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Abstract. In the process of designing pattern recognition systems one
may choose a representation based on pairwise dissimilarities between ob-
jects. This is especially appealing when a set of discriminative features is
difficult to find. Various classification systems have been studied for such
a dissimilarity representation: the direct use of the nearest neighbor rule,
the postulation of a dissimilarity space and an embedding to a virtual,
underlying feature vector space.

It appears in several applications that the dissimilarity measures con-
structed by experts tend to have a non-Euclidean behavior. In this paper
we first analyze the causes of such choices and then experimentally verify
that the non-Euclidean property of the measure can be informative1.

1 Introduction

Dissimilarities are a natural way to represent objects. Some consider them as
more fundamental than features [1]. This paper studies particular aspects of dis-
similarities. First, we analyze why non-Euclidean dissimilarities arise in recog-
nition. Then, we discuss how non-Euclidean relations can become informative.

Dissimilarities have been studied in [2] for both supervised and unsupervised
learning as an alternative to the use of features in building representations. They
are especially useful in two contexts. First, when no clear properties are available
to become features and, secondly, when objects can be compared globally such
as shapes in images, time signals or spectra. Classifiers relying on dissimilarity
relations can outperform nearest neighbor approaches or template matching.

There are two main approaches for building vector spaces from dissimilarities.
One postulates a Euclidean space, the so-called dissimilarity space, in which fea-
tures are defined by dissimilarities to a representation set of objects. The other
relies on a linear embedding of the given dissimilarity matrix. The first is very
general and can always be used. It demands a proper choice of the representation
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Fig. 1. Illustration of the difference between Euclidean, metric, but non-Euclidean and
non-metric dissimilarities. If the distances between the four points A, B, C and D are
given as in the left plot, then an exact 2-dimensional Euclidean embedding is possible. If
the distances are given as given as in the middle plot, the triangle inequality is obeyed.
So the given distances are metric, but no isometric Euclidean embedding exists. The
distances in the right plot are non-Euclidean as well as non-metric.

set, a problem similar to feature selection [3]. In the selection of the representa-
tion set the intrinsic nature of the dissimilarities may be used, e.g. such that the
closer or the more likely objects belong to the same class. In the construction of
classifiers in this space, dissimilarities may be used in the same way as features.
This, however, neglects their original character of pairwise dissimilarities.

On the contrary, in the embedding of a dissimilarity matrix to a space with a
given metric, the nature of dissimilarities is preserved. It is natural to search for
an embedding to a Euclidean space as the Euclidean metric is assumed either
implicitly or explicitly in many classification systems. It appears however that in
many applications non-Euclidean and even non-metric dissimilarities are used
due to their good performance in template matching. (See Fig. 1 to understand
the difference between non-Euclidean and non-metric dissimilarities.) An early
example is given by Dubuisson and Jain [4] who showed that in a set of image
object matching examples the non-metric modified Hausdorff distance outper-
forms the original metric Hausdorff distance. Non-Euclidean distances can only
be approximately embedded in a Euclidean space. Goldfarb showed how a so-
called Pseudo-Euclidean (PE) embedding can be found [5] for any symmetric
dissimilarity matrix. It is error free, but requires a different distance measure.
Some classifiers can be defined in this space, such as the nearest mean, nearest
neighbor, Parzen classifier, LDA and QDA. The relation of the latter three with
densities is not clear yet, as the concept of probability density distributions has
not been well defined for the PE space.

The question on usefulness or non-importance of non-Euclidean distances has
been around for some time. Goldfarb did not find good applications for the
PE space and abandoned all vector space approaches [5]. Instead, he focussed on
the Evolving Transformation System (ETS) which by a structural representation
aimed to model relations between objects [6], but for which it was difficult to
find classifiers [7]. This is common for structural approaches, but is solved in
a heuristic way by the use of a dissimilarity space, in which the non-Euclidean
nature of the object relations in neglected. In [8] some studies are presented
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indicating that non-Euclideaness of the data (i.e. the deviation from Euclidean
distances) might contribute to the classification performance. In [9] Euclidean
corrections of non-Euclidean data are discussed.

