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Abstract. In Multiple Instance Learning (MIL) problems, objects are
represented by a set of feature vectors, in contrast to the standard pat-
tern recognition problems, where objects are represented by a single fea-
ture vector. Numerous classifiers have been proposed to solve this type
of MIL classification problem. Unfortunately only two datasets are stan-
dard in this field (MUSK-1 and MUSK-2), and all classifiers are evaluated
on these datasets using the standard classification error. In practice it
is very informative to investigate their learning curves, i.e. the perfor-
mance on train and test set for varying number of training objects. This
paper offers an evaluation of several classifiers on the standard datasets
MUSK-1 and MUSK-2 as a function of the training size. This suggests
that for smaller datasets a Parzen density estimator may be preferrer
over the other ’optimal’ classifiers given in the literature.

1 Introduction

In many real-world classification problems objects cannot easily be represented
by a single unique feature vector, because the objects are too rich and contain
too many details and information. A typical example is the problem of image
database retrieval. Each image can be of different size and can depict several
physical objects in the same picture. In Multi(ple) Instance Learning (MIL)
the standard pattern recognition assumption of having one feature vector per
object is extended. The objects are represented by a collection (called a ‘bag’) of
feature vectors (called ‘instances’). In the training phase only bags are labeled
(in a positive and negative class), but not the individual instances. A new bag
has to be classified based on the collection of instances in that bag.

An example would be a medical classification problem: for the detection of
abnormalities in the lung an X-ray image of the chest can be made. From this
image small image patches can be extracted for which features can be derived.
When each individual patch would have been labeled, an anomaly detector could
have been trained. Although it is possible to classify a patient as healthy or ill, it
is very hard to label each patch reliably. This therefore results in a multi-instance
learning problem, where the collection (or bag) of patches (instances) is labeled
in ‘healthy’ of ‘ill’, but where the individual instances are not. A patient is now
classified as ‘healthy’ when none of the instances are classified as ‘ill’.

Because objects are now represented by a collection of feature vectors, MIL
datasets tend to be large and the classification problem difficult. Unfortunately,
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the effective sample size in MIL datasets is often limited. Not the instances
have to be classified, but the bags. It is therefore not the number of instances,
but the number of bags that is the determining factor for the performance of
the classifier. Furthermore, these classifiers are often evaluated based on an error
measure like classification error (or misclassification rate [11]). But for these low-
sample-size problems, and problems where class priors and misclassification costs
are unknown, the classification error may not be the most suitable. Performance
measures like the Area under the ROC curve [2] have shown to be more reliable
for small sample sizes.

Furthermore, the choice for the best classifier for a particular problem is often
dependent on the sample size, i.e. the size of the training set. When more train-
ing samples are available, in general more complex classifiers can be trained.
Reducing the training set size may result in a different (more simple) optimal
classifier. It is therefore very informative to inspect the performance of classifiers
for varying training set sizes.

In this paper we re-evaluate several MIL classifiers on the two standard
datasets, MUSK-1 and MUSK-2. These two datasets from [6] are basically the
only datasets that are consequently used in benchmarking of all MIL classifica-
tion systems ([13,16,10,19,1,20,17,3,9,4] to name a few). To assess the relative
performance of the methods over a wide range of sample sizes, we use the learn-
ing curve with the Area under the ROC curve. In section 2 we discuss a range
of MIL classifiers, followed by a short introduction on learning curves and per-
formance measures in section 3. In section 4 the results of the MIL classifiers is
shown, and we summarize the conclusions in section 5.

