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Abstract. In graph comparison, the use of (dis)similarity measurements
between graphs is an important topic. In this work, we propose an eigen-
decomposition based approach for measuring dissimilarities between
graphs in the joint eigenspace (JoEig). We will compare our JoEig ap-
proach with two other eigendecomposition based methods that compare
graphs in different eigenspaces. To calculate the dissimilarity between
graphs of different sizes and perform inexact graph comparison, we fur-
ther develop three different ways to resize the eigenspectra and study
their performance in different situations.

1 Introduction

Graphs are a general and powerful data structure for object representation in
structural pattern recognition[I12]. The nodes in a graph can represent different
parts of a object and the relations between the parts are represented by edges.
Also, labels and attributes for the nodes and edges can further be used to incor-
porate more information in a graph representation. But for simplicity, we only
consider nodes and edges without labels and attributes in this work.

In pattern recognition and other related areas, (dis)similarity among objects
is an important issue. If the graphs are used for object representation, the prob-
lem turns into determining (dis)similarity between objects, which is usually re-
ferred to as graph comparison. In the study of graph comparison, there are two
main directions. One is by comparing their spatial structures and the other is
by comparing their spectral structures. Early approaches to graph comparison
were mainly based on the first. The best known example is maximum com-
mon subgraph [2] where the similarity of two graphs is decided by how much
they spatially share in common. An alternative is the graph edit distance [§]. In
graph edit distance computation, one introduces a set of graph edit operations,
such as deletion, insertion or substitution, to apply on nodes as well as edges.
The edit distance of two graphs is defined as the shortest sequence of edit op-
erations that transforms one graph into the other. These methods for finding
spatial (dis)similarity between graphs are guaranteed to find the optimal solu-
tions but require exponential time and space due to the NP-completeness of the
problem.
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In 1988, Umeyama [6] introduced the spectra of graphs for the exact graph
comparison problem. This approach is based on spectral graph theory that is
concerned with characterising the structural properties of graphs using the eigen-
vectors of the adjacency matrix or the closely related Laplacian matrix (the de-
gree matrix minus the adjacency matrix). To compare two different graphs A
and B, the idea is to transform graph A into the space of graph B. So there exists
an approximated graph A’ of graph A in the space of graph B. The difference
between A and B is actually calculated by the difference between A" and B.
There is another approach for inexact graph comparison based on graph spectra
proposed by Caelli [I]. Instead of transforming graph A into the space of graph
B, it projects graph A into its own eigenspace and the same is done for graph
B. Because graph A and B could have different numbers of nodes, a renormal-
ization step is introduced for eigenspace projections. Therefore, both graphs are
projected into a unit hypersphere defining the eigenspaces. In this renormalized
space, two graphs are close if their rescaled eigenvectors have similar angles and
their eigenvalues are similar. The authors declare that the graph comparison was
done in a common eigenspace of these two graphs, but actually it’s done in their
own eigenspaces but with the common unit hypersphere.

In Umeyama’s method, the graphs are compared in the original space of one
of the graphs, but this is not unique since there are two graphs. As a mat-
ter of fact, we further discover that the projection of graph A in the space of
graph B is actually determined by how the eigenvalues of graph A live in the
eigenspace of graph B. So if we want to have a symmetric dissimilarity mea-
surement using Umeyama’s method, we have to take an average or choose one
of the results from two different eigenspaces, i.e. the eigenspace of A or B. In
Caelli’s approach, the dissimilarities of the graphs are compared by their pro-
jections in their own eigenspaces. For a fair comparison of two graphs, we will
bring them into the same eigenspace and then compare them in this unique
eigenspace. Inspired by Umeyama’s approach, we actually can find an unique
joint eigenspace (JoEig) for both graphs, which is a space with the eigenvec-
tors of both graphs. However, the sizes of these two sets of eigenvectors could
be different and therefore it is essential to adjust these two sets of eigenvec-
tors for sharing the same number of dimensions in order to construct the joint
eigenspace. We study three possibilities for setting the number of eigenvectors
in this work. The first two choices are setting the number of the eigenvectors
according to the size of the larger or the smaller graph, respectively. We study
as well for a number smaller than both of the graphs to emphasize the impor-
tance of larger eigenvalues. We will compare these three settings and discuss
how the dimensionality of eigenvectors effects the performance of classifiers in
the experiments.

