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Abstract. The aim of this paper is to find an answer to the question: What is the
difference between dissimilarity-based classifications(DBCs) and other kernel-
based classifications(KBCs)? In DBCs [11], classifiers are defined among classes;
they are not based on the feature measurements of individual objects, but rather
on a suitable dissimilarity measure among them. In KBCs [15], on the other hand,
classifiers are designed in a high-dimensional feature space transformed from the
original input feature space through kernels, such as a Mercer kernel. Thus, the
difference that exists between the two approaches can be summarized as follows:
The distance kernel of DBCs represents the discriminative information in a rel-
ative manner, i.e. through pairwise dissimilarity relations between two objects,
while the mapping kernel of KBCs represents the discriminative information uni-
formly in a fixed way for all objects. In this paper, we report on an empirical
evaluation of some classifiers built in the two different representation spaces:
the dissimilarity space and the kernel space. Our experimental results, obtained
with well-known benchmark databases, demonstrate that when the kernel param-
eters have not been appropriately chosen, DBCs always achieve better results than
KBCs in terms of classification accuracies.

Keywords: kernel-based classifications (KBCs), dissimilarity-based classifica-
tions (DBCs), representation spaces, classification accuracies.

1 Introduction

Various kernel methods have been successfully used in the last decade to tackle com-
plicated classification problems by a nonlinear mapping from the original input space
to a kernel feature space [15]. Every learning algorithm that only makes use of inner
products between data vectors can be transformed into a kernel method by means of
replacing the inner product with an arbitrary kernel function [6]. The kernel function
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is typically viewed as providing an implicit mapping of sample points into a high-
dimensional space, with the ability to gain much of the power of that space without
paying the computational penalty1. Formally, let X denote the original pattern space
and k : X × X → R be a function mapping pairs of patterns to real numbers. If the
function k satisfies the condition of positive definiteness, there exists a vector space F
and a mapping fromX to F , such that k acts as a dot product in F [15]. Such functions,
k, are commonly called kernel functions.

The most popular representatives of kernel methods are support vector machines
(SVMs) for classification problems [15]. SVMs are hyperplane classifiers in implicitly
defined Euclidean feature spaces. A large number of applications reported in the lit-
erature indicate that SVMs are able to generalize well from unseen data and are not
prone to overfitting. Other kernel methods for solving feature extraction and classi-
fication include principal component analysis [13], Fisher discriminant analysis [3],
CLAFIC (CLAss Featuring Information Compression) [1], Gaussian mixture modeling
[17], canonical correlation analysis [7], subspace discriminant analysis [4], locally lin-
ear embedding [16], and many others [15]. In the interest of brevity, the details of these
kernel methods are omitted here, but can be found in the corresponding literature.

On the other hand, Duin and his co-authors [11], [12] proposed an alternative ob-
ject representation system based on dissimilarities between objects using a generalized
kernel approach. The concept of dissimilarity-based classifications is a way of defin-
ing classifiers between the classes, which are not based on the feature measurements
of the individual patterns, but rather on a suitable dissimilarity measure between them.
Here, the dissimilarity measure can be defined for not only vectorial inputs, but also
arbitrary non-vectorial patterns, such as strings, graphs, shapes, probabilistic models,
etc. [9] Thus, this methodology can be considered a unified approach to statistical and
structural pattern recognition [5], [9]. Furthermore, the advantage of such a paradigm
is that it does not have to confront the problems associated with feature spaces, such as
the curse of dimensionality and the issue of estimating a number of parameters [8].

In general, the kernels are understood as symmetric, positive definite functions of
two variables, and, thereby, they express similarity between two objects represented in
a feature space [15]. From this perspective, it is possible to regard a kernel as defining a
similarity measure between the two variables. On the other hand, in [11], the kernels are
addressed in a more general way, i.e., as a proximity measure. The important difference
between these two types of kernels is summarized as follows: The distance dissimilar-
ity kernel represents the information in a relative manner, i.e., through pairwise dissim-
ilarity relations between the two objects; the mapping similarity kernel represents the
information uniformly in a fixed way for all of the available objects.

Although classifications based on similarity kernels (which are referred to as ker-
nel based classifications or KBCs) and classifications based on dissimilarity kernels
(dissimilarity based classifications or DBCs) have been explored separately by many
researchers, not much analysis has been done comparing the two. Therefore, the aim of
this paper is to find an answer to the question: What is the difference between KBCs

1 In the contrary of mapping objects into a high-dimensional space, a kernel function can also
be viewed as a mapping to a low-dimensional space. The details of this kind of kernel method
are omitted here, but can be found in [2].
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and DBCs? or, more specifically, How different are these systems in their classification
accuracies?

