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Abstract

To obtain better classification results, the outputs of an ensemble of classifiers can be
combined instead of just choosing the best classifier. This combining is often done by using a
simple linear combination of the outputs of the classifiers or by using order statistics (using
the order in the outputs for different classes). In this paper we will show that using the
normalized product of the outputs of the classifiers can be more powerful for classification
performance. We will show in which cases a product combination is to be preferred and
where a combination by averaging can be more useful. This will be supported by theoretical
and experimental observations.

1 Introduction

Certainly a very important property for a classifier is to respond meaningfully to novel patterns,
i.e. the classifier generalizes [Wol94]. To obtain a network which generalizes well, one often
constructs several different classifiers. Each of these classifiers have different decision boundaries
and generalizes differently. The classifiers which generalizes best on a test set is then chosen to
perform the classification task. It is observed though that it may be a waste to use only one
of the pool of classifiers and ignore the information contained in the other classifiers [LT93],
[BCY4].To use all information in the classifiers, the outputs of all networks can be combined for
the final decision. This combined classifier often outperforms the single classifiers and is more
robust[SS95].

Combining may not only improve the generalization of the classifications, but may also suffer
less from time and space constraints. When a large feature space can be split in several smaller
spaces, on each feature space a classifier can be constructed (or learned). Constructing and
combining these small classifiers to one larger network may be less time and space demanding
than constructing one large classifier on the total feature space[JM97].

Several ways to combine classifiers exist. The combining of classifiers is often done using linear
combinations of classifiers outputs (this can be just averaging or more advanced weighted linear
combinations[Has94], [Jac95]), rank-based combining (in which each output class is ranked by
the classifiers and then combined[HHS94|), voting-based combination ([BC94]) or combination
based on Dempster-Shafer theory of evidence([Rog94]).

In this paper we will focus on the combination of estimations of class probability densities.
Two very simple combination rules will be considered: the mean rule and the product rule (see
for example [KHDY6]). These combination rules combine the probability estimations by simple



summation and multiplying respectively. We will show in what situations the product rule or
the mean rule is to be preferred as combination rule.

In section 2 the mean and product combination rules will be introduced and some theoretical
background will be given. In section 3 experiments will be shown, both artificial and real world
problems. Section 4 will summarize the conclusions.

2 Combining rules

2.1 Derivation of the rules

The ultimate goal for a classifier is to correctly estimate the probability that an object belongs
to a certain class wj. This object is represented by a measurement vector x, in which each
component is a measurement of a feature. When R measurement vectors z!, ..., 2% from different
feature spaces are available, this probability P(w;|z!, ...,2) has to be approximated (see also
[KHD96]). In each of the R feature spaces a classifier can be constructed which approximates
the true class probability P(w;|z¥) in that feature space:
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A good combination rule uses these fjk(mk) to approximate P(w;|z!, ..., 2%) as optimal as possi-

ble.
Two combination rules will be considered, the mean rule and the product rule:
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Two extreme cases can be distinguished, the first in which the feature spaces (and therefore
the measurements of the objects) are all the same, the second in which all feature spaces and
measurements are different and independent. In the case of identical feature spaces, the classi-
fiers all use the same data x and approximate the same probability-distribution when they are
designed to do so:

P(z', ..., 2®w)) = P(atw;) - 6(x' — 2?) - ..o(2F! — 2 (4)
Using Bayes we can derive:
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This P(w;|2*) has to be estimated by fjk(mk) To obtain a less error-sensitive estimation, all
ff(xk)’s can be averaged and thus eq.(2) is obtained.

In the second case all feature spaces are different and independent and the probabilities can
be written as:

P(z!, ...,mR|wj) = P(z'|w;) - P(2?|wj) - ...P(mR|wj) (6)



Using Bayes again, we derive:
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In case of equal apriori class probabilities (P(w;) = 1/(number of classes)), this formula reduces
to a product rule (eq.(3)) with ef(xk) =0.

