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1

INTRODUCTION

1.1 Background

1.1.1 Artificial intelligence

The idea of building machines or algorithms that use artificial intelligence (i.e. mimic
human intelligence) to solve problems has been attracting researchers for a long time.
Although mankind has a long history in building machinery that makes certain manual
or repetitive tasks lighter, little advance has yet been made in creating appliances to
solve problems that normally require human ingenuity. Part of the problem is a lack
of understanding of exactly what creates human intelligence: our pattern recognition
capabilities; generalisation, the ability to sift through large amounts of data quickly
and discard irrelevant information; creativity; a powerful associative mechanism; etc.
In spite of wildly optimistic predictions, such as the Heuristic ALgorithmic computer,
HAL 9000, in Arthur C. Clarke’s “2001: A space odyssey” [58], we are still not anywhere
near building a fully functional artificial intelligence [342].

Since the late 1950s, a large amount of research has been performed in the field of artifi-
cial intelligence (AI) [81, 281, 295]. AI can roughly be split into two subfields. The first
field, classical AI, is concerned with constructing and studying algorithms which mimic
high-level human capabilities. Examples of developments in this area are frame-based,
rule-based and case-based reasoning for expert systems, logical and probabilistic infer-
ence, nonmonotonic reasoning etc. [63]. These approaches are based on the assump-
tion that to create artificial intelligence, one has to model human intelligence; in other
words, it is model-based. Other, newer fields stress the importance of evolution and/or
embedding in the real world, such as robotics [35, 64], autonomous agents [19, 228] and
artificial life [204, 218].

The second field, the one which this thesis is concerned with, machine learning, is more
problem-based. Given a certain hard problem, how can we best solve it using an al-
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gorithm that can learn from examples [37, 244]? The focus here is more on the outcome,
a trained algorithm, than on understanding the process itself; it is inductive rather
than deductive like classical AI. Most machine learning problems can be formulated
as regression or classification (or pattern recognition, concept recognition) problems.
Popular tools include those put forward by statistical and structural pattern recogni-
tion [85, 92], neural networks [28, 146, 148], fuzzy systems [192], rule induction [288],
etc. In general, these systems share the characteristic that their behaviour is based on
a number of parameters, which can be adapted by learning, i.e. set to “good” values
based on a number of examples.

1.1.2 Neural networks

In the 1940s, psychologists became interested in modelling the human brain. This led
to the development of the a model of the neuron as a thresholded summation unit by
McCulloch and Pitts [235]. They were able to prove that (possibly large) collections of
interconnected neuron models, neural networks, could in principle perform any com-
putation, if the strengths of the interconnections (or weights) were set to proper values.
In the 1950s neural networks were picked up by the growing artificial intelligence com-
munity. It also attracted the attention of researchers in statistical pattern recognition, an
applied field of research born in the 1950s [2, 51, 106], based on earlier work in statistical
decision theory.

In 1962, Rosenblatt [301] proposed a method to train a subset of a specific class of
networks, called perceptrons. These are networks having neurons grouped in layers,
with only connections between neurons in subsequent layers. However, Rosenblatt
could only prove convergence for single-layer perceptrons. Although some training
algorithms for larger neural networks with hard threshold units were proposed by Nils-
son [257], enthusiasm waned after Minsky and Papert in 1969 showed that many seem-
ingly simple problems were in fact nonlinear and that perceptrons were incapable of
solving these [243].

Interest in artificial neural networks increased again in the 1980s, after Rumelhart et
al. [306] in 1986 proposed a learning algorithm for multi-layer perceptrons, the back-
propagation rule (which, as turned out later, was found before them by Parker [271]
and Werbos [379]). Feed-forward networks were not the only type of network under
research. In the 1970s and 1980s a number of different biologically inspired learning
systems were proposed. Among the most influential were the Hopfield network [158,
159], Kohonen’s self-organising map [195, 196], the Boltzmann machine [150, 152] and
the Neocognitron [116, 117, 118].

The definition of what exactly constitutes a neural network is rather vague. In general
it would at least require a system to

• consist of (a large number of) identical, simple processing units;
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• have interconnections between these units;

• posess tunable parameters, or weights, which define the system’s function and

• lack a supervisor which tunes each individual weight.

However, not all systems that are called neural networks fit this description. Further-
more, there is a wide range of non-neural algorithms which are similar to neural net-
works (e.g. k-means clustering is quite similar to the self-organising map). Therefore,
in this thesis we prefer to speak of adaptive methods, meant to be methods controlled by
a set of parameters for which optimal values can be found using a learning process.