In this paper, we report an empirical comparison of KBCs and DBCs, which are built
in two different representation feature spaces, respectively: dissimilarity-based feature
spaces and kernel-based feature spaces2. Although it is hard quantitatively to evaluate
the various KBC and DBC schemes, we have attempted to do exactly this. To achieve
this goal, we have done a number of experiments with different methods to render
this comparative study more complete. In KBCs, all samples are mapped to a higher-
dimensional feature space using a kernel function; traditional classifications are then
performed in the transformed feature space. In DBCs, on the other hand, dissimilarity-
based feature spaces are directly obtained from all of the available objects; the same
classifications are then done in the transformed feature space. Our experimental results
obtained with well-known benchmark databases demonstrate that the classification per-
formances obtained with KBCs and DBCs are almost the same. However, when the
kernel parameters have not been appropriately chosen, it seems that DBCs are better
than KBCs in terms of classification accuracy.

The main contribution of this paper is to demonstrate that the discriminative infor-
mation of the dissimilarity-based feature space is less sensitive than that of the kernel-
based feature space in choosing function parameters. This realization has been gained
by executing classifications in the two feature spaces obtained with the training data sets
and by comparing their strengths in terms of classification accuracy. Although many re-
searchers have investigated the fact that SVMs are vulnerable to function parameters,
to the best of our knowledge there is currently no reported empirical comparison of
kernel-based and dissimilarity-based feature spaces.

2 Related Work

Kernel-Based Classifications (KBCs): In the implementation of kernel methods, the
data is processed using a kernel to create a kernel matrix, which in turn is processed by
a learning algorithm to produce a pattern function. This function is used to recognize
unseen examples. Here, it is interesting to note that the resulting systems are modular:
any kernel can be combined with any learning algorithm and vice versa [15].

Consider an embedding map φ : x ∈ R
d �−→ φ(x) ∈ F , where the choice of the

map, φ, aims to convert the nonlinear relations into linear ones. Given a kernel and a
training set, we can form a matrix known as a kernel matrix or Gram matrix, a matrix
containing the evaluation of the kernel function on all pairs of data points [15]. To put
it concretely, given a set of vectors T = {xi}n

i=1 , xi ∈ R
d, the kernel matrix, K , is

defined as the n × n matrix whose entries are Kij =< xi, xj >. If we are using a
kernel function, k, to evaluate the inner products in a feature space, F , with a feature
map, φ, the associated Gram matrix has entries: Kij =< φ(xi), φ(xj) >= k(xi, xj).
Here, the Gram matrix, which is defined as a kernel-based feature space, is positive
semi-definite (for details, see Proposition (3.7) of [15]).

2 In this paper, we use the term ‘feature space’ for what we have called a vector space in pattern
recognition unless otherwise mentioned.
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The overall procedure for KBCs is summarized as follows:
1. Compute a kernel matrix, K , using a given training data set, T = {xi}n

i=1, and a
kernel function, k(·, ·);

2. Compute the normalized eigenvectors of K ∈ R
n×n in F , and select a subspace

dimension, q, to generate a transformation matrix, A ∈ R
n×q;

3. For a testing object, we compute a projection of the object onto the subspace using
the transformation matrix A;

4. Achieve the classification through invoking a classifier built in the transformed
subspace obtained with A and operating on the projected vector.

In the above algorithm, the kernel functions, k(xi, xj), for example, such as Poly-
nomial, Radial basis, or Minkowski function, can be defined as follows: (xT

i xj + 1)p,

exp
(−||xi − xj ||2)/p2

)
, or (

∑ |xi − xj |p)1/p. Here, p’s are the function parameters,
such as function degree (d), standard deviation (σ), and degree order (p ≥ 1), respec-
tively. Among these kernels, the Radial basis function is the most widely used and has
been extensively studied in this field. The parameter σ controls the flexibility of the
kernel in a way similar to that of the degree d in the Polynomial kernel.

