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Abstract. Non-Euclidean dissimilarity measures can be well suited for
building representation spaces that are more beneficial for pattern classi-
fication systems than the related Euclidean ones [1,2]. A non-Euclidean
representation space is however cumbersome for training classifiers, as
many statistical techniques rely on the Euclidean inner product that is
missing there. In this paper we report our findings on the applicability
of corrections that transform a non-Euclidean representation space into
a Euclidean one in which similar or better classifiers can be trained. In
a case-study based on four principally different classifiers we find out
that standard correction procedures fail to construct an appropriate Eu-
clidean space, equivalent to the original non-Euclidean one.

1 Introduction

In various pattern recognition applications the knowledge on a set of objects can
be encoded with dissimilarity functions, which relate new objects to be classified
to the training set. The main reason for such a preference is the difficulty of
defining good features. In particular, structural descriptions of objects are an
example of this. Instead of a feature-based approach, string matching or graph
matching procedures can be applied [3,4,5,6], leading to (dis)similarity data.

In spite of the lack of a good feature representation, various tools have become
available that build statistical pattern classifiers on dissimilarity data. This is
possible thanks to the techniques that embed arbitrary dissimilarity functions
into a fixed-dimensional vector space. Many successful examples are reported;
see e.g. [7,8]. Some of these mappings are hampered by the use of non-Euclidean
dissimilarity measures. These usually result from various matching procedures
or when robustness or invariance are incorporated into the measure [9]. Conse-
quently, a Euclidean embedding becomes imperfect and may loose information.
In [1,2] we showed that classifiers based on non-Euclidean dissimilarity represen-
tations may lead to better results than those based on transformed dissimilarity
measures that are either Euclidean or have reduced non-Euclidean component. In
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a series of 44 related experiments we found out that a significantly non-Euclidean
measure performed best [2].

Non-Euclidean vector spaces, e.g. pseudo-Euclidean ones, are however not well
equipped with the tools for training classifiers. Distances have to be computed
in a specific way and are usually not invariant to orthogonal rotations. Densities
may not be properly defined. Some density-based classifiers may still be used,
albeit with some restrictions. So, Euclidean corrections become of interest. They
have recently gained more attention, especially in relation to Support Vector Ma-
chines (SVMs) for indefinite kernels. Such kernels arise from similarity measures
related to non-Euclidean dissimilarity ones. In general, they cannot guarantee a
unique solution of SVM by quadratic programming [10]. Euclidean corrections
may therefore be useful for SVMs if one deals with indefinite kernels, resulting
e.g. from a kernel combining procedure or incorporation of invariance.

Many of the Euclidean corrections result in a continuous one-to-one corre-
spondence between a non-Euclidean representation and the resulting Euclidean
space. Consequently, vectors separating the classes in one space, separate the
classes in the same way in the other space. This thereby gives hope that such
corrections may determine a Euclidean space that can equally well (or even
better) be used to train good classifiers.

In this paper we set out to study a set of Euclidean correction procedures
on the basis of the performances before and after the correction. This topic
is also discussed by [11]. We will present an experimental study based on four
classifiers. These are local and global distance-based classifiers, such as 1-Nearest
Neighbor rule (1-NN) and Nearest Mean Classifier (NMC), and local and global
density-based classifiers, such as Parzen classifier with a small kernel width and
Quadratic Discriminant Analysis (QDA). We focus on the same problem as
studied in our previous papers on this topic [1,2]: the weighted edit distance
between a set of contours obtained from the Chicken Pieces data [12].

The paper is organized as follows. Section 2 explains the Euclidean correc-
tion procedures. Section 3 summarizes the classifiers we use. Experiments are
presented in Section 4, while conclusions are discussed in Section 5.

