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Abstract
The Pseudo Fisher Linear Discriminant (PFLD) based on a pseudo-inverse technique shows a
peaking behaviour of the generalization error for training sample sizes that are about the
feature size: with an increase in the training sample size the generalization error at first
decreases reaching the minimum, then increases reaching the maximum at the point where the
training sample size is equal to the data dimensionality and afterwards begins again to
decrease. A number of ways exist to solve this problem. In this paper it is shown that noise
injection by adding redundant features to the data also helps to improve the generalization error
of this classifier for critical training sample sizes.
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1 Introduction

The main problem in building statistical parametric classifiers on small training sets is
that they require the inverse of the covariance matrix, which is impossible to perform
when the number of training objects N is less than the data dimensionality p. One of
the ways to overcome the small sample size problem is to modify the standard
classifiers in one way or another. However, even modified classifiers, such as the
Pseudo-Fisher linear discriminant (PFLD) [1], may become very unstable and have a
peaking effect of the generalization error when the training sample size is comparable
with the data dimensionality [2, 3, 4].

The following ways are studied to solve this problem:
1. Removing features (decreasing p) by some feature selection method.
2. Adding objects (increasing N), either by using larger training sets, or, if it is not pos-

sible by generating additional objects (noise injection [5]).
3. Removing objects (decreasing N) brings the classifier out of the instable region. This

method has been studied by us [2, 3] and is effectively being used in the Support Vec-
tor Classifier [13].

In this paper we will show that the fourth way is also effective:
4. Adding redundant features (increasing p). Like the third method this brings the clas-

sifier out of the instable region but now by enlarging the dimensionality by noise.
In this paper we concentrate on the injection of noise by adding redundant features

to the data and its effect on the performance of the Pseudo Fisher linear discriminant.
The data used in our simulation study are presented in section 2. The Pseudo Fisher lin-
ear discriminant is discussed in section 3. The use and the performance of noise injec-
tion in the data feature space is considered in section 4. Conclusions and discussion
could be found in section 5.



2 Data

Two artificial data sets and one real data set are used for our experimental
investigations. These data sets have a high dimension because we are interested in
critical situations where the PFLD has a bad performance.

The first set is a 30-dimensional correlated Gaussian data set constituted by two
classes with equal covariance matrices. Each class consists of 500 vectors. The mean of
the first class is zero for all features. The mean of the second class is equal to 3 for the
first two features and equal to 0 for all other features. The common covariance matrix
is a diagonal matrix with a variance of 40 for the second feature and a unit variance for
all other features. The intrinsic class overlap (Bayes error) is 0.064. In order to spread

the separability over all features, this data set is rotated using a  rotation matrix

which is  for the first two features and the identity matrix for all other features.

We call these data further “Gaussian correlated data”. Its first two features are presented
in Fig. 1.

The second data set consists of two 30-dimensional Gaussian distributed data
classes with unequal covariance matrices. Each data class contains 500 vectors. The first
data class is distributed spherically with the unit covariance matrix and the zero mean.
The mean of the second class is equal to 4.5 for the first feature and equal to 0 for all
other features. The covariance matrix of the second class is a diagonal matrix with a var-
iance of 3 for the first two features and a unit variance for all other features. We call
these data further “Gaussian spherical data with unequal covariance matrices”. Its first
two features are presented in Fig. 2.

Fig. 1. Scatter plot of a two-dimensional projection of the 30-dimensional Gaussian
correlated data.
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The last data set consists of real data collected through spot counting in interphase

cell nuclei (see, for instance, Netten et al [6] and Hoekstra et al [7]). Spot counting is a
technique to detect numerical chromosome abnormalities. By counting the number of
coloured chromosomes (‘spots’), it is possible to detect whether the cell has an aberra-
tion that indicates a serious disease. A FISH (Fluorescence In Situ Hybridization) spec-
imen of cell nuclei was scanned using a fluorescence microscope system, resulting in

computer images of the single cell nuclei. From these single cell images  pixel
regions of interest were selected. These regions contain either background spots (noise),
single spots or touching spots. From these regions we constructed two classes of data:
the noisy background and single spots, omitting the regions with touching spots. The

samples of size  were considered as a feature vector of size 256. The first class
of data (the noisy background) consists of 575 256-dimensional vectors and the second
class (single spots) - of 571 256-dimensional vectors. We call these data “cell data” in
the experiments.