Finding classifiers for non-Euclidean dissimilarities is directly related to study
of indefinite kernels, important for the optimization of Support Vector Machines
(SVMs). The quadratic programming solution used for SVMs is not guaran-
teed to be optimal for kernels that violate the Mercer conditions. As the inner
product definition for the pseudo-Euclidean space leads to indefinite kernels,
the construction of SVMs in such a space is thereby hampered. For that reason
there is a strong tendency in the machine learning community to design positive
semidefinite (psd), i.e. Mercer, kernels. On the other hand, since non-Euclidean
dissimilarities are frequently used in pattern recognition applications, it is rel-
evant to know how to deal with them. Should we avoid them, correct them
into Euclidean distances to make them suitable for the full set of traditional
classification tools, or keep them as they are and design special classifiers for
non-Euclidean data?

In this paper we want to contribute to this discussion in two ways. In Section 3
we will analyze the causes behind non-Euclidean dissimilarities. In Section 4
we will argue why non-Euclidean dissimilarities can be informative and we will
present some examples. First, however, the dissimilarity space and PE embedded
space will be briefly introduced in Section 2.

2 Dissimilarity Representations

The dissimilarity representation has extensively been discussed, e.g. in [2] or [10],
so we will only focus here on aspects that are essential for this paper.

Traditionally, dissimilarity measures were often optimized for the nearest
neighbor classification performance. In addition, they were also widely used in
hierarchical cluster analysis. Later, the resulting dissimilarity matrices served for
the construction of vector spaces and the computation of classifiers. Only more
recently proximity measures have been designed for classifiers that are more gen-
eral than the nearest neighbor rule. These are usually similarities and kernels
(but not dissimilarities), used in combination with SVMs. So, research on the
design of dissimilarity measures such that they fit to a wider range of classifiers
is still in an early stage. Consequently, we will restrict ourselves in this paper to
the common practice of measures optimized for nearest neighbor classifiers. New
objects are thereby classified just on the basis of pairwise comparisons. They are
not represented in a vector space. An additional step is necessary to create such
a space, and as a result, this will allow the use of other classifiers. The two ways
investigated so far are the dissimilarity space and PE embedded space.

2.1 Dissimilarity Space

Let X = {o1, . . . , on} be a training set of objects oi. These are not necessar-
ily vectors but can be real world objects, or e.g. images or time signals. Given a
dissimilarity function and/or dissimilarity data, we define a data-dependent map-
ping D(·, R) : X → R

k from X to the so-called dissimilarity space [11,12,13]. The
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k-element set R consists of objects that are representative for the problem. This
set, the representation or prototype set, may be a subset of X . In the dissimi-
larity space each dimension D(·, pi) describes a dissimilarity to a prototype pi

from R. Here we will choose R := X . As a result, every object is described by an
n-dimensional vector D(o,X ) = [d(o, o1) . . . d(o, on)]T , which are just the rows
of the given dissimilarity matrix D. The resulting vector space is endowed with
the traditional inner product and the Euclidean metric. As we have n training
objects in an n-dimensional space, a classifier such as SVM is needed to handle
this situation.

2.2 Pseudo-Euclidean Embedded Space

A Pseudo-Euclidean (PE) space E = R
(p,q) = R

p ⊕ R
q is a vector space with a

non-degenerate indefinite inner product 〈·, ·〉E such that 〈·, ·〉E is positive definite
on R

p and negative definite on R
q [5,2]. The inner product in R

(p,q) is defined
(using an orthonormal basis) as 〈x, y〉E = xTJpqy, where Jpq = [Ip×p 0; 0−Iq×q ]
and I is the identity matrix. As a result, d2

E(x, y) = (x− y)TJpq(x− y).
Any symmetric n× n dissimilarity matrix D can be embedded into a (n−1)-

dimensional PE space [5,2]. The eigenvalue decomposition needed for the em-
bedding results in p positive and q negative eigenvalues λj , p+q = n−1, and the
corresponding eigenvectors. To inspect the amount of non-Euclidean influence
in the derived PE space, we use the negative eigenfraction (NEF )

NEF =
p+q∑

j=p+1

|λj |/
p+q∑
i=1

|λi| ∈ [0, 1] (1)

as a measure for the non-Euclidean behavior of the dissimilarity matrix.
If the negative eigenvalues are considered as the result of noise or errors, they

may be neglected. As a result, a ’corrected’ dissimilarity matrix Dp may be
computed by using a positive subspace R

p of the embedded space R
(p,q):

d2
Ep(x, y) = (xp − yp)T (xp − yp), (2)

where xp, yp are projections of the vectors x, y from R
(p,q) onto the subspace

R
p and all diagonal values of Jpq become +1. In order to investigate a possible

contribution of the negative eigenvalues, the residue can be computed by:

d2
Eq(x, y) = −(xq − yq)T (xq − yq) (3)

where xq, yq are projections of the vectors x, y from R
(p,q) onto the negative sub-

space R
q and all diagonal values of Jpq become −1. The complete dissimilarity

matrix D can thereby be decomposed as

D∗2 = D∗2
p −D∗2

q (4)

in which the values of D∗2
q are positive and ∗2 denotes an element-wise squaring.