2 Euclidean Correction Procedures

Our starting point is a set of objects X = {x1, . . . , xm} and a symmetric dissim-
ilarity function that compares pairs of objects. This leads to a symmetric m×m
dissimilarity matrix D := (dij), where dij = d(xi, xj) and dii = 0. Such a matrix
can be perfectly embedded in a pseudo-Euclidean space (PES) E by an isomet-
ric, distance-preserving, mapping [13,7]. E = R

(p,q) = R
p ⊕R

q is a real vector
space equipped with a non-degenerate indefinite inner product 〈·, ·〉E which is
positive definite on R

p and negative definite on R
q. E is characterized by the

signature (p, q). This PES is determined by eigendecomposition of an (indefi-
nite) Gram matrix G = − 1

2JD∗2J derived from D. J is the centering matrix,
while D∗2 = (d2

ij); see [13,7] for details. In this decomposition p positive and
q negative eigenvalues arise, indicating the signature of E . The axes of E are
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constituted by
√

|λi|qi, where (λi,qi) is the corresponding eigenvalue-
eigenvector pair of G. Note that the resulting configuration is uncorrelated and
λi capture the variances of the embedded data.

Distances in E are defined as the square pseudo-Euclidean distance d2
E (x,y) =

〈x−y,x−y〉E = d2(xp,yp) − d2(xq,yq) for x,y ∈ E . The ”-” sign distinguishes
the pseudo-Euclidean distance from the Euclidean one. p+q = m−1 holds in
a full embedding. It is perfect because the distances between the embedded
PES vectors are equal to the original ones. In practice, the dimensions of PES
related to small eigenvalues are discarded, which leads to more stable and better
defined classifiers. Here we restrict ourselves to a full embedding because we
want to make the comparisons with Euclidean corrections independent from the
estimation of intrinsic dimension (i.e. number of significant eigenvalues). This
has however consequences for some classifiers as appropriate regularization may
be necessary. Euclidean correction procedures are described below.

The Positive part of the Pseudo Euclidean Space (PPES)
The most obvious correction for a pseudo-Euclidean space R

(p,q) is to neglect
the negative definite subspace. This results in a p-dimensional Euclidean space
R

p with many-to-one mappings to E . Consequently, it is possible that the class
overlap increases. It may, however, be worthwhile if the negative eigenvalues in
the embedding procedure are mainly the result of noise and not informative for
the class separation. In that case this correction may improve the classification.

The Associated Euclidean Space (AES)
Since R

(p,q) is a vector space, we can equip it with the traditional inner product,
which leads to the so-called associated Euclidean space R

p+q. It means that
the vector coordinates are identical to those of PES, but now we use the norm
and distance measure that are Euclidean. This is consistent with the natural
topology of a vector space. This solution is identical to the one obtained by
classical scaling based on the magnitudes of eigenvalues [14,7].

Dissimilarity Enlargement by a Constant (DEC)
Instead of modifying the embedding procedure, the dissimilarity matrix may
be adapted such that it is embeddable into a Euclidean space. A simple way
to avoid the negative eigenvalues is to increase all off-diagonal elements of the
dissimilarity matrix such that d2

c(xi, xj) = d2(xi, xj)+2c, ∀i�=j. The value of c is
chosen such that c ≥ −λmin, where λmin is the smallest negative eigenvalue in
the pseudo-Euclidean embedding of D. As a result, all eigenvalues are increased
by c [7]. In our experiments we set c = −λmin. Since the eigenvalues reflect
the variances of the embedded data, the dimensions of the resulting Euclidean
space are unevenly scaled by

√
λi + c. Note that the dimension with the largest

negative contribution in PES has now a zero variance. In this way, dimensions
related to noisy negative eigenvalues are more pronounced. [7]

Relaxation by a Power Transformation (Relax)
Another way to adapt the dissimilarity matrix such that it is embeddable into
a Euclidean space is to suppress the influence of large distances by a suitable
concave transformation. Here, we relax the dissimilarity values by taking a small
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power: dr(xi, xj) = dα(xi, xj), ∀i,j . For small values of α, 0 < α < 1, the dissimi-
larity values become increasingly more alike, by which the objects can eventually
be embedded in a Euclidean space. We set α = 0.1 in all experiments as it is
just a sufficient value for the worst cases.

