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Abstract. The dissimilarity representation has demonstrated advan-
tages in the solution of classification problems. Meanwhile, the repre-
sentation of objects by multi-dimensional arrays is necessary in many
research areas. However, the development of proper classification tools
that take the multi-way structure into account is incipient. This paper
introduces the use of the dissimilarity representation as a tool for classi-
fying three-way data, as dissimilarities allow the representation of multi-
dimensional objects in a natural way. As an example, the classification of
three-way seismic volcanic data is used. A comparison is made between
dissimilarity measures used in different representations of the three-way
data. 2D dissimilarity measures for three-way data can be useful.

Keywords: Object representation, classification,multi-dimensional data,
dissimilarity representation.

1 Introduction

In many research areas e.g. chemometrics, image analysis, signal analysis, objects
obtained from measurement equipments are represented by multi-dimensional
arrays instead of a vector of features. Consequently, the variables from one di-
mension of the array can be related and analyzed together with the variables of
the other dimensions. The structure in which a set of objects with this represen-
tation is organized is called multi-way data.

Multi-way data analysis [1, 2] is the extension of multivariate analysis when
the analyzed data is arranged in this multi-way structure. However, the most
common is the three-dimensional array. The analysis of such data is often used
for extracting specific information and exploring the interrelations in the data.
It has been shown that this data may not be analyzed optimally by two-way
analysis, because it does not respect the multi-way design. Nevertheless, most
of the applications and methods for multi-way analysis are for exploratory and
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regression purposes. Classification has been studied much less. This might be
caused by the lack of classification tools able to operate on multi-dimensional
spaces and taking all the information available into account.

In recent studies [3, 4, 5], the advantage of learning from dissimilarities be-
tween the objects instead of traditional features has been shown, in what is
known as the Dissimilarity Representation (DR) [3]. This representation was
mainly designed for classification. It is based on the important role that pairwise
dissimilarities between objects play. Classifiers may be built in the dissimilarity
space generated by a representation set. In this way, the geometry and the struc-
ture of a class are determined by the user defined dissimilarity measure, in which
application background information may be expressed. It is important to remark
that, any traditional classifier that operates in feature spaces can also be used
in the dissimilarity space.

In this paper, we introduce the use of the DR as a tool for classifying three-
way data in such a way that, objects are analyzed in their 2D representation.
Thus, the relations between the objects are analyzed in the dissimilarity space.
Moreover, the relationship between the dimensions can be included if the proper
dissimilarity measure is selected. The key in this process is to find the dissimi-
larity measure that takes into account the information embedded in the data.
Information about the data that is missing in the actual representation e.g. shape
and connectivity, can also be taken into account in the dissimilarity measure.

Traditionally, signals are analyzed in the time domain or by their spectrum
in terms of energy spread over its frequency components (Fourier transform) [6].
Recent studies have also shown that training the classifiers in the dissimilarity
space is a feasible and more reliable alternative for automatic classification of
seismic signals than the frequency-based one [4]. Nevertheless, these representa-
tions alone may not be optimal for seismic signal analysis, since the changes of
spectral energy in time are not considered. Due to this limitation, the use of a
time-frequency representation like spectrograms or scalograms, may be advanta-
geous. Although these types of 2D object representations are raising popularity
for the analysis of seismic signals [7], they have not intensively been exploited
as such in automatic classification systems [8].

Hence, although the proposed approach can be applied to any three-way data
in the form (objects× variables× variables), we will based the demonstration
of its feasibility on a problem of classifying three-way seismic volcanic signals.
With the purpose of comparing how it works for three-way data with different
characteristics and some suitable dissimilarity measures, two three-way seismic
volcanic data will be generated from the spectrogram and scalogram techniques.
A 2D dissimilarity measure is also proposed. Additionally, results are compared
with 1D feature representation using the time integrated spectra to show the
advantages of the proposed approach in this case.

2 Three-Way Volcanic Data

In several research areas, different multi-way array configurations can be found
e.g. several sets of variables measured on different objects. These data would be
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appropriately represented by higher order generalization of vectors and matrices.
However, the most common design would be defined as Y ∈ R

n×m×l. Each
horizontal slice (m × l) of the block represents the data of one object; each
vertical slice (n× l) holds for the data of a specific type of variable and the front
to back slices (n×m), variables of other type.