2.2 Choice between product and mean rule

To make a choice between mean and product rule, one has to compare the number of misclassi-
fications made by the different combination rules. Misclassification in two class problems means
that although an object = belongs with probability larger than a half (P(wa|z) > 0.5) to class
w4, the combination rule obtains a contrary result (P.s(wal|z) < 0.5).
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Figure 1: Solid line: True probability distribution, left class is called w4, the right is class wg,
dashed line: conditional distribution estimated for class wy by a classifier.

In figure 1 the probability densities of two gaussian distributed classes is shown (N (—1.0,1.0)
and N (+1.0,1.0)). The two classes have an overlap of 15.9%. R classifiers are constructed,
which estimate conditional probability estimation that x belongs to the left class w4 using their
own estimated class probability distributions (N (—1.04€4,1.0) and N'(+1.0+¢€p,1.0)). Because
the classifiers make imperfect estimations (the estimated mean differs ¢; from the true mean)
some classifications will go wrong.

In figure 2 the probabilities obtained by the combination rules of 250 sets of three classifiers
(R = 3) are shown. The classifiers have errors ¢; = A/(0.05,0.0) in their estimation of the means
of the classes. Each dot in the figure represents the result of the mean rule and product rule.
In the left figure ('mean model’) classifiers are given the same measurement vector x, which
models an identical feature space for all classifiers. For this x the P(w4|z) = 0.65. In the right
figure (’product model’) independent measurements from a class A are given, which models
independent feature spaces. z’s are drawn from class w4 with probability 0.65 and probability
of 0.35 from class wpg.

To prefer one combination rule above another, the upper-left and lower-right parts of the
figures have to be compared. When objects appear in the upper-left part, it means that the
mean combination rule made a good combination of the R classifiers for this object, while the
product combination rule did not (object z is classified to the wrong class). The reverse holds
for the lower-right part. The right figure in figure 2 shows a better performance for the product
rule. In the left figure both mean and product rule are equally well.
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Figure 2: Probabilities obtained by product rule and mean rule for an object x with P(wy|x) =
0.65. The errors of the estimations of the probability distributions are small: €; = N(0.05,0.0).

For (relative) small errors made by the classifiers, we see that both in the mean model as in
the product model the product rule performs well for P(wa|z) = 0.65. For other probabilities
this holds also. In situations where P(wa|z) = 0 or 1 both combination rules perform very good,
while when P(wa|z) = 0.5 performances are equally poor. Thus for the case of small estimation
errors the product can be preferred for all combination tasks.

Mean Model Product Model

0.7 0.7
oot
2 N
o)
g0 o6, © é o %
£ ® o ® ° ° 0.0 ° 3
2 @
;0 5 50 00 0.5 o oe®Te © + [} oo
= o o &
3 28 %0
g0 o%a 0.4
[}
o
0.3% 03
8
0.2 0.2
0.1 0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability by product rule Probability by product rule

Figure 3: Probabilities obtained by product rule and mean rule for an object = with P(wa|zr) =
0.65. The errors of the estimations of the probability distributions are small, except for one

classifier: eg?’ =N (5.0,0.0). ‘4’ indicates where P4 = 0.5 and Ppeqn = 0.5.

When the errors are large however, especially when one classifier makes a very bad estimation,
the picture changes drasticly (see figure 3). In the mean rule the probabilities stay between 0.4
and 1.0 (with a P(wa|z) = 0.65) but in the product rule they cover the entire range from 0.0 to
1.0. Especially in the region where the mean rule estimates probabilities of around 0.5 and 0.6,
the product rule is very uncertain and outputs values between 0.0 and 1.0. This sensitivity can
be confirmed by a theoretical analysis (see [KHD96]). Even more serious is the region where
the mean rule gives probabilities around 0.4 or 0.5. Here the product rule outputs values of 0.0.
This occurs when one of the classifiers has overruled all other estimations by its output of 0.0
which acts like a veto. In cases where the probability densities are very badly estimated and
contain a lot of zeros, this veto becomes very dominant.