Dissimilarity-Based Classifications (DBCs): A dissimilarity representation of a set of
samples, T = {xi}n

i=1 ∈ R
d×n, is based on pairwise comparisons and is expressed, for

example, as an n×m dissimilarity matrix DT,Y [·, ·], where Y = {yj}m
j=1 ∈ R

d×m, a
prototype set, is extracted from T , and the subscripts of D represent the set of elements
on which the dissimilarities are evaluated. Thus, each entry, DT,Y [i, j], corresponds to
the dissimilarity between the pairs of objects, 〈xi, yj〉, where xi ∈ T and yj ∈ Y .

Here, the dissimilarity matrix, DT,Y [·, ·] ∈ R
n×m, is defined as a dissimilarity-

based feature space, on which the d-dimensional object, x, given in the feature space,
is represented as an m-dimensional vector δ(x, Y ), where if x = xi, δ(xi, Y ) is the
i-th row of DT,Y [·, ·]. In this paper, the dissimilarity matrix DT,Y [·, ·] and the column
vector δ(x, Y ) are simply denoted by D(T, Y ) and δY (x) (or D(x, Y )), respectively.
Here δY (x) is an m-dimensional vector, while x is d-dimensional.

A conventional algorithm for DBCs is summarized in the following:
1. Select the representative set Y from the training set T by resorting to a selection

method, such as Random, RandomC, or KCentres algorithm, as described in [11];
2. Compute the matrix D(T, Y ), using T , by employing a measuring system, such

as the Euclidean distance, dE = ((x − y)T (x− y))1/2, for all x ∈ T and y ∈ Y ;
3. For a testing sample z, compute a dissimilarity column vector, δY (z), by using the

same measure used in Step 2;
4. Achieve the classification through invoking a classifier built in the dissimilarity

space and operating on the dissimilarity vector δY (z).
In the above two algorithms, the dimensions of the two classification spaces can be

reduced with the cardinality of the representation set and the number of the chosen
eigenvectors, respectively. However, to reduce the computational complexity of this
experiment, we first construct the dissimilarity matrix D and the kernel matrix K with
respect to all the training samples. Then, we reduce the dimensionality of the spaces by
performing a principal component analysis (PCA).
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Kernel Matrix Versus Dissimilarity Matrix: Assume a training set T of n samples, a
prototype set Y of m samples, and a nonnegative dissimilarity measure d. Then, an ob-
ject, x, is represented as a dissimilarity vector of D(x, Y ) = [d(x, y1), · · · , d(x, ym)]T .
If a similarity measure k is used instead, we will get a similarity representation defined
by similarity vectors of K(x, Y ) = [k(x, y1), · · · , k(x, ym)]T . Here, if |T | = |Y | and
k is positive semi-definite, then K is a kernel matrix [12].

If the dissimilarity d is designed first, then k is defined as follows: k(xi, yj) =
1
2

(
d2(xi, 0) + d2(0, yj)− d2(xi, yj)

)
, where 0 represents a specific element that acts

as a reference. On the other hand, if the similarity k is defined first, then d is computed as
follows: d2(xi, yj) = k(xi, xi)+k(yj , yj)−2k(xi, yj). In the interest of compactness,
the details of the derivation are omitted here, but can be found in the literature [6],[15].

Kernel methods are powerful, but often cannot handle arbitrary proximities with-
out incorporating necessary corrections, such as Euclidean corrections [12]. For ex-
ample, a symmetric dissimilarity matrix D(T, T ) ∈ R

n×n can be embedded in a
pseudo-Euclidean space by an isometric mapping [12]. The pseudo Euclidean space
E(= R

(p,q) = R
(p) ⊕ R

(q)) is denoted with signature (p, q), where the bilinear, but
not necessarily positive definite, inner product is defined as < z, z′ >pE := zT Mpqz

′,
where Mpq is diag(1p,−1q) and 1n is an n-element vector of 1’s. Also, the squared
dissimilarity distance, ‖z− z′‖2pE , may not define a metric, as it can violate the triangle
inequality. That is, the squared norm and the squared distance can be negative in con-
trast to the Euclidean case. The details of determining the pseudo-Euclidean space to
refine the dissimilarity representation are omitted here, but can be found in the litera-
ture, including [11] and [12].