There are many possible taxonomies of adaptive methods. Here, we concentrate on
learning and functionality rather than on biological plausibility, topology etc. Figure 1.1
shows the main subdivision of interest: supervised versus unsupervised learning. In un-
supervised learning, there is only a data set L containing samples x ∈ Rd, where d is the
number of dimensions of the data set. The goal is to construct a description of L, based
on the optimisation of some error criterion. An important application of unsupervised
learning is clustering, in which a number of representative models are fitted to L.

In supervised learning, for each x ∈ L a dependent variable y ∈ Rm has to be supplied
as well. The goal of a regression method is then to predict this dependent variable based
on x. Classification can be seen as a special case of regression, in which only a single
variable t ∈ N is to be predicted, the label of the class to which the sample x belongs.

In section 2.2, some specific neural networks falling into these categories are discussed.

1.1.3 Digital image processing

Somewhat older than artificial intelligence, digital image processing is concerned with
the development of computer algorithms working on digitised images [42, 131, 282,
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Figure 1.2: The image processing chain.

333]. It is quite a broad field, drawing upon many disciplines such as optics, signal
processing, electronics, computer science, pattern recognition, perception science and
cognitive science. The first work in image processing dates back to the 1920s, when
automated means of image transmission were first used. In the 1950s, computers were
starting to be used (see e.g. [370]). The advent of affordable computer power in that
period, the questions posed by the space program around the same time, and the in-
creasing availability of imaging and visualisation equipment, led to a large increase in
the need for algorithms to process image data. The goal of image processing is usually
automatic detection or recognition of image content, in which case one can speak of ma-
chine vision. However, the goal might also be to enhance images for further processing
by humans. Its current applications are numerous, in medicine, industrial inspection,
video communication, remote sensing, robot vision etc.

The range of image processing problems is wide, encompassing everything from low-
level signal enhancement to high-level image understanding. In general, image pro-
cessing problems are solved by a chain of tasks. This chain, shown in figure 1.2, outlines
the possible processing needed from the initial sensor data to the outcome (e.g. a clas-
sification or a scene description). This pipeline consists of the steps of pre-processing,
feature extraction, segmentation, object recognition and image understanding. In each
step, the input and output data could either be images (pixels), measurements in images
(features), decisions made in previous stages of the chain (labels) or even object relation
information (graphs). What type of data is appropriate at what stage depends on the
application. The image processing chain is discussed in more detail in section 2.3.

With each step in the chain the need for using prior (world) knowledge increases. For
simple noise reduction, not much knowledge about the contents of the image itself
needs to be known, whereas for image understanding it is imperative to limit the do-
main of images which can be processed. In this thesis, we deal only with image pro-
cessing operations which do not presuppose any specific type of image content.
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1.2 Motivation

There are many problems in image processing for which good, theoretically justifiable
solutions exists, especially for problems for which linear solutions suffice. For example,
for low-level operations such as image restoration, methods from signal processing such
as the Wiener filter [385] can be shown to be the optimal linear approach. However,
these solutions often only work under ideal circumstances; they may be highly com-
putationally intensive (e.g. when large numbers of linear models have to be applied
to approximate a nonlinear model); or they may require careful tuning of parameters.
Where linear models are no longer sufficient, nonlinear models will have to be used.
This is still an area of active research, as each problem will require specific nonlinearit-
ies to be introduced. That is, a designer of an algorithm will have to weigh the different
criteria and come to a good choice, based partly on experience. Furthermore, many
algorithms quickly become intractable when nonlinearities are introduced.

Problems further in the image processing chain, object recognition and image under-
standing, cannot (yet) be solved using “standard” techniques. For example, the task
of recognising any of a number of objects against an arbitrary background calls for the
same human capabilities investigated in artificial intelligence: the ability to generalise,
associate etc.

All this naturally leads to the idea that adaptive methods might be an ideal set of tools
for difficult image processing problems. Possible advantages are:

• instead of designing an algorithm, one could construct an example data set and
an error criterion, and train any of a number of learning algorithms to perform the
desired input-output mapping;

• for many adaptive methods, such as neural networks, the input can consist of
pixels or measurements in images; the output can contain pixels, decisions, labels,
etc., as long as these can be coded numerically – no assumptions are made. This
means adaptive methods can perform several steps in the image processing chain
at once;

• some adaptive models, such as neural networks, can be highly nonlinear; the
amount of nonlinearity can be influenced by design, but also depends on the train-
ing data [291, 292];

• various methods, such as neural networks, have been shown to be universal clas-
sification or regression techniques [119, 160, 161].