The rest of the paper is organized as follows. In Section Bl we introduce
Umeyama’s and Caelli’s approaches for comparing graphs, respectively. Our
graph dissimilarity measurement approach, JoEig, is described in Section [Bl
Simulation results are presented in Section @ Finally, a conclusion is given in
Section
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2 Previous Eigendecomposition Approaches for Graph
Comparison

Before we introduce Umeyama’s and Caelli’s approaches for graph comparison,
some definitions and introduction on graphs are given as in the following.

A graph is a set of nodes connected by edges in its most general form. Consider
the undirected graph G = (V, E, W) with the node set V' = {v1,v2,...,v,}, the
edge set E = {e1,ea,...,en} CV xV, and the weight function W : E — (0, 1].
If the graph edges are weighted, the adjacency matrix A for the graph G is the
n X n matrix with elements

L W(Ui7vj)7 if (Ui7vj) € Ea
Aij = {07 otherwise. (1)

Clearly since the graph is undirected, the matrix A is symmetric. The Lapla-
cian [I0] of the graph is defined by L = D — A, where D is the diagonal node
degree matrix whose elements D;; = 22:1 A;r. The Laplacian matrix of G
is positive semidefinite and singular, and it is more often adopted for spectral
analysis than the adjacency matrix because of its properties.

2.1 An Eigendecomposition Approach for the Weighted Graph
Matching Problem

In 1988, Umeyama [6] developed an eigendecomposition approach for the weighted
graph matching problem. Let G = (Vi, E1,Wh), H = (Va, Ea, Wa) be weighted
graphs with n nodes (these two graphs are with the same size). The weighted
graph matching problem is the problem of finding a one-to-one correspondence
@ between V; = {v1,vs,...,v,} and Vo = {v],vy,...,v,} which minimizes the
difference between G and H. The following criterion is used as a measure of dif-
ference:

J(P)=|PLcP" — Ly|? (2)

where the permutation matrix P presents the node correspondence @ and || - ||
is the Euclidean norm (||L]| = (327, >0, lizj)%). Thus the weighted graph
matching problem is reduced to the problem of finding the permutation matrix
P which minimizes J(P). In general, it is not easy to find the exact solution of
the weighted graph matching problem since it is purely combinatorial. Thus, an
efficient method which gives a "nearly” optimum solution, i.e., a permutation
matrix P’ whose criterion value .J (P') is very close to the optimum value. Since
the optimum criterion value cannot be known in advance, the aim is to determine
a permutation matrix of a small criterion value.

Let G and H be weighted undirected graphs and Lg and Ly be their Laplacian
matrices, respectively. The eigendecomposition of L and Ly are performed as

Le =VeDeVE, Ly = VuDyVE, (3)
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where Vi and Vg are orthonormal matrices and Dg and Dy are diagonal ma-
trices of the eigenvalues (in ascending order) of G and H, respectively. Now if G
and H are isomorphic,

PVeDoVEPT = VgDV, (4)

It means there exists a permutation matrix P that has the one-to-one correspon-
dence of nodes between G and H. Also, the eigenvalues of these two graphs should
be the same. That is, Dg = Dy, and therefore PV = Vg which leads to P =
Vi VE. As aresult, the difference between two graphs can be computed as

VaVE LaVaVE — Lu|?, or |VaVE LuVaVE — La|*. (5)