n-dimensional dissimilarity spaces may also be defined for Dp and Dq.
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3 Causes of Non-Euclidean Dissimilarity Measures

In the previous section two procedures for deriving vector spaces are presented.
One is general, but neglects the pairwise dissimilarity characteristics. The other
is specific but suffers from the possible non-Euclidean relations. If we want to
make use of the specific dissimilarity character, but suffer from the non-Euclidean
behavior, it is important to analyze why this happens. Should we avoid it, should
we correct it, or should we design special classifiers that deal with it?

First, it should be emphasized how common non-Euclidean measures are. In
[2] an extensive overview of such measures has been given, but in many occasions
we have encountered that this fact is not fully recognized. Almost all probabilistic
distance measures are non-Euclidean. This implies that by dealing with object
invariants, the dissimilarity matrix resulting from the overlap between the ob-
ject pdfs is non-Euclidean. Also the Mahalanobis class distance as well as the
related Fisher criterion are non-Euclidean. Consequently many non-Euclidean
distance measures are used in cluster analysis and in the analysis of spectra in
chemometrics and hyperspectral image analysis.

In shape recognition, various dissimilarity measures are used based on the
weighted edit distance, on variants of the Hausdorff distance or on non-linear
morphing. Usual parameters are optimized within an application w.r.t. the per-
formance based on template matching and other nearest neighbor classifiers [14].
Almost all have non-Euclidean behavior and some are even non-metric [4].

In the design and optimization of the dissimilarity measures for template
matching, their Euclidean behavior is not an issue. With the popularity of sup-
port vector machines (SVMs), it has become important to design kernels (sim-
ilarities) which fulfill the Mercer conditions. This is equivalent to a possibility
of an isometric Euclidean embedding of such a kernel (or dissimilarities). Next
subsections discuss reasons that give rise to violations of these conditions leading
to non-Euclidean dissimilarities or indefinite kernels.

3.1 Non-intrinsic Non-Euclidean Dissimilarities

Below we identify some non-intrinsic causes for non-Euclidean dissimilarities.

Numeric inaccuracies. Non-Euclidean dissimilarities arise due the numeric
inaccuracies caused by the use of a finite word length. If the intrinsic dimen-
sionality of the data is lower than the sample size, eigenvalues that should be
zero during embedding, may become negative due to numeric inaccuracies. It is
thereby advisable to neglect dimensions (features) that correspond to very small
positive and negative eigenvalues.

Overestimation of large distances. Complex measures are used when dis-
similarities are derived from raw data such as (objects in) images. They may
define the distance between two objects as the length of the path that trans-
forms one object into the other. Examples are the weighted edit distance [15]
and deformable templates [16]. In the optimization procedure that minimizes
the path length, the procedure may approximate the transformation costs from
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above. As a consequence, too large distances are found. If the distance measure
is Euclidean, such errors make it non-Euclidean or even non-metric.

Underestimation of small distances. The underestimation of small distances
has the same result as the overestimation of large distances. It may happen when
the pairwise comparison of objects is based on different properties for every pair,
like in studies on consumer preference data. Another example is the comparison
of partially occluded objects in computer vision.

3.2 Intrinsic Non-Euclidean Dissimilarities

The causes discussed in the above may be judged as accidental. They result either
from computational or observational problems. If better computers and observa-
tions were available, they would disappear. Now we will focuss on dissimilarity
measures for which this will not happen. We will present three possibilities.

Non-Euclidean Dissimilarities. As already indicated at the start of this
section, there can be arguments from the application side to use another metric
than the Euclidean one. An example is the l1-distance between energy spectra
as it is related to energy differences. Although the l2-norm is very convenient
for computational reasons and it is rotation invariant in a Euclidean space, the
l1-norm may naturally arise from the demands in applications.

Invariants. A very fundamental reason is related to the occurrence of invariants.
Frequently, one is not interested in the dissimilarity between objects A and B,
but between their equivalence classes i.e. sets of objects A(θ) and B(θ) in which
θ controls an invariant. One may define the dissimilarity between the A and B
as the minimum difference between the sets defined by all their invariants.

d∗(A, B) = min
θA

min
θB

(d(A(θA), B(θB))) (5)

This measure is non-metric: the triangle inequality may be violated as for dif-
ferent pairs of objects different values of θ are found minimizing (5).