This thesis investigates to what extent adaptive methods can be useful in image pro-
cessing, in particular nonlinear image processing.
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1.3 Main questions

The discussion above leads to two main questions:

• Can image processing operations be learned by adaptive methods? To what extent can
adaptive methods solve problems that are hard to solve using standard tech-
niques? Is nonlinearity a bonus?

• How can prior knowledge be used, if available? Can, for example, the fact that neigh-
bouring pixels are highly correlated be used in neural network design or training?

• What can be learned from adaptive methods trained to solve image processing problems?
If one finds an adaptive method to solve a certain problem, can one learn how
the problem should be approached using standard techniques? Can one extract
knowledge from the solution?

Especially the last question is intriguing. One of the main drawbacks of many learn-
ing systems is their black-box character, which seriously impedes their application in
systems in which insight in the solution is an important factor, e.g. medical systems.
If a developer can learn how to solve a problem by analysing the solution found by a
learning algorithm, this solution may be made more explicit.

It is to be expected that for different types of neural networks, the answers to these ques-
tions will be different. This thesis is therefore constructed according to the taxonomy
shown in figure 1.1:

• in chapters 3 and 4, neural networks for supervised classification are applied to
object recognition;

• in chapters 5 and 6, neural networks for supervised regression are investigated as
nonlinear image filters;

• in chapters 7 and 8 unsupervised methods are used to describe images for various
applications.

Each of these methods is not only applied to real-life problems, but is also studied to
answer the questions outlined above. Below, a more detailed overview is given of each
chapter.

1.4 Outline of the thesis

Chapter 2 will give an overview of the literature on the application of neural networks to
image processing problems. This discussion deliberately excludes other adaptive meth-
ods, as otherwise the overview would have become too extensive. For the same reason,
the discussion is limited to neural networks operating on image (pixel) data directly.
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After measurements have been made in an image, the problem becomes more general
in nature, and in principle any adaptive method can be applied on the measurements
(features).

In chapter 3, a specific feed-forward neural network, the shared weights neural net-
work, is studied. This network’s architecture is tailored for image processing opera-
tions, employing convolution-like sliding windows. This makes it especially suitable
for classifying image content. Variations of the network are applied to object recogni-
tion problems such as handwritten digit recognition and automatic target recognition.
Their performance is good, but comparable to standard pattern recognition techniques.
Chapter 4 then goes on to discuss attempts to understand the internal operation of these
networks, specifically their feature extraction capabilities. To this end, a number of small
networks are trained on toy classification problems and a novel training algorithm is
used which decorrelates network weights while optimising the criterion function. One
of the conclusions is that due to the excessive degrees of freedom in neural networks it is
hard to get an idea of what features they use. Also, the fact that the networks are trained
to perform classification makes it hard to untangle the parts of the network responsible
for feature extraction and classification.

Chapters 5 and 6 therefore turn to a more low-level problem: image restoration (pre-
processing) using regression feed-forward neural networks. A specific nonlinear op-
erator for edge-preserving smoothing, the Kuwahara filter, was implemented on a
number of network architectures, ranging from a hand-optimised, modular design to
a standard, fully interconnected one. Using a novel performance measure for edge-
preserving smoothing, it will be shown that using prior knowledge in network design
and data set construction is necessary to obtain good performance. General feed-
forward networks tend to end up in linear approximations to the filtering operation,
which is demonstrated using the weight decorrelating training algorithm introduced in
chapter 4.

These findings lead us to return to investigating feature extraction, but leaving feed-
forward networks. In chapter 7, subspace mixture models are introduced. These mod-
els cluster a data set in a number of subspaces of considerably lower dimensionality
than the original space, while using the prior knowledge that image data should be re-
cognised invariant to transformations such as translation, rotation and scaling. Several
clustering and subspace-finding methods, principal component analysis (PCA) and in-
dependent component analysis (ICA) are discussed. In chapter 8, these methods are
applied to image segmentation, object recognition, image database retrieval and, again,
handwritten digit recognition. They are shown to give good results for such a general
method.

Chapter 9 ends with some discussion, conclusions and recommendations for further
work.
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1.5 Sources

This thesis contains work which has been published or submitted before. The sources
are, per chapter:

• Chapters 2 and 9 contain parts of a review paper submitted to Pattern Recogni-
tion [96].

