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Abstract

In this paper the possibilities are discussed for training statistical pattern recognizers based on a
distance representation of the objects instead of a feature representation. Distances or similarities are
used between the unknown objects to be classified with a selected subset of the training objects (the
support objects). These distances are combined into linear or nonlinear classifiers. In this approach
the feature selection problem is replaced by finding good similarity measures. The proposal
corresponds with determining classification functions in Hilbert space using an infinite feature set.
It is a direct consequence of Vapnik’s support vector classifier [2].

1  Introduction

Research in statistical pattern recognition has traditionally been dominated by feature vector approaches:
objects are represented by feature sets of equal size. These are represented in vector spaces followed by
the development of classifiers separating as good as possible the feature vector sets of different classes.

An important drawback of this approach is that on apriori grounds (i.e. on the physical nature of the
objects) features have to be defined that are strongly related with class differences. This set may not be
too large, both, for computational reasons as well as to preserve the generalization power of the resulting
classifiers. Feature spaces of increasing dimensionality finally deteriorate the recognition performance.
This ‘curse of dimensionality’, also known as Rao’s paradox [7] or as the peaking phenomenon [8]
makes it necessary to have enormous numbers of training examples available for large feature sizes. Sim-
ple rules of thumb based on Cover’s work [6] demand something like ten times the feature size. Worst
case approaches based on the VC dimension [1] demand for almost all classifiers exponentially increas-
ing training sets. Consequently much research is done in finding small sets of good features on apriori
grounds or in statistical techniques to reduce initially too large feature sets.

In this study we will reinvestigate the possibility of avoiding the necessity of finding features. We will
return to one of the most naive approaches: distances or similarities between direct sensor representa-
tions of the objects. So we don’t look for good features but directly use a similarity measure Sx(xi,xj)
between objects xi and xj. This measure should be such that it emphasizes class differences. Just like the
feature definitions it has to be based on application knowledge. The object representations and the way
these similarities are measured are not important for the remainder of this paper. They are application
dependent. We will focus on the possibilities of building classifiers based on these similarity measures.
So we are looking for classification functions of the type

C(x) = C(λ1, S(x,x1), λ2, S(x,x2), ...., λj, S(x,xj), ....) (1)

in which the objects xj ∈ L are members of the training set L and have labels λj and in which x is the
object to be classified. The traditional way to do this is the nearest neighbor rule, in this context often
called template matching: Assign the object to the class of the nearest neighbor, i.e. the object with the
highest similarity. The main drawback of this method is that it may require a large training set and there-



by becomes computationally heavy. What is needed are condensing and editing techniques [9] for reduc-
ing the training set to a minimum subset and, moreover, a technique for building more general
classification functions than maximum or minimum selectors.

Recently Vapnik proposed a support vector classifier [2] that computes a classification function on an
automatically minimized training set, the support set. Although it is based on a vector space approach,
it might be used for object similarity approaches as well. In this paper, we will go into the question
whether a support object classifier based on Vapnik’s support vector classifier might be useful for build-
ing featureless classifiers.

2  Support object classification

Let L = {x1, x2, ..., xm} be a training set of objects with labels Λ = {λ1, λ2, ..., λm}, λi ∈ Ω. Let D(xi,xj)
be a user defined distance measure, e.g. a simple measure like the Euclidean distance. More complicated
measures can also be used provided that D(xi,xj) = 0 if and only if the objects xi and xj are identical. The
traditional nearest neighbor classifier can be defined on these distances. A distance based classifier be-
tween two classes ω1 and ω2 can be defined as:

, C(x) > 0 then ω1, else ω2 (2)

in which K(•) is some potential function, e.g. K(z) = exp(-z/s), in which s is a free scaling factor. This is
equivalent with the potential function approach as proposed more than 30 years ago by Aizerman et al.
[5]. The coefficients αj and the scaling parameters have to be optimized by the training procedure. The
function K(z) can be interpreted as a transformation from distances to similarities. It is also possible to
define these classifiers directly on similarities: S(xi,xj) if S(xi,xj) = 1 for xi = xj and S(xi,xj) ↓ 0 for de-
creasing similarity. So

, C(x) > 0 then ω1, else ω2 (3)

which defines a polynomial classifier of degree p. Note that the summations in (2) and (3) start for j=0,
referring to the constant contributions: S(x0,x) = 1, ∀x.