Laplace Transformation (Laplace)
We focus now on Euclidean corrections based on differential geometric properties
of the given problem. We look for a smooth transformation T that changes
large distances, but preserves the local structure as well as possible. Minimizing
with respect to an objective functional, one may find a relation between the
original distances, approximated by geodesics on a smooth manifold, and the
Euclidean ones. For this purpose, we consider the following Hilbert-Schimdt
operator T : L2 → L2 acting in a Hilbert space of functions from L2:

Tf(x) =
∫

X

D(x, y)f(y)dμ(y). (1)

It is a compact linear operator associated to the kernel D(x, y), represented by
the dissimilarity matrix D. T is defined on all configurations of our data points
as specified by the function f . We assume that the data are distributed according
to some unknown but finite probability measure μ(y). Hence, by defining a prob-
ability density function (pdf) p(y), we have dμ(y) = p(y)dy. Now a normalized
kernel of the operator (1) can be constructed as Dp(x, y) = D(x,y)

p(x)p(y) . Consider
now a normalization of T as

Tνf(x) =
1

ν2(x)

∫

X

Dp(x, y)f(y)dy, (2)

with respect to the global scaling specified by the function ν2(x) =
∫

X
Dp(x, y)dy,

which is well defined iff Dp(x, y) ≥ 0. The resulting stochastic operator Tν is
widely used in spectral graph theory and usually referred to as a normalized
graph Laplacian L = I − Tν [15]. L has a positive spectrum, by construction.
Indeed, thanks to normalization, the spectrum of Tν belongs to a sphere of
radius 1. Moreover, the eigenfunctions of Tν are identical to those of L, lead-
ing to the same data configuration. Tν has an asymmetric kernel due to the
applied normalization. We can overcome this by working with its symmetric
conjugate. For that, we conjugate Dp(x, y) with ν, and get a new normalized
kernel Dν(x, y) = Dp(x,y)

ν2(x) · ν(x)
ν(y) = Dp(x,y)

ν(x)ν(y) . The associated operator is defined as

T̂νf(x) =
∫

X

Dν(x, y)f(y)dy, (3)

and the Laplacian is L̂ = I − T̂ν . The optimal solution for f yields the largest
correlation between f and T̂ν . As (3) is an averaging operator, this corresponds
to the flattest configuration of the data in a Hilbert space. To obtain Euclidean
distances from the Laplacian, we solve the following optimization problem

min γ
s.t. γI − L̂ 
 0, γ ≥ 0,
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where the first constraint is equivalent to (γ − 1)I + T̂ν 
 0, while 
 denotes
non-positive definiteness. This is equivalent to adding a constant to the spectrum
of T̂ν to make it non-positive definite, i.e. to represent Euclidean distances [14].

3 Classification Procedures

Generalization capabilities of classifiers in a vector space are based on two princi-
ples: densities and distances, related to generative and discriminative approaches,
respectively. Objects are either classified into the most probable class derived
from densities and prior probabilities, or into the class that is in some sense the
nearest. Many classification algorithms rely on both principles, e.g. density esti-
mators like Parzen and k-NN use distances between objects while distance-based
classifiers like Fisher’s Linear Discriminant and SVMs make use of parameter
optimization procedures that somehow depend on the probability density of
training vectors and not just their distances.

Both general densities and distances are not yet well formulated in PES,
differently than in AES. E.g. we are not aware of the definition of a Gaussian
distribution directly in PES, although the related quadratic classifier can easily
be computed as it appears to be independent of the signature of the space.
In fact, it can be computed directly in AES. Formally, the definition of a pdf
does not make use of a metric, as the computation of integrals over volumes is
sufficient. For the estimation of a pdf from a finite set of points, however, the
metric may be very useful.

Pairwise distances between vectors are well defined in PES. Consequently, the
1-NN rule and also the Parzen classifier can be used. The interpretation of the
latter as a consistent Bayes classifier for an appropriate asymptotic choice of its
kernel function has still to be investigated. Distances between vectors and class
boundaries, even if they are linear, are not well formulated in PES. Vectors on
a linear boundary may have arbitrary large negative distances to the vectors on
both sides of that boundary. An exception is the Nearest Mean Classifier, given
that the contribution of the R

q-subspace to the distances is smaller than of the
R

p-subspace. It produces a linear boundary, but its interpretation as the nearest
class mean remains valid, because class means are properly computed.