Training data sets with 3 to 200 (with 3 to 300 for cell data) samples per class are
chosen randomly from a total set. The remaining data are used for testing. These and all
other experiments are repeated 10 times for independent training sample sets. In all fig-
ures the averaged results over 10 repetitions are presented and we do not mention that
further.

3 The Pseudo Fisher Linear Discriminant

The most popular and commonly used linear classifier is the Fisher Linear
Discriminant (FLD) [8, 9]:
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Fig. 2. Scatter plot of a two-dimensional projection of the 30-dimensional Gaussian spherical
data with unequal covariance matrices.
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, (1)

where S is the standard maximum likelihood estimation of the  common covari-

ance matrix Σ, x is a p-variate vector to be classified and X(i) is the sample mean vector
of the i-th class, i=1,2.

Notice that (1) is the mean squared error solution for the linear coefficients (w,w0)
in

(2)

with  and with L being the corresponding desired outcomes, 1 for class-1 and -
1 for class-2. When the number of data features p exceeds the total number of training
vectors N, the estimate matrix S becomes singular and the direct inverse becomes im-
possible [10]. For increasing feature sizes the expected probability of misclassification
rises dramatically [11].

The modification of the FLD, which allows to avoid the inverse of ill-conditioned
covariance matrix, is the so-called Pseudo Fisher linear discriminant [1]. In the PFLD a
direct solution of (2) is obtained by (using augmented vectors):

, (3)

where (x,1) is the augmented vector to be classified and (X,I) is the augmented training
set. The inverse (X,I)-1 is the Moore-Penrose Pseudo Inverse which gives the minimum
norm solution. Before the inversion the data are shifted such that they have zero mean.
This method is closely related to singular value decomposition.

For values  the PFLD, maximizing the distance to all given samples, is

equivalent to the FLD (1). For values , however, the Pseudo Fisher rule finds a
linear subspace, which covers all the data samples. On this plane the PFLD estimates
the data means and the covariance matrix, and builds a linear discriminant perpendicu-
lar to this subspace in all other directions for which no samples are given.

The behaviour of the PFLD as a function of the sample size is illustrated in [2, 4].
For one sample per class this method is equivalent to the Nearest Mean and to the Near-
est Neighbour method. If the total sample size is equal to or larger than the dimension-

ality , the method is equivalent to the FLD. It was noticed that the generalization
error of the PFLD shows a peaking behaviour: with an increase in the training sample
size the generalization error at first decreases reaching a local minimum somewhere be-
low the point N=p, then increases reaching a maximum at the point N=p, where the
training sample size is equal to the data dimensionality, and afterwards begins again to
decrease (e.g., Fig. 3). This can be understood from the observation that the PFLD suc-
ceeds in finding hyperplanes with equal distances to all training samples until N=p. In
[12] an asymptotic expression for the generalization error of the PFLD is derived which
explains theoretically the such behaviour of the PFLD.
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4 Noise Injection by Adding Redundant Features to the Data

In order to improve the generalization error of the PFLD for critical values of the
training sample size (N=p), the number of techniques could be used.

One of the ways to solve this problem involves generating more training objects
by noise injection to the training data. Usually, spherical Gaussian distributed noise is
generated around each training object. However, this method requires to know the op-
timal variance of noise in order to get good results. The optimal value of the noise var-
iance depends on many factors such as the training sample size, the data dimensionality
and the data distribution [5]. It could vary dramatically for different data. As a rule, to
find the optimal value of the noise variance is not an easy task and it goes on a long time.

To demonstrate the influence of the noise variance λ on the generalization error of
the PFLD we considered the 30-dimensional Gaussian correlated data. The averaged re-
sults for some values of λ are presented in Fig. 3. We see that the performance of the
PFLD strongly depends on the variance of the noise.

Considering small sample size properties (a learning curve) of the PFLD, one can
reach another solution: decrease the number of training objects in order to avoid the crit-
ical training sample size problem. It could be also performed by noise injection in the
data feature space instead of adding noise to the training objects. In this case the data
dimensionality is enlarged by adding Gaussian distributed features with zero mean and
variance of one. When increasing the data dimensionality p the training sample size N
relatively decreases leaving a critical area N=p, where the PFLD has a high generaliza-

tion error. For values  the PFLD performs much better than for the critical sizes
of the training set.