3 Experiments

To show that these two extremes can be really observed, two experiments will be done, using
a pattern recognition Matlab toolbox ([Dui95]). In the first artificial problem 3 classifiers are
trained on three independent feature spaces. In these 3 feature spaces two classes are present,
which are distributed by 3 different distributions: two distributions with overlapping normal
densities, one with equal and one with different covariance matrices and a banana shaped data
set. The three classifiers are normal density based quadratic classifiers. By using more training
patterns the accuracy of the estimations of the classifiers improves and the product rule can be
used for combining (see table 1).

Classifier

Error (P = 16)

Error (P = 160)

classifier feature set 1
classifier feature set 2
classifier feature set 3
classifier all feat.sets

product combination
mean combination

0.230 £ 0.112
0.170 £+ 0.095
0.130 £ 0.111
0.125 + 0.130

0.160 £ 0.142
0.035 £ 0.077

0.200 £+ 0.039
0.078 £ 0.021
0.116 £ 0.036
0.013 £+ 0.009

0.021 + 0.012
0.049 £ 0.018

Table 1:

Classification performance on a test set of 160 patterns of the combination rules

of 3 classifiers in independent feature spaces. Classifiers are normal density based quadratic
classifiers, P is the total number of train patterns, averaged on 25 runs.

The second experiment is a hand written digit problem. From a set of 2000 hand written
digits (200 per class) four different feature sets are measured. These features are the Fourier
transformed, Karhunen-Loéve transformed, ordinary pixel values and Zernike moments (see
[BDT97]). In these four feature spaces four simple linear classifiers are trained. These linear
classifiers assume normal densities with equal covariance matrices. To obtain a probability esti-
mation over the whole feature space a sigmoid function is fitted using the Maximum Likelihood
criterium. On the decision boundary the probability is 0.5, far away the probabilities are 0.0
or 1.0. In table 2 the result of the individual classifiers and the combination rules are shown

Classifier

Error (P = 50)

Error (P = 150)

classifier Fourier feature set
classifier Karhunen-Loeve feature set
classifier Pixel feature set

classifier Zernike feature set

product combination
mean combination

0.214 £ 0.008
0.054 £ 0.010
0.105 £+ 0.010
0.153 £+ 0.005

0.024 £+ 0.009
0.032 £ 0.006

0.198 £+ 0.017
0.054 £ 0.013
0.050 £+ 0.013
0.152 £ 0.015

0.014 +£ 0.004
0.028 £ 0.005

Table 2: Performance of the combination rules of 4 classifiers in independent feature spaces.
Classifiers are normal density based linear classifiers, P is the total number of train patterns.
Results are averaged on 5 runs.

(tested on an independent test set of 50 patterns per class). We see that in both cases, large
and small number of train samples, the product rule outperforms the mean rule. Although the
probability density can not be estimated very well by just a linear classifier, it seems that in
this classification task no classifiers disturb the product rule by giving a probability estimation
of 0.0. Combined the classifiers give a quite reasonable classification result.



4 Conclusion

We investigated the differences between two combination rules for combining probability esti-
mations of several classifiers. These rules are the mean rule and the product rule. It is shown
that when the estimation of the classifiers have all small errors and the classifiers operate in
several independent feature spaces, it becomes theoretically preferable to combine the output
estimations of the classifiers by multiplying them. Also when the classifiers are used in the same
feature space, the product combination rule can be used, for the differences between the mean
and product combination rule are very small. This is confirmed by experiments.

When estimations of the classifiers contain large errors, the estimated probabilities can best
be combined by the mean rule. Not only is the product rule very sensitive to errors in the
probability estimations, it also contains a veto mechanism: when one classifier outputs a zero
for an estimation, the complete combination rule outputs zero. The mean rule is not as sensitive
as the product rule and is thus to be preferred in the case of larger estimation errors.

The next challenge will be to estimate by forehand which of the two combination rules have to
be used in a certain classification problem. It may be possible to apply the mean rule to subsets
of classifiers and next combine all classifiers with yet combined classifiers with the product rule.
Therefore more research is needed.
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