Sets of vectors. Complicated objects like multi-region images may be rep-
resented by sets of vectors. Distance measures between such sets have already
been studied for a long time in cluster analysis. Many are non-Euclidean or even
non-metric, e.g. the single linkage procedures. It is defined as the distance be-
tween the two most neighboring points of the two clusters being compared, is
non-metric. It even holds that if d(A, B) = 0, then it does not follow that A ≡ B.

For the single linkage dissimilarity measure it can be understood why the
dissimilarity space may be useful. Given a set of such dissimilarities between
clouds of vectors, it can be concluded that two clouds are similar if the entire
sets of dissimilarities with all other clouds are about equal. If just their mutual
dissimilarity is (close to) zero, they may still be very different.

The problem with the single linkage dissimilarity measure between two sets
of vectors points to a more general problem in relating sets and even objects. In
[17] an attempt has been made to define a proper Mercer kernel between two
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sets of vectors. Such sets are in that paper compared by the Hellinger distance
derived from the Bhattacharyya’s affinity between two pdfs pA(x) and pB(x)
found for the two vector sets A and B:

d(A, B) =
[∫

(
√

pA(x) −√pB(x))2
]1/2

. (6)

The authors state that by expressing p(x) in any orthogonal basis of functions,
the resulting kernel K is automatically positive semidefinite (psd). This is only
correct, if all vector sets A, B, ... to which the kernel is applied have the same
basis. If different bases are derived in a pairwise comparison of sets, the kernel
will become indefinite.

Thismakes clear that indefinite relationsmayarise in anypairwise comparisonof
realworldobjects if theyarefirst represented in some joint space for the twoobjects,
followedby a dissimilaritymeasure.These joint spacesmaybedifferent for different
pairs! Consequently, the total set of dissimilarities will likely have a non-Euclidean
behaior, even if a single comparison is defined as Euclidean, as in (6).

4 Informativeness

Are non-Euclidean dissimilarity measures informative? How should this question
be answered? It is different than the question whether non-Euclidean measures
are better than Euclidean ones. This second question can certainly not be an-
swered in general. After we study a set of individual problems and compare
a large set of dissimilarity measures we may find that for some problems of in-
terest the best measure is non-Euclidean. Such a result is always temporal. A
new Euclidean measure may later be found that outperforms the earlier ones.

The question of informativeness however may be answered in an absolute
sense. Even if a particular measure is not the best one, its non-Euclidean char-
acteristic can be informative as by removing it, performance deteriorates. Should
this result also be found by a classifier in the non-Euclidean space? If an Eu-
clidean correction can be found for an initial non-Euclidean representation that
enables the construction of a good classifier, is the non-Euclidean dissimilarity
measure then informative? We answer this question positively as any transfor-
mation can be included in the classifier and thereby effectively a classifier for
the non-Euclidean representation has been found.

We will therefore state that the non-Euclidean character of a dissimilarity
measure is non-informative if the classification result improves by removing its
non-Euclidean characteristic. The answer may be different for different classifiers.
The traditional way of removing the non-Euclidean characteristic is by neglecting
the negative eigenvectors in the pseudo-Euclidean embedding. This is represented
by the recomputed dissimilarities in the positive part of the pseudo-Euclidean
space, Dp in (4). The dissimilarity representation based on Dq isolates the non-
Euclidean characteristic of the given dissimilarity matrix D and can be used as
a check to see whether there is any class separability visibility in the removed
part of the embedding.



Non-Euclidean Dissimilarities: Causes and Informativeness 331

Table 1. Classification errors of the linear SVM for several representations using leave-
one-out crossvalidation
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Chickenpieces45 446 5 0 0.156 0.791 0.022 0.132 0.175
Chickenpieces60 446 5 0 0.162 0.791 0.020 0.067 0.173
Chickenpieces90 446 5 0 0.152 0.791 0.022 0.052 0.148
Chickenpieces120 446 5 0 0.130 0.791 0.034 0.108 0.148
FlowCyto 612 3 1e-5 0.244 0.598 0.103 0.100 0.327
WoodyPlants50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442
CatCortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662
Protein 213 4 0 0.001 0.718 0.005 0.000 0.634
Balls3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000
GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228
GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252
CoilYork 288 4 8e-8 0.258 0.750 0.267 0.313 0.618
CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597
CoilDelftDiff 288 4 8e-8 0.128 0.750 0.347 0.358 0.691
NewsGroups 600 4 4e-5 0.202 0.733 0.198 0.213 0.435
BrainMRI 124 2 5e-5 0.112 0.499 0.226 0.218 0.556
Pedestrians 689 3 4e-8 0.111 0.348 0.010 0.015 0.030