• Chapters 3 and 4 contain parts of the author’s M.Sc. Thesis [68], a publication
in Optical Engineering [78] and some conference publications at ASCI’96, SNN’97,
BMVC’97, ASCI’98 and Aerosense’98 [72, 77, 79, 93, 156, 157].

• Chapters 5 and 6 are based on a publication in Pattern Analysis & Applications [70]
and a number of conference publications at ICONIP’98, SCIA’99 and ASCI’99 [69,
71, 87, 88].

• Chapters 7 and 8 are based on conference publications at BMVC’99, ASCI 2000,
S+SSPR 2000, ICPR 2000 and BMVC 2000 [73, 74, 75, 76, 240].

This work was partly supported by the Foundation for Computer Science in the Nether-
lands (SION) and the Dutch Organization for Scientific Research (NWO), under project
number SION 612-31-003.

Parts of chapter 3 are based on preliminary work executed in collaboration with TNO-
FEL for the START consortium in the framework of EUCLID RTP-8.2 “Intelligent
Sensors”. The collaboration and discussions with Signaal, and in particular with the
INETI-DOP, in that work is acknowledged.

Some experiments in chapter 4 were inspired by the work of Martin Wachters [367].
Parts of the work in chapters 7 and 8 were performed in co-operation with Eric
Körber [198] and Olaf Lemmers [216].

The work presented in chapters 7 and 8 was performed while the author was a visitor
at the Centre for Vision, Speech and Signal Processing, University of Surrey, Guilford,
UK. This visit was sponsored by the EPSRC, under grant number GR/M90665.
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ARTIFICIAL NEURAL NETWORKS IN
IMAGE PROCESSING

2.1 Introduction

In this chapter, applications of artificial neural networks (henceforth: ANNs) in im-
age processing are reviewed. First, a short introduction to feed-forward ANNs, self-
organising maps and Hopfield neural networks (HNNs) will be given. These three
types of ANNs are the most widely used in image processing. Second, the taxonomy
of image processing techniques proposed in section 1.1.3, the image processing chain,
will be discussed in more detail. This is followed by a review of applications of ANNs
to each step in this chain. The discussion will be limited to applications in which the
input to the ANNs consists of pixel data, as the amount of literature on using ANNs on
features extracted from imagery is enormous and not relevant to this thesis.

2.2 Artificial neural networks

The most frequently used ANN architectures in image processing are feed-forward
ANNs (also called multi-layer perceptrons, or MLPs) [306], self-organising maps
(SOMs) [195] and HNNs [159]. Other architectures such as Boltzmann machines, cel-
lular neural networks (CNNs), random access memory (RAM) networks etc., have been
applied little in image processing. These latter architectures will be only briefly dis-
cussed in the relevant sections; for a more elaborate introduction, see e.g. [147, 148].

2.2.1 Feed-forward neural networks

A feed-forward ANN [146, 148] consists of interconnected layers of processing units or
neurons, see figure 2.1. In this figure, the notation of weights and biases follows [148]:
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Bias b2 Bias b3

Class 1

Class 2

Class 3

Input 2

Input 1

Input m

....

w21 w32

Figure 2.1: A feed-forward ANN for a three-class classification problem. The center layer is
called the hidden layer.

weights of connections between layer p and layer q are indicated by wqp; the bias, input
and output vectors of layer p are indicated by bp, Ip and Op, respectively. Basically, a
feed-forward ANN is a (highly) parameterised, adaptable vector function, which may
be trained to perform classification or regression tasks. A classification feed-forward
ANN performs the mapping

N : Rd → 〈rmin, rmax〉m, (2.1)

with d the dimension of the input (feature) space, m the number of classes to distinguish
and 〈rmin, rmax〉 the range of each output unit. The following feed-forward ANN with
one hidden layer can realise such a mapping:

N(x; W, B) = f (w32T
f (w21T

x− b2)− b3). (2.2)

W is the weight set, containing the weight matrix connecting the input layer with the
hidden layer (w21) and the vector connecting the hidden layer with the output layer
(w32); B (b2 and b3) contains the bias terms of the hidden and output nodes, respect-
ively. The function f (a) is the nonlinear activation function with range 〈rmin, rmax〉, op-
erating on each element of its input vector. Usually, one uses either the sigmoid function

f (a) =
1

1 + e−a , (2.3)

with the range 〈rmin = 0, rmax = 1〉, the double sigmoid function

f (a) =
2

1 + e−a − 1, (2.4)

or the hyperbolic tangent function f (a) = tanh(a), both with range 〈rmin = −1, rmax =
1〉.
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A second often used feed-forward ANN is the radial basis function ANN, or RBF ANN.
This architecture uses Gaussian transfer functions of which the centres w and widths b
are learned:

NRBF(x; W, B) = f (|| f (||x1T −w21||T , b2)1T −w32||T , b3) (2.5)

(where 1 is a vector of ones and the || · || operation works on the columns of its input
matrix), with

f (a, b) = exp(− a2

2b2 ) (2.6)

with range 〈rmin = 0, rmax = ∞〉.

Classification

To perform classification, an ANN should compute the posterior probabilities, P(ωj|x),
where ωj is the label of class j, j = 1, . . . , m. Classification is then performed by as-
signing an incoming sample x to that class for which this probability is highest. A
feed-forward ANN can be trained in a supervised way to perform classification, when
presented with a number of training samples L = {(x, t)}, with tl high (e.g. 0.9) indicat-
ing the correct class membership and tk low (e.g. 0.1), ∀k 6= l. The training algorithm, for
example back-propagation [306] or conjugate gradient descent [323], tries to minimise
the mean squared error (MSE) function:

E(W, B) =
1

2|L| ∑
(xi ,ti)∈L

c

∑
k=1

(N(xi; W, B)k − ti
k)

2, (2.7)

by adjusting the weights and bias terms. For more details on training feed-forward
ANNs, see e.g. [28, 147, 148, 297].

Richard and Lippmann showed that feed-forward ANNs, when provided with enough
nodes in the hidden layer, an infinitely large training [296] and 0-1 training targets,
approximate the Bayes posterior probabilities

P(ωj|x) =
P(ωj)p(x|ωj)

p(x)
, j = 1, . . . , m, (2.8)

with P(ωj) the prior probability of class j, p(x|ωj) the class-conditional probability dens-
ity function of class j and p(x) the probability of observing x.

Regression

Feed-forward ANNs can also be trained to perform nonlinear multivariate regression,
where a vector of real numbers should be predicted:

R : Rd → Rm, (2.9)
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with m the dimensionality of the output vector. The following feed-forward ANN with
one hidden layer can realise such a mapping:

R(x; W, B) = w32T
f (w21T

x− b2)− b3. (2.10)

The only difference between classification and regression ANNs is that in the latter ap-
plication of the activation function is omitted in the last layer, allowing the prediction of
values in Rm. However, this last layer activation function can be applied when the de-
sired output range is limited. The desired output of a regression ANN is the conditional
mean (assuming continuous input x):

E(y|x) =
∫

Rm
yp(y|x)dy. (2.11)

A training set L containing known pairs of input and output values (x, y), is used to ad-
just the weights and bias terms such that the mean squared error between the predicted
value and the desired value,

E(W, B) =
1

2|L| ∑
(xi ,yi)∈L

m

∑
k=1

(R(xi; W, B)k − yi
k)

2, (2.12)

(or the prediction error) is minimised.

Several authors showed that, under some assumptions, regression feed-forward ANNs
are universal approximators. If the number of hidden nodes is allowed to increase
towards infinity, they can approximate any continuous function with arbitrary preci-
sion [43, 119, 160]. When a feed-forward ANN is trained to approximate a discontinuous
function, two hidden layers are sufficient for obtaining an arbitrary precision [80, 334].
However, this does not make feed-forward ANNs perfect classification or regression
machines. There are a number of problems:

• there is no theoretically sound way of choosing the optimal ANN architecture or
number of parameters. This is called the bias-variance dilemma [122]: for a given
data set size, the more parameters an ANN has, the better it can approximate
the function to be learned; at the same time, the ANN becomes more and more
susceptible to overtraining [122], i.e. adapting itself completely to the available
data and losing generalisation;

• for a given architecture, learning algorithms often end up in a local minimum of
the error measure E1 instead of a global minimum;

• they are non-parametric, i.e. they do not specify a model and are less open to ex-
planation. This is sometimes referred to as the black box problem. Although some

1Although current evidence suggests this is actually one of the features that makes feed-forward
ANNs powerful: the limitations the learning algorithm imposes actually manages the bias-variance prob-
lem [291, 292].
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work has been done in trying to extract rules from trained ANNs [354], in general
it is still impossible to specify exactly how an ANN performs its function.