The two three-way data to be used in this paper correspond to seismic signals
from the ice-capped Nevado del Ruiz volcano in the Colombian Andes. This vol-
cano is currently studied by the Volcanological and Seismological Observatory
at Manizales. Signals from the Olleta crater station were selected for the experi-
ments. Signals were digitized at 100.16 Hz sampling frequency by using a 12 bit
analog-to-digital converter. The a-priori classification of the signals is done by vi-
sual inspection. The dataset is composed of 12032-point signals of two classes of
volcanic activities: 235 of Long-Period (LP) earthquakes, and 235 of Volcano- Tec-
tonic (VT) earthquakes.

The differences in 1D spectral content of these signals allow the discrimination
between the events [9]. That is why spectral-based classification is often used for
this type of data. However, with this representation we are not able to analyze
how the frequency content changes in time. An intuitive way to represent this
time-frequency relationship for all the signals would be in a three-way array Y as
defined above. In the seismic volcanic three-way array configuration (signals×
time × frequency), the signals are organized in the vertical axis, time in the
horizontal and frequency in the depth axis.

To obtain the 2D time-frequency representation of each signal we used two
techniques. The first one is the Short-Time Fourier Transform (STFT) by which
the spectrograms are obtained [6]. With this technique, the time localization
can be obtained by windowing the data at different times and computing the
Fourier transform on that part of the signal. Consequently, it can be known
what frequency intervals are present in a time interval of the signal, but not
with much precision. The narrower it is, the better the time resolution will be
and the poorer frequency resolution.

Another way to obtain the time-frequency representation of the signals is by the
ContinuousWaveletTransforms (CWT),withwhich the scalograms are computed.
This technique is based on the computation of continuous wavelet transforms over
the entire signal for different scales [6]. It was originally introduced as a time-scale
representation, but it can also be interpreted as a time-frequency representation as
scales and frequencies are inversely proportional. In the scalograms we have better
time resolution and poorer frequency resolution at high frequencies, and better
frequency resolution and poorer time resolution at low frequencies. Consequently,
this technique could lead to a more accurate time-frequency description of signals
with low and high frequencies, as is the case of the treated data.

3 Dissimilarity Representation from Three-Way Data: A
2D Measure

The Dissimilarity Representation (DR) [3], was proposed as a more flexible rep-
resentation of the objects than the feature representation, with the purpose of
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having more information about the structure of the objects. It is seen as a link
between the statistical and structural approaches, as both types of patterns can
be described by the (dis)similarity measure. The DR is also based on the role that
(dis)similarities play in a class composition, where objects from the same class
should be similar and objects from different classes should be different (com-
pactness property). Hence, it should be easier for the classifiers to discriminate
between them.

Using the DR, classifiers are trained in the space of the proximities between
objects, instead of the traditional feature space. Thus, in place of the feature
matrix X ∈ R

n×q, where n runs over the objects and q over the variables, the
set of objects is represented by the matrix D(X,R). This matrix contains the
dissimilarity values d(xi, rj) between each object xi of X and the objects rj of
the representation set R(r1, ..., rh). We build from this matrix a dissimilarity
space. Objects are represented in this space by the column vectors of the dissi-
milarity matrix. Each dimension corresponds to the dissimilarities with one of
the representation objects.

For a t-dimensional array Y ∈ R
I1×I2×...×It , the theory of the DR is the same.

In fact, one of the advantages of the DR is that it can be generated from any
representation of the objects e.g. vectors of numbers, graphs, as long as we have a
proper dissimilarity measure. This applies also to the multi-way data. Originally,
each object is represented by a (t-1)-dimensional array of numerical values and
all the objects together conform the t-dimensional array. Hence, to obtain the
dissimilarity space, a mapping φ(·, R) : R

I1×I2×...×It−1 → R
h is defined, such

that for every object y, φ(y, R) = [d(y, r1), d(y, r2), ..., d(y, rh)]. Classifiers are
then built in this space, as in any feature space.