3 Experimental Results

Experimental Data: The two classifying approaches, DBCs and KBCs, have been im-
plemented and compared. This was done by performing experiments on three well-
known benchmark image databases, namely Nist38, RoadSign, and Kimia2. The data
set captioned “Nist38”, chosen from the NIST database [18], consists of two kinds of
digits, 3 and 8, for a total of 1000 binary images. The size of each image is 32 × 32
pixels, for a total dimensionality of 1024 pixels. The data set described as “RoadSign”
consists of gray-level images of circular road signs: Three hundred road signs and the
same number of outlier images [10], in which each image is 32× 32 pixels, for a total
dimensionality of 1024 pixels. The data set named “Kimia2” consists of two groups of
images, each of 9 categories of 12 objects, obtained from the Kimia database [14]. The
size of each image is 64× 64 pixels, for a total dimensionality of 4096 pixels.

Experimental Method: In this experiment, first, data sets are split into training sets and
test sets in the ratio of 75 : 25. Then, the training and testing procedures are repeated 30
times and the results obtained are averaged. Also, in contrast with many other papers
on dissimilarities, we start by a feature representation and not with given dissimilarities
between raw objects. That is because we want to make a comparison with kernels that
also start in the feature space.

To evaluate DBCs and KBCs, different classifiers, such as k-nearest neighbor clas-
sifiers, linear Bayes normal classifier, quadratic Bayes normal classifier, and support
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vector classifier, are employed and implemented with PRTools3, and will be denoted as
knnc, ldc, qdc, and svc, respectively, in subsequent sections.

In DBCs, the Euclidean distance between two samples is computed to measure
their dissimilarity. Also, in KBCs, three mapping functions, Polynomial, Radial ba-
sis, and Minkowski, are employed as kernel functions. However, it is well known that
selecting a proper kernel parameter with good class separability plays a significant
role in kernel-based algorithms. In this experiment, therefore, to find optimal or near-
optimal kernel parameters, in the case of the polynomial function, five function degrees,
p = {s|s = 1, 2, · · · , 5}, are tested. Then, in the case of the Minkowski function, five
lp distances, p =

{
2(s−1)|s = 1, 2, · · · , 5}, are examined. Finally, for the radial basis

function, five deviation values, p = {σo(1.2− 0.2s)|s = 1, 2, · · · , 5}, are investigated.
Here σo is determined after estimating the performance of the classifiers through cross-
validation.

Experimental Results: The run-time characteristics of the DBC and KBC schemes for
the experimental databases are reported below. First, the experimental results obtained
with qdc and ldc trained in the dissimilarity space (shortly D) and the polynomial kernel
space (shortly K) were probed into. Fig. 1 shows a 3-dimensional comparison of the
error rates of qdc trained in the D and K spaces for Nist38. Here, x, y, and z axes are
those of dimensions (which are obtained with PCA), kernel parameters (the degrees of
the polynomial function), and the estimated error rates, respectively.

Fig. 1. A 3D comparison of the error rates of qdc for Nist38: (a) left and (b)right; (a) and (b) are
obtained in D and K spaces, respectively, with different degrees of the polynomial function

From the figure, it can be observed that the two error rates obtained in D and K
spaces are different, which implies that selecting an appropriate kernel parameter is es-
sential for KBCs. This characteristic can be observed again in a subsequent experiment.

In principle, the quadratic Bayesian classifier could be better than the linear Bayesian
classifier, but it requires far more training samples for estimation of the class covariance
matrices. It is also well known that for 2-class problems with equally distributed sam-
ples, the quadratic classifier is equivalent to the linear one. Fig. 2 shows a comparison
of the error rates of qdc and ldc trained in D and K spaces for Nist38.

3 PRTools is a Matlab toolbox for pattern recognition(refer to http://prtools.org/).
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Fig. 2. A comparison of the error rates of ldc and qdc for Nist38: (a) top left, (b) top right,
(c) bottom left, and (d) bottom right; (a) - (d) are obtained in D and K spaces with the four
polynomial kernel parameters (degrees) of s = 1, 2, 3, and 4, respectively

In the figure, it should be pointed out that the difference in the estimated error rates
between qdc and ldc for Nist38 increases as the value of the parameter increases. This is
clearly shown in the error rates represented with two red lines (dashed and solid) in the
four pictures of Fig. 2. This comparison shows that the classification accuracy of qdc
is marginally higher than that of ldc when the appropriate parameter is present (refer to
Fig. 2 (a) and (b)). However, the situation changes when an inappropriate parameter is
chosen (refer to Fig. 2 (d)). From this consideration, the reader should again observe that
choosing an appropriate kernel parameter plays an important role in KBCs. The same
characteristic could also be seen in the other databases, such as RoadSign and Kimia2.
The details for the results of these databases are omitted here to avoid repetition.