A thorough discussion of these problems will be given in section 2.5.3.

2.2.2 Self-organising maps

Self-organising maps (SOMs, also called topological maps) were introduced by Ko-
honen in 1982 [194, 195]. A SOM projects the d-dimensional input space onto a discrete
m-dimensional lattice (m < d)

S : Rd → Nm. (2.13)

A map consists of two fully connected layers of nodes: the input layer and the output
layer. The number of nodes in the input layer is given by the dimension d of the input
vector x. In contrast to feed-forward ANNs, the q nodes in the output layer are arranged
in an m-dimensional grid G of size (o1 × . . .× om). In most cases, the grid dimension m is
chosen equal to 2. Each node ok,l contains a weight vector wk,l ∈ Rd (see figure 2.2 (a)). A
function S(x; W) assigns an input sample x to a node in the output layer. This function
usually minimises the squared Euclidean distance between x and w ∈ W, i.e. it picks
the node whose weight vector is closest to x. Each node weight vector wk,l therefore
acts as a cluster centre and defines a region containing the set of vectors{

x : ||x−wk,l || < ||x−wp,q||, ∀(p, q) 6= (k, l)
}

. (2.14)

SOMs are trained in an unsupervised manner with the goal of projecting similar (ac-
cording to S(x; W)) d-dimensional input vectors to neighbouring positions on the m-
dimensional map [194, 196]. Training is called competitive: at each time step, one win-
ning node gets updated, along with some nodes in its neighbourhood. After training,
the input space is subdivided into q regions, corresponding to the nodes in the map.

It can be shown that after training, the density of the weight vectors wk,l corresponds
to the underlying probability density function p(x) of the input vectors [298]. An im-
portant application of SOMs in image processing is therefore unsupervised cluster ana-
lysis (see figure 1.1). This is achieved by assigning each vector to the cluster with the
most similar weight vector as indicated by eqn. 2.14. The structure of the cluster bor-
ders depends on which similarity measure is used. Often the Euclidean distance is
used; consequently, the cluster borders become (d − 1)-dimensional hyperplanes. In
a two-dimensional feature space, the cluster borders form a Voronoi tessellation (see
figure 2.2 (b)).

Another property of SOMs, which has been used in image pre-processing applica-
tions, is that a trained map realises a nonlinear topology-preserving mapping of the
d-dimensional feature space onto the m-dimensional grid. This means the SOM can be
considered to be a generalisation of linear principal component analysis [298].
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Figure 2.2: The SOM (a) before training and (b) after training, illustrating the partition of a two-
dimensional space into cluster regions.

A SOM can also be used as a classifier. First, an unsupervised learning process
is performed resulting in q clusters with the centres given by the weight vectors
{w1,1, . . . , wj,k, . . .}. In a second step, each output node obtains the most frequently
occurring class label of the training samples that are assigned to that node [194, 196].

2.2.3 Hopfield neural networks

The Hopfield ANN (HNN), in its basic form presented by Hopfield and Tank [158],
consists of a set of q fully interconnected binary nodes, i.e. with an output of either −1
(not firing) or +1 (firing). The network maps binary input sets on binary output sets.
An individual node fires at time t + 1 when its weighted input at time t exceeds a certain
threshold τj:

oi(t + 1) = sgn

([
∑
j 6=i

wijoj(t)

]
− τj

)
, (2.15)

where sgn(a) is +1 when its input is positive and −1 when negative. Usually, the
threshold τj is set to 0. At any time t, the state of the HNN can be fully described by
the vector containing the activations of all nodes,

o(t) =
[
o1(t), . . . , oq(t)

]
. (2.16)

Each state has an associated energy level given by

E(t) = −1
2 ∑

i
∑
j 6=i

wijoi(t)oj(t) + ∑
i

oi(t)τi. (2.17)

It was proven by Hopfield [158] that the HNN can only change states (by iterating
eqn. 2.15) in such a way that the energy E(t) decreases or remains constant. Hopfield’s
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idea was to set the weights of the HNN such that a set of desired states of the HNN, X,
become “energy wells”, i.e., states in which the energy is locally minimal. This can be
achieved by setting the weights as follows, using the generalized Hebb rule [148]:

wij =

{
1
q ∑x∈X xixj (i 6= j)
0 (i = j)

(2.18)

The Hebb rule entails setting a weight connecting two units proportional to the correl-
ation between the output of those neurons; in other words, correlated pattern elements
are given large weight.