The elements of R are called prototypes, and have preferably to be selected
by a prototype selection method [3]. These prototypes are usually the most
representative objects of each class, R ⊆ X or X itself, resulting in a square
dissimilarity D(X,X). R and X can also be chosen as different sets. As dissimi-
larities are computed to R, a dimensionality reduction is reached if a good, small
set can be found, resulting in less computationally expensive classifiers.

The issue to be addressed in this problem is how to obtain the dissimilarities
from the multi-way representation. Many ideas can arise to do this transforma-
tion. Focusing in three-way data we propose as a first approach, to take each
object matrix y of Y, and compute the dissimilarities between them by a 2D
dissimilarity measure. Some 2D measures have been proposed in [10] for face
and palm-print recognition. However, the selection of the suitable measure for
the problem at hand is a very important aspect in the DR approach. To deepen
in this task we will focus in our case of study on three-way representation of
seismic volcanic signals by spectrograms and on scalograms. Thus, each object
is represented by a matrix (2D). A comparison is made about the characteris-
tics of each data and the dissimilarity measure to be used. A 2D dissimilarity
measure is also proposed.

In many types of data e.g. spectral data, it is necessary to take into account the
shape information and connectivity between the measure points. Such is the case
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of the time-frequency three-way representation where shape changes are present
in the spectral (frequency) direction and connectivity in the time direction. When
this representation is obtained by scalograms, the CWT already retrieves these
functional characteristics from the data. The observations in the signal can be
seen as continuous single entities, instead of sets of different variables. Based on
the results obtained with the 2D assembled matrix distance (AMD) (See Eq. 1)
proposed in [10], it seems to be a good option for this case. As the information
to be included about the data can be already found in its representation by
wavelets, it might be enough to use this measure.

dAMD(ya, yb) =

⎛
⎜⎝ l∑

k=1

⎛
⎝ m∑

j=1

(ya,j,k − yb,j,k)2

⎞
⎠

p/2
⎞
⎟⎠

1/p

(1)

The weight p is used to emphasize either small or large differences between the
elements, in dependence of the problem at hand. If p < 1, all the differences will
be reduced, thus the larger ones will not interfere much in the measure. On the
other hand, if p > 1, the larger differences will be more pronounced, resulting in
a heavy influence on the measure. However, when the information is not taken
into account in the representation of the data, the dissimilarity measure has to
take care of it. Thus, considering the results obtained with the Shape measure
(manhattan distance on the first Gaussian derivatives) for simple spectra [5], we
propose to make use of the derivatives into the AMD measure. In such a way, we
can take the ordering information into account as well as the shape of the spectra.
A principle of the DR approach is that instead of a single representation of a
problem, one may also consider either a complex representation, built from many
dissimilarity representations, where different aspects of the data are described in
various ways [3]. Based on this and the previously stated, we define the 2DShape
dissimilarity measure as follows:

1. Compute the matrix D1

D1
a,b =

⎛
⎜⎝ l∑

k=1

⎛
⎝ m∑

j=1

(yσ
a,j,k − yσ

b,j,k)2

⎞
⎠

p/2
⎞
⎟⎠

1/p

, yσ
i,j,· =

d
dj

G(j, σ) ∗ yi,j,·

2. Compute the matrix D2

D2
a,b =

⎛
⎝ m∑

j=1

(
l∑

k=1

(yσ
a,j,k − yσ

b,j,k)2
)p/2

⎞
⎠

1/p

, yσ
i,·,k =

d
dk

G(k, σ) ∗ yi,·,k

3. Combine both dissimilarities matrices D = 1
ω1

D1 + 1
ω2

D2

The variables yi,j,· and yi,·,k, stand for the k-th columns and the j-th rows of the
i-th matrix (object); ∀i = 1, 2, ..., n. Their expression correspond to the compu-
tation of the first Gaussian derivatives of spectra, where ∗ denotes convolution
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and σ stands for a smoothing parameter [5]. The dissimilarities in step 1 and
step 2 correspond to the first and second directions respectively, as indicated
by the notation e.g. spectra and time. In the combination step, we included a
weight for scaling. We defined ωc = var(Dc), to scale each dissimilarity matrix
by its columns (prototypes) variance. This measure can also be used in three-
way data where there are no variations in shape in one of the directions. In this
case, it is enough to use the AMD measure in step 1 or step 2, such that only
the differences in area are compared.

