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Pieter P. Jonker, Robert P.W. Duin, Dick de Ridder:

Pattern recognition for metal defect detection
This paper describes how to classify a data set containing features extracted from metal strips, using pattern recognition algo-
rithms. In the first part, a short resume of pattern recognition principles and algorithms is presented, while in the second part
the techniques are applied on steel samples obtained from the Anshan Steel Corporation, P.R. China. From the images made
and pre-processed by the Institute of Bildsame Formgebung Aachen, Germany, features were extracted using ParsyVision from
Parsytec GmbH Aachen, Germany. On these features we used several classifiers. The influence of the feature set size and
sample size of the master set of samples was illuminated. Finally we established a checklist for pilot projects on automatic steel
inspection systems.

Pattern recognition

Pattern recognition is the science of information proc-
essing procedures that are able to classify, describe and
label measurements. Objects (e.g., a pit in a metal sheet) of
unknown class are sensed (e.g., with cameras), pre-
processed (e.g., with image processing algorithms) and
observable features of the object are measured (e.g., area,
perimeter). We will call this pre-processing system the
region of interest (ROI) detector. The pattern recognition
system is then able to estimate the class of the object,
sometimes with a measure of confidence (e.g., the object
belongs to a class with a confidence of: A: 80 %, B: 15 %,
C: 5 %). In cases the system itself determines classes we
usually refer to this as cluster algorithms; the algorithm
discovers clusters in the data that can be thought of as ob-
ject classes. Systems that can learn from examples that are
classified by an expert are called supervised learning sys-
tems. In such a system, the master set of samples, which
truly represents the statistics of the production facility, is
classified by experts and then randomly divided in a train-
ing set and a test set. In training mode, the samples from the
training set are fed into the system, whereupon the system
produces a classification result that is likely to be wrong in
first instances, but iteratively -in a learning or training proce-
dure- the error between the class labelled by the expert and
the class estimated by the system is minimised. To estimate
the performance of the system, the test set should be used.

The key principle in such systems is that the extracted
features of the object span a feature space. The dimension-
ality of this space is as large as the number of features that
are used. By way of example, fig. 1 shows a feature space.
Each observed object (e.g. pits in a metal sheet), with
measured features area and perimeter, is represented as a
point P (perimeter, area) in a two dimensional space.

If we take a linear function (in 2D a straight line) as a
discriminant function, we can use the training set to esti-
mate the parameters of this line, and use the found equation
of the line to classify the test set to measure the system’s
performance, or in production to classify the samples that
our ROI detectors find. However, due to the linearity of the
classifier we are bound to make errors if classes are entan-
gled or, worse, overlap.

There are several methods to obtain the discriminant
function or approximate it. The fastest method is to use the
features in a decision tree as is shown in fig. 2. In this way
the discriminant function is approximated with line seg-
ments parallel to the feature axes. This yields a fast but
moderate performance. Moreover it is a difficult procedure
to find the threshold values for each feature in the decision
tree.

A popular but less understood classifier is the neural net-
work with back propagation learning rule, see fig. 3.

In such a system each (feature) input is coupled to each
of the units in the hidden layer with a certain weight factor,
and each (class) output is coupled onto each hidden unit

Fig. 1. Feature space and discriminant function Fig. 3. Neural network with back propagation learning rule

Fig. 2. Decision tree analysis
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also with a certain weight factor. The transformation from
input to hidden layer represents a remapping of the features
to a transformed feature space with another dimensionality.
Useful features are attenuated, whereas less important fea-
tures are suppressed. The transformation from hidden layer
to output layer forms the classification. In the learning
phase a training set of data is repeatedly presented to the
system, which results in updates of the weights. The error
between the class labelled by the expert and the class esti-
mated by the system will gradually diminish. However, the
independent test set should be used to prevent overtraining.
Overtraining occurs when a system learns the examples by
heart and is not able to generalise any more, i.e. the system
adapts itself to the noise in the training set. If the error in
the test set goes up, training has gone too far and as the
ideal trained network, a predecessor has to be taken. This is
shown in fig. 4, a problem with two overlapping classes.
Here a network and its discriminating curves are drawn
after 2, 10, 20, 50 and 100 epochs. After 10 epochs, over-
training takes place and the system will not classify cor-
rectly anymore.

A recent, very promising devel-
opment in pattern recognition is the
support vector classifier. This clas-
sifier is based on the fact that a
discriminating function can be
obtained from the training samples
that are the closest to the class
boundaries. Fig. 5 shows two ex-
amples in 2D, a linear discriminant
function and a curved function,
both set-up by their supporting
training points (vectors). The bene-
fits of this system is that it is insen-
sitive to small samples sizes in
high-dimensional feature spaces,
and it is not so much influenced by

outliers, as it seeks the boundary between the classes, dis-
regarding the class average. The SV classifier trains slow
but classifies fast.