We will use a consistent set of classifiers in order to compare different rep-
resentation vector spaces. Four essentially different classifiers are selected in a
Euclidean space such that they can also be computed in PES, but whose prop-
erties have to be still analyzed in the future. These are:
– 1-NN, the Nearest-Neighbor rule. It can directly be applied to a given dis-

similarity matrix. Hence, embedding is not necessary.
– NMC, the Nearest Mean classifier. It is a global distance-based classifier (as

it depends on all objects). Class means and distances of objects to these
means have to be computed in the embedded PES.

– Parzen, a local-density based classifier. We use the same radial basis function
as a kernel for all classes. The resulting classifier is thereby independent of
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the dimensionality and is a function of the distances between training and
test objects. Consequently, it can be computed directly on the dissimilarity
matrix. In order to have a consistent choice for the kernel width over various
representation spaces we set it to 0.1 of the 1% percentile of the distance
distribution in the training set. This is a small value, in agreement with our
intention to create a local density-based classifier.

– QDA, a global density-based classifier in a Euclidean space, equivalent to the
Bayes classier assuming Gaussian class distributions. It is a global classifier
as it everywhere depends on all training objects. As the dimension of PES
is m−1 for a set of m objects it is necessary include some regularization. In
order to compare over different representation spaces with different scalings
we use QDA in a reduced PCA-space with a fixed dimension.

It is not our intention here to find the best classifier for a given problem. Instead,
we want to investigate how different classifiers behave over several transforma-
tions, in order to characterize these transformations. We believe that the wide
spectrum of the properties of the chosen classifiers serves thereby our target.

4 Experiments

We focus on a single problem, also studied by us before [1,2], based on
the Chicken Pieces data [12]. It consists of 446 binary images represent-
ing five classes of chicken parts: wing (117 examples), back (76), drumstick
(96), thigh and back (61), and breast (96). We estimate class prior proba-
bilities by class frequencies here. Object contours are first approximated by
straight line segments of a fixed length L; 5 ≤ L ≤ 40 pixels. The se-
quence of angles between the neighboring segments becomes the initial string
representation for which a family of edit distances [3] is derived. Insertion
and deletion costs are set to 45 degrees, while the substitution cost is the
magnitude of angle differences. The dissimilarity matrices are available from
http://www.iam.unibe.ch/fki/databases/string-edit-distance-matrices/. The
asymmetric dissimilarities are made symmetric by averaging, dij = (dij +dji)/2.

Every dissimilarity matrix DL from the family of edit-distances, 5 ≤ L ≤ 40,
is perfectly embedded in PES. The fraction of negative eigenvalues grows with
increasing L indicating that the dissimilarity measure becomes increasingly non-
Euclidean. After embedding (defined by all data), the performance of the four
classifiers is computed for all values of L by averaging over ten runs of the
10-fold cross-validation. Experiments are handled with care; the same objects
are used for training and testing in identical runs over different classifiers and
different values of L. This results in smooth curves with reliable differences in
classification performance for the given dissimilarity data.

The performance of four classifiers in six representation spaces is presented in
Fig. 1 and 2. They show the same curves, organized either by classifier (Fig. 1)
or by space (Fig. 2). The 1-NN results are essentially identical for the PES, DEC
and Relax representations as monotonic transformations preserve the ranking of
dissimilarity values. The 1-NN rule performs identically for the PPES and AES
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Fig. 1. Averaged 10-fold cross-validation performance of four classifiers in six repre-
sentation vector spaces, shown by classifier. L (indicating different edit-distance data)
is varied along the horizontal axis. In the top-left plot (1-NN), the curves for the PES,
DEC and Relax cases are identical as well as the curves for AES and PPES. The curves
for PES and PPES coincide in the top-right plot (Parzen). Standard deviations over
the 10 repetitions are smaller than 0.01 everywhere.

cases and the Parzen classifier gives the same results for the PES and PPES
cases. The following observations can be made w.r.t. various transformations:

– PPES (neglecting all ’negative’ dimensions in PES) deteriorates the 1-NN
results, but does not influence other classifiers. So it destroys very local dis-
tances without influencing the large ones. It also does not affect the densities.

– AES interprets PES as Euclidean, worsens the performance of locally-
sensitive classifiers (1-NN, Parzen), but leaves the globally sensitive clas-
sification unaffected.