A good example where the proposed measure can be applied is in the time-
frequency representation obtained by spectrograms. The connectivity in the time
direction is not taken into account as the Fourier transform is computed sepa-
rately in the different parts of the windowed signal. Besides, instead of having
continuous points in time, we have time intervals.

4 Experimental Results and Discussion

To show how the proposed approach works, we selected a data of seismic volcanic
signals. We make a comparison between the results with the three-way data
obtained by the spectrograms and scalograms. This comparison is not only made
in terms of the dissimilarity measures, but in the information we get from the
three-way representation. A comparison is also made between the classification
on the dissimilarity spaces derived from 2D and the 1D spectral representation of
the data. This way, we show the advantages of using the 2D representation over
the 1D e.g. time-frequency (spectral) based classification over the spectral-based.
The Average Classification Errors (ACE) for the DR on both spectral and three-
way data from spectrograms and scalograms are shown, using different sizes of
the representation set.

For the experiments, a dataset with 235 objects per class (VT and LP) is con-
sidered. For the 1D (spectral) representation we have computed the spectrum
by using a 12032-point Fast Fourier Transform (FFT). Thus, the whole signal
is analyzed in both 1D and 2D representations. To compute the spectrograms,
trying to make a trade-off between time and frequency resolution, a 256-point
(windows size) short time Fourier transform was calculated with 50% of over-
lap. The values for these parameters were selected empirically. However, it is
important to determine the best combination for these parameters as they can
influence the results. Further research studies should be done in optimizing these
parameters and its influence in the solution of the problem. From this technique,
we get a 470× 129× 93 three-way data.

For the scalograms computation we used the Morlet wavelet, based on the
literature [7, 8] and an interactive Matlab tooolbox for the analysis of seis-
mic volcanic data [11]. Taking into account the inversely proportional relation
frequency-scales, we selected the scale values related to the major frequency
components in the signals. In a previous study on signals of the same volcano
and station (although they are not the same samples)[12], the authors concluded
that most of the discriminative information is contained between 7.5 Hz and 25
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Hz approximately. A narrow band around 40 Hz, associated to an always present
peak, was also selected.

However, a 10-component PCA was also made on the spectral representation
of the signals and analyzed the modeling power of all the frequencies present.
From this analysis we arrived to the same range of frequency values selected in
the reference. Nevertheless, some important peaks were also detected from 0.1
Hz to 7 Hz. Hence, range of scales=[1/(0.1:02:2,3:0.4:25,39:0.3:42)] was used to
analyze those frequencies. A 470 × 72 × 12032 three-way array was obtained.
Before computing the three representations, the raw signals were normalized to
zero-mean and unit-variance.

A Fisher Linear classifier was computed in the dissimilarity space. Experi-
ments were repeated 10 times. Training and test objects were randomly chosen
from the total data set, in a 10-fold cross-validation process. Different sizes of the
representation set [10, 20, 50, 75, 100, 125, 200, 250, 300] were randomly selected.
For the generation of the dissimilarity space, the Manhattan (MD), Euclidean
(ED) and Shape measures were computed on the spectral representation. These
measures have performed well for spectral data [4, 5]. In a 5-times 10-fold cross-
validation from a range of values [1 − 50], the best results were achieved with
σ = 15. For the two measures analyzed in Sec. 3, we used values of p = [0.5, 1, 2]
so we can investigate the effect of parameter p (small or big differences) in our
classification problem. For the spectral direction in the 2DShape measure, we
selected σ = 3 and for the time direction σ = 2.