In all trainable systems, there is a relation between the
numbers of features used, the number of parameters of the
system, the classification error on the test set and the num-
ber of samples of the training set. This relation is shown in
fig. 6 and is also known as the peaking phenomenon. Ob-
serving the curves, one can reason that above a certain
number of features used, overtraining will be a problem.
The lowest curve indicates the error on the training set,
while the bundle of upper curves indicates the error on the
test set. With an increasing number of features, the error on
the test set diminishes, but if the number of features be-
comes too large, the error on the test set grows again, due
to overtraining. We showed this in fig. 5. A new test error
curve with a minimum further to the right is found, if a
larger number of samples is used to train the system. This
also leads to a lower possible minimum value of the error
on the test set. So we have a problem if the number of

Fig. 5. Support vector classifiers

Fig. 4. Examples of training and overtraining
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training samples is low. The reason for this can be partly
understood by observing that the features span a high di-
mensional space, in which the training samples are points
from which the discriminant function must be derived. No
adequate structure can evolve if there are not enough sam-
ple points available. I.e., one needs to have at least 2 points
to span a line in a 2D space (y = ax + b) and so we need to
have at least N sample points in an N-dimensional feature
space for a linear classifier. E.g., with 20 features and 4
classes a master set of samples (train plus test set) of at least
20 · 4 · 2 = 160 samples is necessary. In the case of a linear
classifier, (flat) hyperplanes separating the classes segment
the hyperspace. (In case of a decision tree these planes are
even always perpendicular to the main axes of the space.)
Usually more sophisticated classifiers (e.g. neural networks
or support vector classifiers) are necessary that can realise
deformable surfaces in hyperspace to separate the classes.
However, the number of necessary sample points grows
with the number of free parameters of the classifier. Conse-
quently, to get a low error on the test set, one needs many
samples, especially when the number of features used is
high. Often in inspection pilot projects this rule is violated.

Do’s and Don’ts for automated defect detection

To elucidate further do’s and don’ts for automated defect
detection, we use data from the Anshan Steel Corporation1

and a ParsyVision from Parsytec GmbH to acquire ROIs, as
well as our own classification software PRTools, a Matlab
toolbox for pattern recognition. As we noticed that the
features for bright field and dark field were highly uncor-
related, we are in fact dealing with two independent three-
class problems, see table 1. Analyzing all possible (79)
features we manually selected 22 features of which we had
indication that they were relevant for the problem. Since
the feature values differed wildly, each feature was nor-
malised by subtracting the mean value and dividing it by
the standard deviation. The samples were split at random in
a training set (67 %) and a test set (33 %). The experiments
were performed 5 times to get an idea of the variance in
results, so each time a new random selection of the training
and test-set was made out of the Master set of samples. We
found out that making for each set (BF and DF) a two-stage
classifier, first sieving the pseudo defects and then classi-
fying the remainder in separate defect classes was very
beneficial. For both sets, linear classifiers were found to be
insufficiently powerful. As a consequence of the fact that
not all classes were represented well (the class Coil Break

                                                                
1 derived from De Ridder et al.: WP2.2.1. classification of steel samples,
QC-SIASIS, INCO-DC project 961895

had even hardly any samples) a quadratic classifier could
not be used. The best performing classifier was the support
vector classifier, which can also form a linear classifier
when insufficient data is available, see fig. 7. Table 1
shows the confusion matrix.

However, the error on the test set remained too high. In-
spection using principal component analysis (PCA) re-
vealed that the intrinsic dimensionality of the data sets was
around 10; meaning that 95 % of the variance in the data is
due to 10 features, and 75 % of the variance is due to 4
features only, being far less than the original number of 22
features, see fig. 8. We therefore applied a forward-
selecting feature reduction mechanism.

As the number of samples, e.g., for coil break was below
a minimum, we artificially created new samples using

Gaussian noise. Moreover, when the distribution of the
training samples does not reflect the relative severity of the
defects (a lot of rust, no coil break), an a-priority defect
distribution matrix should be made, that makes it possible
to compensate for this during training.Prior probabilities
are very important, e.g., if defect A occurs 4 times as much
as defect B, this can lead to a choice for different classifier
than if we assume equal class probabilities.