Fig. 3. The generalization error of the PFLD without and with noise injection to the training
objects with different values of the noise variance λ=L versus the training sample size for 30-
dimensional Gaussian correlated data.

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The Number of Training Objects per Class

T
h

e
 G

e
n

e
ra

liz
a

tio
n

 E
rr

o
r

L=20.

L=10.

L=5.
L=0.1

L=0.5

L=1.

PFLD without noise injection         
PFLD with Gaussian noise injection   

N p<



Let us now investigate this approach for 3 examples of data described in section
2. In order to study the influence of injection of “noisy” features to the data, the addi-
tional redundant “noisy” features having Gaussian distribution with zero mean and var-
iance of one were generated. The generalization error of the PFLD for 30-dimensional
Gaussian correlated data and 30-dimensional Gaussian spherical data with unequal co-
variance matrices without noise injection in the feature space and with 20, 70 and 170
additional redundant “noisy” features is presented in Fig. 4 and Fig. 5, respectively. The
generalization error of the PFLD obtained on cell data without noise injection in the fea-
ture space and on the cell data with 44, 100, 144 and 200 redundant “noisy” features is
presented in Fig. 6.

For all data the PFLD shows a critical behaviour with a high maximum of the gen-
eralization error around critical training sample size N=p. Figures 4, 5 and 6 nicely
demonstrate that noise injection in the data feature space helps to avoid the peaking ef-
fect of the generalization error of the PFLD. We see that redoubling of the data dimen-
sionality by adding “noisy” features already twice improves the performance of the
classifier at the point N=p. For cell data it was enough to add 44-100 “noisy” features
for the same improvement. When the number of added “noisy” features was 4-5 times
larger than the original dimensionality of the data, the peak of the generalization error
was smoothed almost completely: the generalization error was reduced in a whole re-
gion around the critical training sample size. Adding redundant features is useless, how-
ever, for very small training sample sets. Adding noise to a highly dimensional feature
space with only a few objects makes the training data set too “noisy” to represent the
entire data set correctly. In this case it becomes difficult or even impossible to build a
good discriminant function. All considered data nicely demonstrate that the more noise
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Fig. 4. The generalization error of the PFLD versus the training sample size for Gaussian
correlated data without noise injection in the feature space (p=30) and with 20, 70, 170
additional redundant features (p=50, 100, 200).



10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The Number of Training Objects per Class

T
h

e
 G

e
n

e
ra

liz
a

tio
n

 E
rr

o
r

p=30    
p=50    
p=100   
p=200   

Fig. 5. The generalization error of the PFLD versus the training sample size for Gaussian
spherical data with unequal covariance matrices without noise injection in the feature space
(p=30) and with 20, 70, 170 additional redundant “noisy” features (p=50, 100, 200).
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Fig. 6. The generalization error of the PFLD versus the training sample size for 256-
dimensional cell data without noise injection (p=256) and with 44, 100, 144 and 200 additional
redundant “noisy” features (p=300, 356, 400, 456).



is added to the data by adding redundant features the larger generalization error is ob-
tained in the case of very small training sample sizes. For critical training data sizes add-
ing redundant features helps to avoid the peaking effect of the generalization error of
the PFLD.

However, one can notice that the improvement obtained in the generalization error
also depends on the number of additional “noisy” features used for each data set. Obvi-
ously, this question requires to be investigated in future. Nevertheless, our simulation
study completely proved the possible usefulness of noise injection in the data feature
space in order to reduce the generalization error of the PFLD for critical training sample
sizes.

5 Conclusions and Discussion

The PFLD might have a peaking behaviour of the generalization error for training
sample sizes that are about the feature size. Based on the small sample size properties
of the PFLD in this paper it was suggested to inject noise to the data feature space in
order to improve the generalization error of the PFLD for critical training sample sizes.
This approach was studied for two artificial data sets and one example of real data.
Simulation results have shown that adding redundant “noisy” features to the data
allows to reduce dramatically the generalization error of the PFLD in the region of
critical training sample sizes.

Finally we make the following suggestion for future research. It has been ob-
served previously [5] that the use of artificially generated normally distributed data is
equivalent to regularizing the covariance matrix (Σ + λI) in case of the FLD. A similar
type of regularization, but now on the inner product matrix (X’X + λI) might be equiv-
alent to the stabilizing of the PFLD by the generation of redundant features discussed
in this paper. This demands for a more thorough mathematical analysis than possible in
this paper.
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