It can be observed in Fig. 1 that, the ACE on the dissimilarity space gener-
ated from the spectral data is around 25% and 30%. The error values for the
Manhattan measure are slightly better than those of the Euclidean and Shape
measures. Nevertheless, if the standard deviation is taken into account, the val-
ues for the three measures are very similar. The results with the Shape measure
(derivative-based) are not as expected (based in previous works). Hence, these
results could suggest that there is not more information to be captured from
this representation. It is also possible that these measures are not robust enough
for this problem, which somehow contradicts the previous studies [4, 5]. Further
studies may be done to find a more proper measure for this type of data.
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Fig. 1. ACE on the 1D representation for different numbers of prototypes
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Fig. 2. ACE on the three-way data from spectrograms (2D) for different numbers of
prototypes
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Fig. 3. ACE on the three-way data from scalograms (2D) for different numbers of
prototypes

However, when we analyze the error of the DR from the three-way data we
see a significant improvement in both Fig. 2 and Fig. 3. This ratifies the fact
that the time-frequency relation is more discriminative than the spectra. In the
case of the data obtained from the spectrogram, the ACE ranges from 15% to
20%. This also suggests that the proposed 2D measure is capable of capturing
the information needed. Nevertheless, if we analyze the ACE of the three-way
data obtained from the scalogram, it is slightly better. We can notice that it is
also in a range of 13% to 20%, taking into account all the values of p. However,
if we analyze only p = 1, the largest ACE value is around 15%. These results
might be supported by the advantages of the CWT for analyzing this type of
seismic volcanic signals. It is also evident that the AMD measure works well for
this data, given that the shape and continuity information is already taken into
account in the representation by wavelets. It might be possible to obtain better
results if more precise scale values are chosen.

The selection of a dissimilarity measure for a representation depends on what
we are looking for. In the case of the scalograms, the dissimilarity measure is very
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simple. However, the computation of the scalogram is really expensive in cases
like this, where there are too many important frequency components and the
signals are so large. Nevertheless, we cannot forget the advantages of using this
technique for the analysis of frequencies in exact moments in time. On the other
hand, if we analyze the computation of the spectrograms, it is less expensive
than of the scalograms. But, due to the lack of some information in it, a more
complex dissimilarity measure is required to include this information. Besides,
for the signal analysis it is less precise than the scalograms, as we can only know
what intervals of frequencies are present in an interval of time. Thus, it is up to
the specialists to decide which of them to use in dependence of their priority.

If we analyze the ACE on the DR from the spectral data and three-way data
from scalograms, we can see that from 50 or more prototypes it is approximately
stable. The explanation we give to this phenomenon, is that there is no more
discriminating information to be found in more prototypes. On the other hand, if
we analyze the ACE on the DR from the three-way data from spectrograms, we
can see that the behavior is different. While increasing the number of prototypes,
the ACE decreases. The more prototypes we add, the more information we have
to discriminate between the classes. Nevertheless, due to the so-called peaking
phenomenon, when the number of prototypes starts reaching the size of the
training set, the errors will increase.

5 Conclusions

We introduced the use of the Dissimilarity Representation as a tool for classifying
three-way data. In this approach, objects are analyzed with a 2D representation.
The relationship between the different dimensions is analyzed in the 2D dissimi-
larity measure. Besides, information about the data that is missing in the original
representation e.g. shape, can be considered in it. The good performance of clas-
sifiers on the 2D representation of the objects, compared with the traditional
1D, shows that this approach can be a good solution for the classification of
data with a three-way structure.

Two 2D dissimilarity measures were analyzed for three-way seismic volcanic
data to evidence the importance of the selection of a suitable dissimilarity mea-
sure for the problem at hand. We developed a new 2D dissimilarity measure
that allows taking into account the shape and continuity information in the di-
rections of the three-way array. This measure demonstrated to work well in cases
like the three-way seismic volcanic data generated by the spectrograms. In this
data, the shape and continuity variation is not represented itself. Consequently,
this type of measure is needed to make use of that information. Nevertheless, in
cases where there is not discriminative information in both directions, we can-
not ensure that this measure is effective. The combination of the matrices from
both directions could be influenced if one of them is not good. Further investiga-
tions should be done on this issue. In cases like the three-way data obtained by
scalograms, more simple dissimilarity measures can be used e.g. AMD. The dis-
criminative information is already embedded in the representation by wavelets.
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Although this paper was more focused on the solution for three-way data, it can
be extended to multi-way. Further studies will be done on this aspect.
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