Note that HNNs are thus not trained in the same way that feed-forward ANNs and
SOMs are: the weights are usually set manually. Instead, the power of the HNN lies in
running it. In this so-called recall phase, a pattern is presented to the HNN. Then one
node is selected at random (i.e., using an asynchronous update rule) and the output of
the node is calculated. This procedure is repeated until the output of each node remains
constant. Given any starting pattern close enough to one of the energy wells, the HNN
will end up in that particular well. This functionality implies emergent properties, viz.
content-addressable memory and error correction. Given a partially completed pattern
x, or a pattern containing a number of incorrectly set bits, the HNN is capable of restor-
ing the originally learned pattern.

Another application of HNNs, which is quite interesting in an image processing set-
ting [280], is finding the solution to nonlinear optimisation problems. For example,
in [159] the NP-complete travelling salesman problem was mapped onto a HNN, and
was shown to give near-optimal results. Such a mapping can be found by specifying a
function Ep to be minimised and calculating wij such that E(t) (eqn. 2.17) and Ep are the
same. Initialising the network and letting it converge to a stable state then amounts to
optimising Ep. However, the application of this approach is limited in the sense that the
HNN minimises just one energy function, whereas most problems are more complex in
the sense that the minimisation is subject to a number of constraints. Encoding these
constraints into the energy function takes away much of the power of the method, by
calling for a manual setting of various parameters which again influence the outcome.

One problem with the HNN [146, 345] is the occurrence of spurious states, i.e., stable
states that were not foreseen. For example, if one assumes that the thresholds τ are all
0, the HNN cannot distinguish between a state o(t) and the same state with all outputs
reversed, i.e. −o(t). Also, in its use as content-addressable memory, the HNN can learn
stable states which correspond to mixtures of trained patterns. Thirdly, the obtained
solutions depend highly on the initial state of the HNN; i.e. for optimisation problems,
small differences in initialisation may lead to the HNN finding different (local) minima.

The basic Hopfield model cannot cope with nonlinear mappings as it does not contain
hidden nodes. Adaptation of the HNN to cope with nonlinearity led to the development
of the continuous and stochastic HNNs and, eventually, the Boltzmann machine. A
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discussion of these architectures is beyond the scope of this review; see [148] for more
information.

2.3 The image processing chain

Solving an image processing problem typically involves a number of different steps. For
the purposes of this review, these steps can be organised into an image processing chain,
consisting of the following steps:

1. Pre-processing and filtering: operations that result in a modified image with the
same dimensions as the original image, e.g. contrast enhancement and noise re-
duction.

2. Enhancement and feature extraction: operations that extract significant compon-
ents from an image, e.g. edges, texture characteristics or landmarks.

3. Segmentation: operations that partition an image into regions which are coher-
ent with respect to some criterion. One example is the segregation of different
textures.

4. Object recognition: determining the position and, possibly, also the orientation
and scale of specific objects in an image, and classifying these objects.

5. Image understanding: obtaining high level (semantic) knowledge of what an im-
age shows.

6. Optimisation: minimisation of a criterion function which may be used for, e.g.,
graph matching, segmentation or object delineation.

Optimisation techniques are not seen as a separate step in the image processing chain,
but as a set of auxiliary techniques, which support all tasks.

Note that not for every problem the entire chain has to be followed; for example, many
problems have segmentation or object detection as a final result. Also, some of the steps
in the image processing chain have a more coherent definition than others. Prepro-
cessing, step 1, can be almost any operation that somehow transforms the digital signal
whereas techniques for object recognition, step 4, result in one or more locations of de-
tected objects. Also, in some ANN approaches multiple steps of the chain are integrated;
for example, many ANNs used for object recognition have an integrated (ANN) feature
extraction stage.

Image compression, a task for which many ANN approaches have been proposed, is not
considered here as its goals are quite different from the high-level steps in the image pro-
cessing chain proposed here. For an overview of ANNs applied to image compression,
see the reviews in [90, 96].
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Figure 2.3: The image processing chain. Optimisation is used as an auxiliary technique.

Besides the actual task performed by an algorithm, its processing capabilities are partly
determined by the abstraction level of the input data. As said before, here only ap-
plications of ANNs on raw pixel data are discussed. However, especially in the more
high level steps in the image processing chain, ANNs have also been widely applied
on extracted features, object characterisations etc. For a review of these applications,
see [96].