Even though Umeyama’s approach is only designed for graphs with the same
size, we extend it in this paper to compare it with the other approaches. First
of all, the Lapacian matrix is used instead of adjacency matrix. Secondly, the
eigenvalue and eigenvector matrices are resized because the graphs might be
with different numbers of nodes. We study three different ways for computing
the resized eigenvalue diagonal matrix and the eigenvector matrix, and they
will be discussed further in the next section. Finally, the difference between two
graphs is the difference between two approximations instead of the one between
the original graph and its approximation. This is to prevent asymmetricity which
can easily be seen in Eq.(E]). The difference between two graphs can be different
if the original graph is different. Therefore we use a new criterion for Umeyama’s
approach to make the results symmetric, and that is

\VaVE LeVeVE — VaVELgVaVE |2 = |[VuDeVE — Ve DaVE|?  (6)

By observing Eq. (@), we can see that the approximation of one graph in Umeyama’s
approach is by relocating the other graph’s eigenvalues in its eigenspace. This sug-
gests that the difference between these two approximations is the difference derived
from two different eigenspace.

2.2 An Eigenspace Projection Clustering Method for Inexact
Graph Matching

Subspace projection methods are conventionally used to reduce the dimension-
ality of data by minimizing the number of dimensions and the amount of infor-
mation loss. To solve the inexact graph matching problem, Caelli [I] proposed
an approach to project graphs into their subspaces. Furthermore, to compare
graphs in different subspaces, these subspaces should have the same dimension-
ality. This was done by setting a number k to fix the dimensionalities of these
subspaces. In Caelli’s approach, the graph Laplacian matrix, L, is first decom-
posed into the familiar eigenvalue and eigenvector matrix product L = VDV
as in Eq.(3). The original data is then projected onto a smaller number of k& most
important (i.e., the k largest eigenvalues) principal components.
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To compare the similarities of two vertices from two graphs of different sizes,
an additional renormalization step for such projections was introduced. Both
eigenvector (V) and eigenvalue (D) matrices are truncated according to the
chosen number of projection dimensions (k)-largest eigenvalues and their as-
sociated eigenvectors. The renormalized eigenvectors and eigenvalues become:

’

Vi = I\Ki\l’ D,/,c = Hgi\l' As a result, the renormalized subspace projection of

each vertex (column of L) was obtained as L, = Dy (V). In this renormalized
subspace, vertices from different graphs will be close together if their rescaled
eigenvectors have similar angles and their rescaled eigenvalues are similar. Such
scaling can map initially quite different dimensional vectors into similar positions
in the subspace as long as their eigenspectrum components in this lower dimen-
sional subspace share similar amounts of the matrix variance and the rescaled
unit eigenvectors have similar orientations. It is easy to see that the similarities
are dependent on similar truncated and rescaled eigenspectra as well as similar
unit rescaled eigenvectors but they are independent of the relative sizes of the
original graphs.

To be more precise, in this work, the difference between two graphs using this
method was computed as

1D (Ve)™ = Dy (Vi) (7)

where D' is the resized eigenvalue diagonal matrix while V' is the resized eigen-
vector matrix. The number of the k£ most important components are set to the
size of the smaller graph.

3 JoEig: Graph Comparison in Joint Eigenspace

Unlike the previous methods, which project graphs into different eigenspaces and
compare them, we project each pair of two graphs into a joint eigenspace. This
joint eigenspace is expanded by both set of eigenvectors. Given Eq.([3), we can
further rewrite the equations to

Dy =VELgVy, Dg =VELeVs. (8)
If graph G and H are isomorphic, we will have Dg = Dy and therefore
VELGVe = VELeVy. (9)

By multiplying V& on the left side and Vg on the right side of Eq.()), we can
further derive

LoVaVE =VaVELy. (10)

Therefore, VgV is the joint projection vector for both graphs G and H. By
introducing Eq.(B) into Eq.(I0),we will have

VaDoVEVGVE = VaVEVE Dy VE. (11)
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After removing VZ Vg and VA Vy from Eq.(I),
VaDoViE = Ve DyVE (12)

will be obtained. Therefore, the difference between two graphs using our method
can be defined as

|VaDaVE — VaDyVE |2 (13)

Unlike Umeyama’s method in which the approximation of one graph is defined
by relocating the other graph’s eigenvalues in its own eigenspace, our approach
approximates the graph by relocating its eigenvalues in the joint eigenspace
constructed by the eigenvectors of both graphs as shown in Eq.(3).