For convenience we will restrict ourselves to similarity based classifiers. By using the right transfor-
mation, this covers distance based classifiers as well. A classifier like (3) has to be trained by optimizing
the parameters αj over the training set. Here the problem arises that there are as many parameters as there
are objects in the training set. For a general set of objects this implies that the parameter values can al-
ways be given such values that all objects are classified correctly. For polynomial classifiers this has al-
ready been observed by Cover [6].

Vapnik has studied more generally the relation between classifier complexity and the size of the train-
ing set [1]. In his recent study [2] he follows an interesting approach in which simultaneously the clas-
sifier complexity is reduced by minimizing the set of training objects under consideration and the
performance is maximized by optimizing the corresponding coefficients. Vapnik studies this approach
for feature representations of objects in vector spaces. Here we will investigate the applicability to Hil-
bert spaces if just similarity matrices of objects are given.

There are several ways to do this. A simple criterion for two-class classifiers is

Je = ns/2 + ne (4)
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In this expression ns is the number of support objects that take part in (3) and ne is the total number of
erroneously classified objects over the entire training set. The first term can be interpreted as the classifier
complexity contribution and the second term as the error contribution. This criterion demands a search
over all combinations of training objects. For a given support set Ls ⊂ L, however, the computation of
the classification function C(x) is straightforward. Classifying all objects of the training set yields:

, ∀ xi ∈ L (5)

in which ns is the size of Ls. If we demand that C(x) = 1 for x ∈ ω1 and C(x) = -1 for x ∈ ω2 and if these
targets are summarized in a vector t, this can be rewritten as

t= α Sp + α0 (6)

The elements of the (ns,ns) matrix S are the similarities in the support set Ls. If rank(S) < n, α can directly
be solved. It is possible, however, that the data (the set of similarities) is in a subspace causing S to be
singular. In that case several solutions are possible. The Moore-Penrose pseudo-inverse defining the min-
imum norm classifier, may be used here as it is consistent with finding the most simple classifier. More-
over, it maximizes the object distances.

The search for the best set of support objects can be very time consuming. Vapnik [2] proposes a com-
bined approach that automatically minimizes the support set while optimizing the weight vector α:

(7)

in which  is the sum of the coefficients . See also [3]. By using a quadratic optimization procedure
just those objects get values αj ≠ 0 that are necessary for building the classifier.

This approach is particularly suited for finding classifiers in case a zero error solution exists. In case
of class overlap it is always arbitrary how classification errors and object distances are combined in an
optimization criterion. If for computational reasons another measure than an error count is used then cer-
tain distance measures and data distributions are favored.

Vapnik shows that the use of inner vector products for building the similarity matrix S, used in (5),
(6) and (7) is consistent with determining polynomial classifiers in the original feature space. There is,
however, no reason why we should not use differently constructed similarity matrices. As the relation
with the feature vector space is lost this method should be called a support object classifier instead of a
support vector classifier.

3  Learning Power

We will assume that the classes are non-overlapping. For feature spaces this is a severe restriction. For
object-distance representations, however, this is valid under the following two conditions, which are gen-
erally fulfilled:
1. The objects are unambiguously labeled.
2. Different objects have non-zero distances: D(xi,xj) > 0 if xi ≠ xj or: S(xi,xj) < 1 if xi ≠ xj
The learning curve, the error ε of a classifier as a function of the size of the training set m can often be
approximated by

(8)

in which a is some arbitrary constant and V is the learning power. We will use this quantity for comparing
different classifiers based on different (dis)similarity measures. In fig. 1 is shown what sizes of the train-
ing set are needed for a desired performance for given values of the learning power. Note that values of
V=0.7 and V=0.4, for instance, result in training sizes that differ several orders of magnitude.
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4  Examples

It is difficult to visualize datasets in infinite dimensional spaces. We will therefor fall back to a 2D feature
space example. It is important, however, to realize that in this example just object differences are used.
In fig. 2 the nearest neighbor classifier is shown for two non-overlapping classes. All 100 objects are used
in order to compute this classifier.