– DEC. Although this monotonic transformation preserves the ranking of dis-
similarities, and so the 1-NN performance, it negatively influences the local
densities, and thereby the Parzen results.

– Relax. The power transformation of the dissimilarities leads to better results
than the DEC space. Parzen is less affected and NMC is even improved.

– Laplace. This shows an interesting result. The 1-NN performance improves
but other classifiers deteriorate (Parzen and NM) or stay equal (QDA).



558 R.P.W. Duin et al.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

M
ea

n 
E

rr
or

, 1
0x

10
 X

V
al

PES    

1−NN
Parzen
NM
QDA

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

M
ea

n 
E

rr
or

, 1
0x

10
 X

V
al

PPES   

1−NN
Parzen
NM
QDA

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

M
ea

n 
E

rr
or

, 1
0x

10
 X

V
al

AES    

1−NN
Parzen
NM
QDA

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

M
ea

n 
E

rr
or

, 1
0x

10
 X

V
al

DEC    

1−NN
Parzen
NM
QDA

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

M
ea

n 
E

rr
or

, 1
0x

10
 X

V
al

Relax  

1−NN
Parzen
NM
QDA

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

M
ea

n 
E

rr
or

, 1
0x

10
 X

V
al

Laplace

1−NN
Parzen
NM
QDA

Fig. 2. Averaged 10-fold cross-validation performance of four classifiers in six repre-
sentation vector spaces, shown by space. The curves for the 1-NN rule and Parzen
(almost) coincide in AES. Standard deviations are smaller than 0.01 everywhere.

We observe that locally-sensitive classifiers are especially affected by the trans-
formations. NMC and QDA remain stable or even improve (NMC by Relax).
Parzen always deteriorates (except for PPES), and 1-NN deteriorates by PPES
and AES, remains unaffected by DEC and Relax, and improves by Laplace.

Additional experiments are run for the best case, L = 30. The learning curves
in Fig. 3 show no surprises: the relative performances of the classifiers are rather
stable for the used sizes of the training set (90% from 445 objects). This indicates
that the used data set is sufficiently large for the comparisons.
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Fig. 3. Learning curves for the four classifiers in six representation spaces. Standard
deviations are smaller than 0.002 everywhere.

5 Conclusions

In this paper we analyze the effect of Euclidean corrections for non-Euclidean
dissimilarity data embedded in a pseudo-Euclidean space. We use a consistent
and diverse set of classifiers that could be computed in the pseudo-Euclidean
and Euclidean spaces. Our experiments rely on embedding both training and
test data simultaneously (without using the labels of the test data). It is to be
expected that all classifiers will perform worse if the test data are projected
afterwards. We found that globally-sensitive classifiers are hardly affected by
the correction procedures. The local distance-based 1-NN rule is insensitive to



560 R.P.W. Duin et al.

correction procedures that rely on monotonic transformations of the original
dissimilarities. Other transformations that neglect or correct the contribution of
negative eigenvalues (scaling dimensions of the embedded space), severely dete-
riorate the performance. In addition, we also introduced the Laplace correction
for dissimilarity data and found that it might increase the 1-NN accuracy.

All correction procedures, including Laplace, deteriorate the results of the
Parzen classifier for small kernels. This shows that the local structure in the
data is damaged even though the nearest neighbor relations remain constant
or are improved. The local separation capabilities based on densities may suffer
from all attempts to correct the dissimilarities into a set of distances embeddable
into a Euclidean space.

With a few minor exceptions we did not find any improvements of the classi-
fiers after the Euclidean correction. So, such corrections do not seem worthwhile
as general procedures for improving the generalization possibilities of the data
in our example. Corrections need to be studied in relation with a classifier.
Note that the above conclusions need to be handled with some care. There is
a plethora of classifiers available in Euclidean spaces, much richer than the few
ones currently studied in pseudo-Euclidean spaces, even though they still cover
a wide range of generalization principles. It might be possible that very good
classifiers can be found in corrected Euclidean spaces that have no counterpart
(yet) in pseudo-Euclidean space.

Although our analysis is based on a careful study of just a single example, it
still allows us to draw the conclusion that a general profitable correction proce-
dure for non-Euclidean dissimilarities has not been found yet. Such procedures
need thereby to be analyzed in relation with the classifier.
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