2 Multi-instance Learning, Classifiers and Datasets

Assume that object i is represented by a bag Bi, containing a set of mi instances
xj ∈ R

p: Bi = {xij , j = 1, .., mi} (i.e. feature vectors of length p). Assume
further that each bag is labeled with a positive or negative label: Yi ∈ {ω+, ω−}.
The label Yi that will be assigned to a bag Bi is in principle determined by
the number of instances xij that is positive. In the most extreme case a bag
may be labeled positive when a single instance is classified as positive. When
the classification is noisy, or a very large number of instances is present in each
bag, a minimum number or a certain fraction of the total number of instances
may be chosen. During training the label for each instance yij is unknown. A
classifier has to determine which instances in each bag are informative for the
bag label. Finally, a trained classifier has to estimate the class label from a bag
of instances:

̂Y = f(B) = f({xj}) (1)

For the experiments in this paper we use a selected set of multi-instance learn-
ers. Due to space constraints not all classifiers can be discussed. The classifiers
that are used to classify the multi-instance datasets are

Simple classifiers with bag combiner can be used when the multi-instance
learning aspect of the learning problem is ignored. In training all instances are
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labeled according to their bag label. In the evaluation the classification outcomes
of all the instances of a bag are combined to a single bag-outcome. One possible
combining rule is the quantile combining. Assume that the (real) outcomes oj =
f(xij) are sorted: oi = {o1, o2, ..., oNi}, where o1 ≥ o2 ≥ ...oNi . The quantile
combining rule selects the q-th quantile value of this set:

Q(oi) = on, n = �qNi� + 1 (2)

This idea is similar to [3] where the bag-level classifier fg is this quantile function.
In this paper we applied this combining rule to the outputs of the linear

discriminant analysis (LDA) and the Parzen density estimator. The LDA is
regularized by adding a small constant λ = 10−6 to the diagonal. The Parzen
density estimator fits a single Gaussian distribution with a fixed width parameter
on each individual training sample. The width parameter in the Parzen density
is optimized in a leave-one-out fashion on the training set [8]. In the quantile
combination q = 0.01 is used, which means that for small bags only the presence
of a single positive object is sufficient to classify the bag as positive.

Axis-parallel Rectangle [6] constructs a rectangular decision boundary,
aligned with the feature axis, that is optimized such that at least one instance of
each positive bag falls inside this box but such that none of the instances of the
negative bags is inside. Three optimization schemes have been proposed, and in
this paper the ‘inside-out’ scheme is used: it starts from a seed point and then
grows a rectangle until it covers at least one instance per positive bag and no
instances from negative bags. It also includes the possibility to select features
such that in some feature dimensions no box face is defined. The implementation
of the APR in this paper is based on [18], and the parameters are tuned to get
a good average performance on the MUSK datasets.1

Citation k-NN [16] is a variant of the standard k nearest neighbor classifier.
The standard k-NN is extended by considering not only the nearest bags on
the training set, but also the training bags for which the test bag is the nearest
neighbor. These are the so-called ‘referees’, or ‘citers’. (See for a more complete
explanation [16].) In this paper the distances between bags is computed using
the Hausdorff distance, and k = 5 nearest neighbors and r = 5 citers are used.

Diverse Density [13] estimates the density of the co-occurrence of instances
of positive bags, and corrects for the density of the negative instances. Areas
of high diverse density contain at least one instance of all positive bags, but
do not contain any negative instances. The diverse density method optimizes a
location and a radius (basically, it models a Gaussian distribution) for which
the diverse density is highest. When a new bag contains instances in this high
diverse density area, it is classified as a positive bag.

Although the reported performances are very good, the optimization proce-
dure of finding the location of a high diverse density area is computationally
very intensive, and often local optima are reached. Therefore the procedure is
1 For a full description of the algorithm, please see [6]. The chosen parameters are:

the threshold distance in selecting significant features=1, τ = 0.995, ε = 0.02 and
step size expanding the APR=0.1.
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rerun several times with different initializations. In this paper we tried 10 dif-
ferent random initializations and used the solution which yielded the highest
likelihood on the training set. Further parameter settings include the maximum
number of epochs that the diverse density is optimized (4×p), and the tolerance
in the change in position or change in likelihood during the optimization (here
we used 10−5 and 10−7).