A computationally more efficient classifier is obtained by condensing [9], see fig. 1. Here just 20 ob-
jects are used. The support object classifier based on (7) uses just 13 objects, see fig. 4. Moreover, it has,
in this example, a better performance.

In the next experiments the following classifiers will be used:

NN: The nearest neighbor rule (template matching)

CNN: The condensed nearest neighbor rule, i.e. using just those training samples that yield a zero er-
ror on the training set.

SOCD: Support object classifier based on distances using (2) and (7).

SOCS: Support object classifier based on similarities using (5), (6) and (7).
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Fig. 1. Condensed NN-classifier Fig. 4. Support object classifier
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Fig. 1. Desired sample sizes as a function of
learning power and accuracy (generalization
error).
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Fig. 2. NN-classifier for two non-overlapping classes



In all experiments we used just 100 objects from each class resulting in distance (similarity) matrices of
200 x 200. This set was selected once and kept constant. The learning power was computed from (8)
using averaged estimated errors over 50 experiments based on 60 and 100 arbitrarily selected training
objects, using the remaining objects for testing. Results for the artificial classes of fig. 2 are summarized
in table 1. In this table the mean value of the learning power (V) is given followed by the averages of the
test errors and the numbers of support vectors that were found. We used s = 0.1 for the SOCD and p = 3
for the SOCS.

We will illustrate the proposed technique of featureless classification on real data, using the handprinted
characters ‘3’ and ‘8’ from the NIST-3 database [10]. The raw data is given in binary images of 128 x
128 pixels. We used 32 x 32 subsampling. Two distance measures between characters are used: Ham-
ming (counting the number of different pixels) and modified Hausdorff on the contour (mean nearest
neighbor distance between contour points).

Results are summarized in the tables 2 and 3. We experimented with several values for s and p and
discovered that performances and learning power may be highly dependent for these scaling factors. The
best results are shown. It can be observed that in the first experiment the support object classifier per-
forms much better than the nearest neighbor rule. In the contour distance experiment (table 3) the support
object classifier performs somewhat worse. In this experiment the learning power is very low, indicating
that it will be difficult to gain much performance by increasing the training set. More experiments will
be presented elsewhere [4].

Table 1 Artificial dataset

Method V ε (m=100) #sv (m=100)

NN 0.54 0.085 100

CNN 0.49 0.108 19

SOCD 0.59 0.056 29

SOCS 0.60 0.067 12

Table 2 Character recognition using Hamming distances

Method V ε (m=100) #sv (m=100)

NN 0.53 0.086 100

CNN 0.44 0.14 21

SOCD 0.72 0.036 64

SOCS 0.70 0.040 65

Table 3 Character recognition based on contours

Method V ε (m=100) #sv (m=100)

NN 0.24 0.048 100

CNN 0.26 0.075 13

SOCD 0.17 0.055 43



5  Discussion

The main purpose of this study is to argue and illustrate that it is possible to build classifiers on object
(dis)similarities. This opens a new type of applications in which feature representations are replaced by
distance measures. This has several consequences:

1. The type of application knowledge for specifying features might be entirely different from the
knowledge to define distance measures. In some areas feature descriptions do not arise naturally. Char-
acter recognition might be a good example as during the years many different types of features have been
proposed and tried. Distance measures might be a good alternative.

2. While we leave the vector space approach, we also leave the possibility of using density functions
and thereby we the Bayes theory. A new type of probabilistic theory has to be developed, if possible.

3. The support object classifier we used reduces the training set to a small number of essentially need-
ed examples. These support vectors are really different from the classically used prototypes. Prototypes
can be considered as cluster centers: typical examples. Support vectors support the classification bound-
ary, they are the typical boundary objects: the last objects before a new class region is entered. It is there-
by to be expected that the support objects are close to confusion. Erroneously labeled objects and outliers
are likely to become support objects. In applying the support object classifier it might be advantageous
to reconsider the labeling of the support vectors.

4. Experiments with the support object classifier indicate that it may have a large learning power com-
pared with feature based approaches. It thereby may be a good classifier for small sample size problems,
especially in case of weakly defined features.
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