We analyze a set of public domain dissimilarity matrices used in various ap-
plications, as well as a few artificially generated ones. The details of the sets are
available from the D3.3 deliverable of the EU SIMBAD project2. See Table 1
for some properties: size (number of objects), (number of) classes, non-metric
(fraction of triangle violations), NEF (negative eigenfraction) and Rand Err
(classification error by random assignment). Every dissimilarity matrix is made
symmetric by averaging with its transpose and normalized by the average off-
diagonal dissimilarity. We compute the linear SVM in the dissimilarity spaces
based on the original, ’positive’ and ’negative’ dissimilarities D, Dp and Dq.
Error estimates are based on leave-one-out crossvalidation. These experiments
are done in a transductive way: test objects are included in the derivation of the
embedding as well as the dissimilarity representations.

The four Chickenpieces datasets are the averages of 11 dissimilarity matrices
derived from a weighted edit distance between blobs [15]. FlowCyto is the aver-
age of four specific histogram dissimilarities including an automatic calibration
correction. WoodyPlants is a subset of the shape dissimilarities between leaves
of woody plants [10]. We used classes with more than 50 objects. Catcortex is
based on the connection strength between 65 cortical areas of a cat, [12]. Protein
measures protein sequence differences using an evolutionary distance measure
[18]. Balls3D is an artificial dataset based on the surface distances of randomly

2 http://simbad-fp7.eu/
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positioned balls of two classes having a slightly different radius. GaussM1 and
GaussM02 are based on two 20-dimensionally normally distributed sets of ob-
jects for which dissimilarities are computed using the Minkowsky distances 1
respectively 0.2. The three Coil datasets are based on the same sets of SIFT
points in COIL images compared by different graph distances. BrainMRI is the
average of 182 dissimilarity measures obtained from MRI brain images. Pedestri-
ans is a set of dissimilarities between detected objects (possibly pedestrians) in
street images of the classes ’pedestrian’, ’car’, ’other’. They are based on cloud
distances between sets of feature points derived from single images.

5 Discussion and Conclusions

In this paper we identify a number of causes that give rise to non-Euclidean
and non-metric dissimilarities and we wonder whether they can play an infor-
mative role for classification purposes. In the above table some phenomena can
be observed that illustrate these issues and answer some questions.

– From the negative eigenfraction column (NEF) it can be understood that all
datasets are non-Euclidean. Protein set has a nearly Euclidean measure as
it has just a very small contribution from the negative eigenvalues.

– A number of datasets is metric. Chickenpieces, as we used the dataset here,
based on averages of weighted edit-distances between contours, should be
metric as the edit-distance searches for the smallest edit path. In the indi-
vidual dissimilarities matrices some violations can be observed due to ap-
proximations in the path optimization procedure. After averaging this is
solved. Interesting is that this procedure improves the results significantly.
The performances found in the dissimilarity space are to our knowledge the
best ever published for this dataset .

– The original, uncorrected, pseudo-Euclidean dissimilarities are the best (in
bold) in many cases. For these the deletion of the negative eigenvectors works
counter-productive.

– For the other datasets the Euclidean correction works out well.
– However, in almost all cases the negative part of the space alone shows

some separability of the classes (compare with the random assignment error),
proving that it contains some information.

– In a few cases the negative space shows very good results, e.g. Pedestrians.
– In the Balls3D example all information is concentrated in the negative space.

In conclusion it is stated that the non-Euclidean characteristic of dissimilarity
data, resulting from the search of the best representation for nearest neighbor
assignment should not be directly removed from the representation as by using
the positive space only. This space performs often similar or worse compared
to the original dissimilarities. The negative space itself, concentrating all non-
Euclidean characteristics, yields usually a better than random performance and
surprisingly leads to a very good result in some problems. From these two obser-
vations, removing the negative space often deteriorates results and the negative
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space alone shows a better than random performance, it is concluded that nega-
tive space and thereby the non-Euclideaness of the data is informative. It should
be realized that these conclusions are classifier dependent.
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