However, the sizes of graphs might be different, and therefore it might not
be possible to make a matrix product between Vg and Dy or Vg and D¢ as in
Eq.([@3). A feasible solution is to fix the number of eigenvectors for both graphs.
In this work, we study three possibilities for setting the number of eigenvec-
tors. First, we make full use of the eigenvectors from the larger graph (by larger
graph, we mean graphs with more nodes). In this case, we have to expand the
eigenvectors of the smaller graph with zero vectors and also assign zero eigenval-
ues to them. But this will lower the influence of the smaller graph because the
newly added zero eigenvalue and eigenvectors have limit impact on the results.
On the other hand, we also try to make full use of the eigenvectors from the
smaller graph and keep the same number of eigenvectors and eigenvalues in the
larger graph as in the smaller graph by removing less important eigenvalues and
eigenvectors from the larger graph. Less important eigenvectors are those with
smaller eigenvalues. This, on the other hand, is in favour of the smaller graph.
Moreover, we ignore the size of these two graphs and just pick a reasonable fix
small number of eigenvectors and eigenvalues for both graphs. In this way, the
strength of the relationship inside a graph is more important than the size of
the graph, but it is not easy to choose an appropriate number of eigenvalues and
eigenvectors to use.

4 Experiments

In this section, we compare the JoEig approach with other two methods, i.e.
Umeyama’s and Caelli’s methods, described in Section [2] in the dissimilarity
space [9]. Three classifiers, i.e., linear discriminant (1dc), quadratic discriminant
(qdc) and nearest mean classifier (nmc), are adopted to have a more general
understanding over the performance in the dissimilarity space. Three real-world
datasets, i.e., Mutag [3], House [I3] and Coil-20 [7], are used in the experiments.
We use 60 representative objects to construct the dissimilarity space for the
House and Coil-20 datasets and 30 representative objects for the Mutag dataset.
Also, the eigenvalue diagonal and eigenvector matrices are resized in three dif-
ferent ways. The first is to enlarge the matrices of the smaller graph to the size
of the larger graph, and it is marked as maz in the figures. The second is by
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Fig. 1. Mugtag Dataset: Learning curves of (a) JoEig and Umeyama’s method with
qdc, ldc, and nmc using max and small strategies and (b) all methods with qdc, ldc,
and nmc using min resizing strategies

shrinking the matrices of the larger graph to the size of the smaller graph, and
it is called min. The third one is called small, and it is done by reducing the
matrices of both graphs to the size of the smaller graph minus 5. Moreover, all
the results in the following are the average over 50 repetitions of experiments
resulting in a very small standard deviation.

4.1 Experiment 1: Mutag Dataset

The Mutag dataset consists originally of 230 chemical compounds assayed for
mutagenicity in Salmonella typhimurium. Among the 230 compounds, however,
only 188 (125 positive ones, 63 negative ones) are considered to be learnable [3]
and thus only 188 patterns are used in the simulations.

From Figure[I], it can be observed that under the cases of using a smaller num-
ber of eigenvalues and eigenvectors, nmc performs much better than qdc and Idc
using JoEig and Umeyama’s method, especially with small sample sizes. How-
ever, by using max to enlarge the smaller graph, Umeyama’s method prefers qdc
than nmc while nmc still performs better than qdc with JoEig. Which indicates
that Umeyama’s method using the max strategy brings the data points into a
dissimilarity space where the global distance is not good enough for separating
classes and therefore requires a more complex classifier to fulfill the task.