Second, as the main result, to investigate the difference of DBCs and KBCs further,
the experiment (of estimating error rates) was repeated in other kernel spaces, such
as Polynomial, Radial basis, and Minkowski spaces (which are shortly referred to as
Kp, Kr, and Km, respectively). Graphical comparisons of the error rates of the four
classifiers trained in the dissimilarity based and the kernel based feature spaces are
continually presented. Fig. 3 shows a comparison of the error rates of knnc, ldc, qdc,
and svc, respectively, for Nist38.

The observations obtained from the figures are the following: (1) In general, the
error rates of the classifiers trained in D space decrease constantly as the dimension
increases, while those of the classifiers trained in 3K’s spaces strongly depend on the
kernel parameters. (2) As can be observed in the pictures in the left column of Fig. 3,
when choosing an appropriate function parameter, all of the classifiers built in D and
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Fig. 3. A comparison of the error rates of knnc, ldc, qdc, and svc built in D and 3K’s spaces with
the kernel parameters of 1 and 4 for Nist38: (a) top left, (b) top right, · · ·, (g) bottom left, and (h)
bottom right; (a) - (b) are of knnc, (c) - (d) are of ldc, (e) - (f) are of qdc, and (g) - (h) are of svc

3K’s have almost the same classification accuracies. (3) Specifically, the classification
accuracy of svc is the best one obtained in Kr space. However, the classifier does not
work satisfactorily in the kernel-based feature space with a wrong parameter, i.e., s = 4.
(4) When the chosen parameters are far from optimal, the ranking of the discriminative
power of the kernel-based feature space is Km, Kp, and Kr. That is, the best discrimi-
native power is that of Km, while the worst one is that of Kr. The same characteristic
could also be observed in the other databases, such as RoadSign and Kimia2. The details
for the results of these databases are omitted here again in the interest of compactness.

Finally, it is an interesting issue to observe how robust to noise the classifiers trained
in D and 3K’s spaces are. To find reason for this phenomenon, we assume that the
sample xi is obtained by a noisy perturbation on the sample. This perturbation can be
perceived as the inclusion of some additional noise θ4, and, thus, we write: xi ← xi+θ.

4 θ(·) refers to the noise generation random variables.
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Fig. 4. A comparison of the error rates of knnc, ldc, qdc, and svc for the noisy Nist38: (a) top left,
(b) top right, (c) bottom left, and (d) bottom right; (a) - (d) are obtained in D and 3K’s spaces
with kernel parameter “4”

For example, the noisy data can be obtained as: xi ← xi ∗ (1 + ε ∗ rand); Here, the
function rand is to generate an array of random numbers whose elements are normally
distributed with mean 0 and variance 1; ε is an experimental constant. Fig. 4 shows a
comparison of the error rates of knnc, ldc, qdc, and svc trained in D and 3K’s for the
noisy Nist38. Here, ε = 0.3.

From the figure, it should be observed that the differences in the estimated error
rates of DBCs and KBCs obtained from the originally transformed feature space and
their noisy perturbation spaces are different. This is clearly shown in the error rates of
qdc represented with two red lines (dashed and solid lines of � marker) and two blue
lines (dashed and solid lines of � marker) in Fig. 2(c). From this consideration, the
reader should observe that the robustness of DBCs is higher than that of KBCs when
there is a badly chosen parameter.

4 Conclusions

In this paper, we performed an empirical comparison of kernel-based classifications
(KBCs) and dissimilarity-based classifications (DBCs). A number of classifiers de-
signed in the two feature spaces were tested on well-known benchmark databases, and
the classification accuracies obtained were compared. Our experimental results demon-
strated that the classification accuracies obtained with KBCs and DBCs were almost the
same when there was an appropriate kernel parameter. However, when the parameter
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was not chosen appropriately, it seemed that the accuracies of DBCs were better than
those of the KBCs. Especially, the results demonstrated that support vector classifiers of
KBCs were vulnerable to function parameters. Despite this success, problems remain
to be addressed. First, in this comparison we employed only three real life databases,
in which each feature component of all objects was uniformly distributed in a fixed
manner. Thus, evaluating the dissimilarity relations represented in a relative way is an
avenue for future work. Next, to improve the internal consistency of the representation
matrices, we could correct the matrices using pseudo-Euclidean embedding algorithms.
Therefore, the problem of investigating the embedding algorithms developed for KBCs
and DBCs remains to be done. Future research will address these concerns.
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