number of possible permutation of rows is 26!, while the algorithm tests 26 x 25 x 17
different codes, i.e. a limited number of all the possible configurations. Satlmage data
set instead was analyzed for a number of combinations which was over the half of the
number of permutations (6!) and the probability to find the best combination of rows
is certainly higher. Another problem is in the choice of the base classifier, because it
is probably hard for the logistic classifier to solve the binary problems defined by the
dichotomies. This explains how the reduction of the quality parameter could not be in
accordance with the reduction of the error rate sometimes. In both tables the best error
rate attainable is bolded.

Table 4. Training and Test error for the for the Public Data Sets:(a) Satimage and (b) Letter

(a) (b)
Satimage Data set Letter Data set
Training Error ~ Test Error Training Error ~ Test Error

0.1956 0.1710 0.2041 0.1786
0.1925 0.1710 0.1960 0.1786
0.1962 0.1910 0.2014 0.1946
0.2005 0.1910 0.2053 0.1946
0.2230 0.1710 0.2306 0.1786
0.2003 0.1910 0.2057 0.1946
0.1725 0.1710 0.1805 0.1786
0.2018 0.1710 0.2047 0.1786
0.1889 0.1710 0.1940 0.1786
0.1926 0.1910 0.2005 0.1946

0.6079 0.6188 0.6188 0.6289
0.6119 0.6124 0.6281 0.6239
0.6350 0.6150 0.6487 0.6217
0.6499 0.6285 0.6595 0.6333
0.6214 0.6235 0.6289 0.6373
0.6310 0.5985 0.6441 0.6135
0.6635 0.6302 0.6675 0.6439
0.6189 0.6352 0.6319 0.6492
0.6689 0.6284 0.6738 0.6412
0.6636 0.6117 0.6789 0.6304
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6 Conclusions and Future Works

In this paper we proposed a fast and flexible tool to optimize the mapping between
classes and the dichotomies defined in a chosen coding matrix. Both artificial and pub-
lic data sets experiments validated our hypotheses. Using the random initialization pro-
cedure, on many cases we experienced the best performance. This suggests that many
random initializations can be advantageous in order to find the best settings. A more
appropriate and smart algorithm will be employed in the future works in order to fix the
problems experimented with a huge data set like Letter.

Another known problem to fix is how to use the tool for an unbalanced data set.
Future work will focus also on finding the optimal value of k in order to solve it. More-
over we will verify if the tool can be used to build a proper coding matrix from the data
starting from the £-NN look-up table.
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