4.2 Experiment 2: House Dataset

The house dataset contains 101 , 111, and 182 image sequences from three differ-
ent houses, respectively. We extract the feature points using the scale-invariant
feature transform (SIFT) method[5] and then compute the Voronoi tessellations
of the feature points to construct the region adjacency graph, i.e., the Delaunay
triangulation, of the Voronoi regions.

As shown in Figure[2] all methods prefer ldc and qdc over nmc when the max
strategy is used, but nmc is more preferable when the min strategy is adopted.



42

W.-J. Lee and R.P.W. Duin

—6— JoEig-qdc-max
JoEig-Idc-max
—w— JoEig-nme-max
- ©- Umeyama-qdc-max
- - = Umeyama-Idc-max
- _ .- =P~ _|= %= Umeyama-nmc-max
> —p— JoEig-qdc-small
—%— JoEig-Idc-small
—§— JoEig-nmc-small
- P>- Umeyama-qdc-small
- # - Umeyama-Idc-small
= € = Umeyama-nmc-smal|

error rate (%)

054 —O—JoEig-qde-min _|d
-] —— JoEig-ldc-min
—w— JoEig-nmc-min
= © - Umeyama-—qdc-min
02 - ; = = = Umeyama-lde-

== Caelli-lde
=%=Caelli-nme

>

02 0.3 0.7 0.8 02 03 0.4 05 0.6 07 0.8

(a) (b)

Fig. 2. House Dataset: Learning curves of (a) JoEig and Umeyama’s method with qdc,
ldc, and nmc using max and small strategies and (b) all methods with qdc, 1dc, and
nmc using min resizing strategies
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Fig. 3. House Dataset: Learning curve of (a) quadratic discriminant and (b) nearest
mean classifier using JoEig, Umeyama’s, and Caelli’s methods for graph comparison

training data patterns (%)

Compared to the other two datasets, the graphs in this dataset are relatively
more similar and therefore their relative distances are also closer. Which makes
the global distance of not so great help in separating these three classes. However,
selecting a small number of eigenvalues and eigenvectors to reconstruct the graph
distances in the dissimilarity space seems to enhance the distance between graphs
and makes it an easier task for nmc to handle. From Figure[3] we can also observe
that nmc performs better with small and min strategies and qdc is better with
the max strategy.

4.3 Experiment 3: Coil-20 Dataset

The Coil-20 contains multiple views of the same object in different poses with
respect to the camera. There are originally 20 objects (classes) in the data, but
we only use 5 objects and in total 358 images to form the dataset. Graphs are
derived with the same method described in Section
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Fig. 4. Coil-20 Dataset: Learning curves of (a) JoEig and Umeyama’s method with
qdc, ldc, and nmc using max and small strategies and (b) all methods with qdc, ldc,
and nmc using min resizing strategies
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Fig. 5. Coil-20 Dataset: Learning curve of (a) quadratic discriminant and (b) nearest
mean classifier using JoEig, Umeyama’s, and Caelli’s methods for graph comparison

As given in Figure[d] again we discover that nmc performs better with JoEig
and Umeyama’s method using different resizing strategies despite the fact that
COIL-20 dataset is with a much more complex graph structure than the Mutag
dataset. From Figure 5] we derive the same conclusion as before that nme per-

forms better with small and min strategies while qdc is better with the max
strategy.

5 Conclusions

We propose a graph comparison approach named JoEig in the joint eigenspace
based on eigendecomposition. The main contribution of this work is introducing
the joint eigenspace and comparing graphs in it. We also study three different
ways for resizing the eigenvalue diagonal and eigenvector matrices to solve the
inexact graph matching problem. From a series of examples presented in the
experiments, we conclude that our proposed JoEig approach is in general better
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than Umeyama’s and Caelli’s methods. Furthermore, nmc performs better with
small and min strategies while qdc is better with the max strategy. All in all,
resizing graphs with small or min strategies and then using the nmc classifier
in JoEig space is probably a better solution despite the original structure of the
graph dataset.
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