And finally, if the cost of one defect is higher than that of
another, this should be used during training, using a cost
matrix. Misclassifications have different costs. The mill

Table 1: The confusion matrices as result on the test-set on the
bright field and dark field problems

True class � em. rust scale pseudo
classified as: � mark

em. mark 129 1 0 23
rust 0 183 1 31
scale 0 0 546 186
pseudo 1 6 26 167

true class � coil edge roll pseudo
classified as: � break crack imprint

coil break 0 0 0 2
edge crack 0 24 0 5
roll imprint 0 0 5 3
pseudo 1 7 6 131

Fig. 7. The performance of various classifiers

Fig. 6. The peaking phenomena
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might be stopped for maintenance if (false) roll-imprints
occur.

If companies have no data on this, assumptions might be
used to correct the result. Finally, after removal of the
pseudo defects and with own assumptions on a-priority
defect distributions and cost matrices, we could come to
results that had errors on the test set below 2 � 1 % for the
bright field 3 class problem and 7 � 2% for the dark field 3
class problem using a support vector classifier.

Conclusions

In this paper we briefly reviewed the research area of
pattern recognition with respect to current defect detection
systems for metal strip production. We then provided con-
siderations, based on a pilot in a EU-project, on do’s and
don’ts for pilot projects. We conclude:
� a pre-processing system is a first sieve. It selects regions

of interest with candidate defects. All defects not de-
tected here will not be detected at all. With multiple
cameras, defects might be split in separate ROIs (e.g.,
long scratches perpendicular to the belt), which may
lead to wrong results;

� one has to establish which defect classes one wants to
distinguish, and which ones are really relevant;

� establish a master set of samples that represents the
statistics of the production system;

� manually select a reasonable number (� 20) of the (�
300) available features of the inspection system;

� use principal component analysis on the master set of
samples to detect how many of those reasonable number
of features are really relevant;

� apply an automatic feature selection mechanism to
select features that are effective and orthogonal;

� � � � separate the data in an independent training and test set.
Let relative class frequencies mirror the probability of
occurrence of an error;

� most defects are either based on bright field or on dark
field features, so the classification problem can be split
in a bright field and a dark field problem;

� it is beneficial to separate the system in an outlier de-
tector that prunes away the pseudo defects, followed by
a subsequent defect classifier;

� select a classifier that does the job good and fast and can
handle the available training samples in the training set
and the number of features that are used;

� look at the errors in the test set, not in the training set.
Manufacturers have to specify their performance based
on an independent test set, not on a training set;

� are there enough samples in each defect class? Even if
not enough samples per class can be obtained to reflect
the prior probabilities, artificial generation of additional
data (e.g., using Gaussian noise) can be used to enlarge
certain class sample sizes;

� what are the prior probabilities of the defects? This
knowledge may be used to unbias the master set of
samples;

� it is beneficial if the client could specify costs of mis-
classification per class in an award or penalty matrix;

� train the pseudo defects, test to prevent over-training;
� train the defect classes, test to prevent over-training;

� support vector classifiers are a good alternative for
neural networks. They hook onto class boundaries, so
are insensible for outliers;

� start collecting data. Make use of the inspection ma-
chine first to collect a master set of samples that is rep-
resentative for the production facility. Several hundred
samples per class (200 - 500) are usually necessary to
obtain good insight into the problem.

References

[1] A.K. Jain and B. Chandrasekaran: Dimensionality and Sample Size
Considerations in Pattern Recognition Practice, [in:] P.R. Krishnaiah
and L.N. Kanal [eds.:], Handbook of Statistics, vol. 2, North-Holland.

[2] K. Fukunaga: Introduction to statistical pattern recognition, 2nd edn.,
Academic Press, New York, 1990.

[3] S.J. Raudys and A.K. Jain: IEEE Trans. Pattern Anal. Mach. Intellig.
13 (1991) No. 3, p. 252/64.

[4] J.R. Quinlan: C4.5: Programs for machine learning, Morgan Kauf-
mann Publishers, San Mateo, California, 1993.

[5] C.M. Bishop: Neural networks for pattern recognition, Clarendon
Press, Oxford, 1995.

[6] T. Kohonen: Self-organizing maps, Springer Series in Information
Sciences, Vol. 30, Berlin, 1995.

[7] V.N. Vapnik: The nature of statistical learning theory, Springer
Verlag, Berlin, 1995.

[8] E. Gose, R. Johnsonbaugh, and S. Jost: Pattern Recognition and
Image Analysis, Prentice-Hall, Englewood Cliffs, 1996.

[9] R.P.W. Duin: PRTools, a Matlab Toolbox for Pattern Recognition,
http://www.ph.tn.tudelft.nl/~bob/PRTOOLS.html

Fig. 8. Principal component analysis

Dr. ir. Pieter P. Jonker Dr. ir. Robert P.W. Duin Dr. ir. Dick de Ridder

Pattern Recognition Group, Faculty of Applied Sciences, Delft
University of Technology, The Netherlands.