EM-Diverse Density [19] is an extension of the Diverse Density approach.
Here the highest diverse density position is optimized in an iterative Expectation-
Maximization scheme. At each step of the EM scheme only the instance with
the highest diverse density per bag is used. This simplifies the estimation of the
diverse density, but because the estimated location of the maximum diverse den-
sity changes during the optimization, also the instance with the highest diverse
density per bag changes each iteration. In practice it appears that this scheme is
a bit more insensitive to local minima. The settings of this classifier is identical
to these of the Diverse Density method.

MIL-Support vector classifier [10] is a standard support vector classifier
that uses a multi-instance kernel to define a similarity between two bags of
instances. In this paper very simple bag statistics are computed:

x̃i = x̃(Bi) = [min
j

(xij), max
j

(xij)] (3)

This represents a single bag by one feature vector of length 2p, where the mini-
mum and maximum feature values per bag are stored. Notice that (3) does not
compute a kernel, strictly speaking. On this feature vector standard kernels are
computed, for instance the standard linear kernel K(Bi, Bj) = x̃T

i x̃j . In this
paper the linear kernel, with a trade-off parameter C = 1 is used.

Table 1. The MUSK datasets and some characteristics

name pos. bags neg. bags # instances # features
MUSK-1 47 45 476 166
MUSK-2 39 63 698 166

The standard datasets in multi-instance learning are the MUSK-1 and MUSK-
2 datasets. The task is to predict if a certain molecule can bind to a target
molecule. The molecule is in fact a 3D object, and it can have multiple shapes
(or conformations). When a molecule binds to a target, we know that at least
one of the conformations has the ability to bind. When a molecule does not bind,
none of the conformations have the correct shape. Each molecule can therefore
described by a bag of conformations. In these datasets the 3D shape of each
conformation is described by 166 features, and conformations of around 80-100
molecules are available. Dataset MUSK-1 contains on average 6 conformations
per bag, while MUSK-2 has more than 60 conformations per bag. The task for
these datasets is to predict on the basis of the collection of conformations if the
molecule smells ‘musky’ or not. More specific information of the datasets are
given in Table 1 and in [6].
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3 Learning Curves and Performance Measures

Typically, a classification system is trained on a training set that is as large as
possible, and evaluated on an independent test set [11]. It is expected that more
training data results in a better performance of the classifier, because with more
data the parameters of a classifier can be estimated more reliably. Often a cross-
validation scheme is used where the data is split in M parts. M−1 parts are used
for training, and the rest is used for testing. This is repeated M times and the
performance is averaged. The classifier is thus trained M times on M/(M −1)
part of the data, and all data is used once for estimating the true error.

A learning curve shows the change in (true) classification error for a varying
training set size. Often not only the true error is estimated, but also the apparent
error, i.e. the error on the training set. When the difference between the apparent
error and the true error is large, the classifier is called overtrained, or overfitted.
The performance on the training set gives a too optimistic estimate on what can
be expected in practice.
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(a) Learning curves LDA and Parzen.
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(b) Learning curves APR and k-NN.

Fig. 1. Learning curves for the MUSK-1 dataset using the classification error

Figure 1(a) presents some typical learning curves, showing the true and appar-
ent error rate for the MUSK-1 dataset by the solid and dashed lines respectively.
(This dataset and the classifiers are explained in section 2.) The training set size
is a fraction of the total training size, running from 10% (around 10 bags, smaller
numbers caused problems for some classifiers) to 99% (84 bags). In the left sub-
figure the LDA and Parzen classifiers are shown. For both classifiers a significant
difference between the apparent and true error is visible. Both classifiers perfectly
fit the training set, and only the training error of the LDA deteriorates slightly
for sample sizes larger than 40. This suggest that this dataset is too small for
these classifiers and that the classifiers overtrain.

One can also extrapolate if classifiers may gain significantly in performance
when more training data is added. A flat learning curve (like the one from the
Parzen classifier, although it is a bit noisy) suggests that the classifier is already
trained well, and that more training data will not help the classifier much. A
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more steeply decreasing learning curve (like the one from the LDA) suggests
that a bit more data may be very beneficial for this classifier.

This general picture does not accommodate some special cases. For instance,
the nearest neighbor classifier always has a positive bias in the evaluation of the
training set. Because it is using the training set as the classifier model, evaluating
the k nearest neighbors in the training set will always include a copy of the test
object. This is visible in Figure 1(b). The training performance of the Citation
k-NN (which is a special version of the standard k-NN classifier) increases for
larger training set sizes. Still a positive bias is present over all training set sizes.
The slope in the learning curve also suggests that a bit more data may be very
beneficial for the k-NN performance.

The learning curves for the Axis Parallel Rectangle classifier shows a similar
characteristic. Here the apparent error also decreases (slightly) with increasing
sample size. This is caused by the fact that the parameter settings in this method
are fixed to values that are more suitable for larger training sets. In particular
the parameter τ , that specifies how far the rectangle boundaries should be placed
around the training instances, is a sensitive parameter. For smaller sample sizes
the decision boundary has to be set a bit wider than for larger sample sizes.
Optimizing this parameter by cross-validation appears to be a very costly and
gives very noisy results.

For the evaluation of a classifier often the classification error is used. It just
counts the number of misclassifications in a (test) set. Assume a classifier f
is trained for a two-class classification problem, and evaluated on a test set
X = {(xi, yi), i = 1, .., N} where xi ∈ R

p are p-dimensional feature vectors,
and yi ∈ {ω+, ω−} are class labels. The classification error is estimated by:
ε̂ = 1

N

∑N
i=1 I(f(x) �= yi) where I(.) is the indicator function that outputs 1

when the statement is true and 0 otherwise.
A drawback of this measure is that it is sensitive to the class priors and that

it does not take misclassification costs into account. Often the class priors and
costs are unknown, and the empirical class priors are used. Especially when
the data sampling is very skewed, deceiving performances are obtained. For
these situations the area under the ROC curve (AUC) is more suitable (for MIL
problems it is used in [14] for instance). It basically estimates the probability
that a classifier gives a higher output for an object of the positive class than an
object from the negative class [2]. It can be estimated by:

ˆAUC =
1

N+N−

N+
∑

i=1

N−
∑

j=1

I(f(xi) > f(xj)) (4)

where N+ and N− are the number of objects from the positive and negative class
respectively. By this relative comparison this measure becomes independent of
the class priors or class sampling. Furthermore, by the fact that it incorporates
all possible pairs of positive and negative objects, the AUC tends to be a more
stable performance estimator than the standard classification error [5] making
it also easier to compare classifiers [12,15].
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4 Experiments

In this section we evaluate all the classifiers on some datasets. We applied 10-
fold stratified cross-validation on the bags, and varied the training set size from
10% to 99% of the total design set. All classifiers are implemented in the pattern
recognition toolbox Prtools [7]. The implementations of the APR, the maximum
Diverse Density and the EM-Diverse density are based on [18].

In figure 2 the learning curves for the same classifiers on exactly the same
train and test sets as in figure 1 are shown, but instead of the classification error
the AUC (×100) is used. First notice that a well performing classifier has a low
classification error but a high AUC. The general trends are the same, but some
subtle changes can be observed. Figure 1 using the classification error suggests
that the performance for the Parzen classifier is slowly, but uniformly increas-
ing. Figure 2 shows that the performance in terms of AUC is not improving
significantly after N = 30. This suggests that around N = 30 the density of the
target concept is estimated relatively reliably, but that the operating point is
still uncertain. Because the AUC only estimates the ranking of the objects, it
is not influenced by a poor operating point (or threshold on the density). Fur-
thermore, the left graph in figure 1 suggests that for N = 30 bags per class the
LDA and Parzen perform similarly. Figure 2 on the other hand suggests that
averaged over all operating points the Parzen may still be preferred.

When we compare the final performances of the APR and the Citation k-
NN in Figure 1, we observe another typical behavior: for smaller training sets
the more simple APR classifier has smaller error. When the training set size is
increased to over N = 60, the more complex Citation k-NN starts to win. This
is even more prominent in figure 2 where the Citation k-NN is already better
than the APR for N = 25.

In figures 3 and 4 all the learning curves for all classifiers are shown on datasets
MUSK-1 and MUSK-2, respectively. From the results shown in figure 3 it can be
concluded that for small sample sizes (upto N = 50) the Parzen density performs
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Fig. 2. Learning curves for the MUSK-1 dataset using the AUC perf. measure (×100).
The errorbars indicate one standard deviation of variation.
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(b) Learning curves for Diverse Density,
EM-DD and the support vector classifier

Fig. 3. Learning curves for MUSK-1 using the AUC performance measure

very well. Even for just 8 training bags per class, the AUC is around 0.70. For
training sizes around N = 30 the Parzen reaches an AUC of more than 0.90, but
it does not improve performance significantly for larger training sizes.

The Axis Parallel Rectangle performs relatively poorly in these experiments.
The AUC for this method barely reaches 0.75 for the MUSK-1 dataset. The
performance for the MUSK-2 dataset is slightly better, around 0.80.

The Citation k-NN and the Support vector classifier perform about equal.
Both show promising performance, in that their learning curves are still increas-
ing. This suggest that more training data may benefit the k-NN and SVM most.
The very best performance on the MUSK-1 dataset is obtained by the SVM,
with an AUC of more than 0.95. This suggest that the simple min, max-feature
representation, given in equation (3), characterizes the problem very well.

In figure 4 the same classifiers are applied to the MUSK-2 dataset. This
dataset has the same number of bags, but has far more instances per bag. Overall
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Fig. 4. Learning curves for MUSK-2 using the AUC performance ×100. Errorbars
indicate one standard deviation over a 10-fold stratified cross-validation over the bags.
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the characteristics are similar, although there are telling differences. The Parzen
density estimator requires both in the MUSK-1 and MUSK-2 datasets about 30
bags to obtain a good performance, but Parzen finally obtains a slightly worse
performance for larger training set sizes. Most other models, in particular the
SVM and the Diverse Density, can exploit the larger number of instances per
bag for the smaller sample sizes (around N = 20). For the SVM the minimum
and maximum feature values can be estimated better, and for the Diverse Den-
sity a better estimate for the diverse density per bag can be obtained. For the
higher sample sizes this advantage is lost, and the final best performance on the
MUSK-2 dataset is just above 0.90, obtained again by the SVM. The EM-DD
does not seem to gain too much by increasing the number of instances per bag,
its performance increases just slightly after N = 20.

5 Conclusions

In real classification problems it is often interesting to see how classifiers behave
for varying training set sizes. The resulting curve, the learning curve, shows
which classifier is more suitable for small training set sizes, and which classifier
has the most promising performance improvement when more data is available.
For multi-instance learning problems this is very relevant, because the number of
(in particular positive) bags is often limited. By comparing the learning curves
of different classifiers for the MUSK-1 and MUSK-2 datasets, suitable models
for different training set sizes can be obtained.

The experimental results in this paper suggest that simple classifiers like the
Parzen density classifier, or the Support Vector Machine with a simple (but
fitting) bag representation work well for both the MUSK datasets. The overall
best performance for larger training set sizes are obtained using the SVM (over
0.95 AUC). Its learning curve suggest that even better performances can be
obtained when more training data may be available.

The results also show that more instances per bag may not be advantageous.
The best classification performances are obtained with the MUSK-1 dataset,
that has on average 6 instances per bag, instead of the around 60 instances per
bag in MUSK-2. When more instances per bag are present, the search problem to
find the informative instance in each positive bag becomes harder. The classifiers
therefore have to be trained better to find that single instance that distinguishes
a positive from a negative bag. A topic for further research is if the number
of instances per class is still important when not a single positive instance is
required for labeling a bag positive, but a certain minimum fraction of instances.
In that case it may be expected that the search problem does not become much
harder and that more instances does not directly deteriorate the results.
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