2.4 Artificial neural networks in image processing

2.4.1 Pre-processing and filtering

The first step in the image processing chain consists of pre-processing images. Loosely
defined, by pre-processing any operation is meant of which the input consists of sensor
data, and of which the output is a full image. Preprocessing operations generally fall
into one of two categories:

• image reconstruction: to reconstruct an image from a number of indirect sensor
measurements;

• image restoration: to remove any aberrations introduced by the sensor (including
noise);

Applications of ANNs in these categories will be discussed below.



18 ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING

Reconstruction

Image reconstruction problems often require quite complex computations and a differ-
ent approach is needed for each application. In [1], an ADALINE network is trained
to perform an EIT (electrical impedance tomography) reconstruction, i.e., a reconstruc-
tion of a 2D image based on 1D measurements on a the circumference of the image.
Srinivasan et al. [339] trained a modified HNN to perform the inverse Radon transform
(used for, e.g., reconstruction of CT (Computerised Tomograpy) images). The HNN
contained “summation” layers to avoid an interconnection between all units. Wang and
Wahl proposed a variation on the HNN for CT [375] as well. Meyer and Heindl [242]
used regression feed-forward ANNs to reconstruct images from electron holograms.

Restoration

The majority of applications of ANNs in pre-processing can be found in image restor-
ation [18, 54, 55, 105, 135, 139, 143, 210, 234, 267, 279, 287, 337, 347, 389, 392, 394]. In
general, one wants to restore an image that is distorted by the measurement system,
which might introduce noise, motion blur, (out-of-focus) blur etc. The restored image
should resemble the original scene as good as possible. Restoration can employ all
information about the distortions introduced by the system as, e.g., the point spread
function. The restoration problem is ill-posed because contrasting criteria need to be
fulfilled: resolution versus smoothness.

The ANN applications reviewed had various designs ranging from relatively straight-
forward to highly complex, modular approaches. In the most basic restoration ap-
proach, noise is removed from an image by simple filtering. Greenhil and Davies [135]
used a regression feed-forward ANN with a 5 × 5 pixel window as input and one
output node to suppress noise, by applying the ANN scan-wise to the entire image.
Spreeuwers [337] used a similar ANN.

A number of more complex systems have been proposed as well. Chua and Yang [54, 55]
were the first to use cellular neural networks (CNNs, [258]) for image processing. A
CNN is a system in which nodes are locally connected. Each node contains a feedback
template and a control template, which to a large extent determine the functionality
of the CNN. For noise suppression, the templates implement an averaging function;
for edge detection, a Laplacian operator. The system operates locally, but multiple itera-
tions allow it to distribute global information throughout the nodes. Although quite fast
in application, a disadvantage is that the parameters influencing CNN behaviour (the
feedback and control templates) have to be set by hand. Others have proposed methods
for training CNNs, e.g., using gradient descent (binary images, Schuler et al. [315]) or
using genetic algorithms (grey-value images, Zamparelli [389]). CNNs were also ap-
plied for restoration of colour images by Lee and Degyvez [210].
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Other examples of ANNs applied specifically to noise suppression are the neurochips
described in [234], which perform smoothing; fuzzy ANNs [307, 308]; and generalised
adaptive neural filters (GANFs) [143, 392]. GANFs consist of a set of neural operators,
based on stack filters [8], operating on binary decompositions of grey-value data. Each
neural operator gets its input from a small number of levels in the decomposition of an
image window, and thus processes the image data locally in both grey-value and image
position.

Traditional methods for more complex restoration problems such as deblurring and di-
minishing out-of-focus defects, are Maximum A Posteriori estimation (MAP) and reg-
ularisation. Applying these techniques entails solving high-dimensional convex op-
timisation tasks. As discussed in section 2.2.3, HNNs and variants hereof lend them-
selves for solving such optimisation problems: the objective functions of MAP estima-
tion or the regularisation problem can both be mapped onto the energy function of the
ANN [18, 105, 267, 347]. Often these networks had to be adapted to fit the problem.

Several specialised types of ANNs have been applied to image restoration as well. Qian
et al. [287] used a hybrid approach consisting of order statistic filters for noise removal
and a HNN for deblurring (by optimising a criterion function). The modulation trans-
fer function has to be measured. Guan et al. [139] developed a so-called network-of-
networks. Their system consists of loosely coupled modules, where each module is
a separate ANN. The error function can be adapted to represent regularisation in a
way that is similar to HNNs. Waxman et al. [376] consider the application of a centre-
surround shunting feed-forward ANN (proposed by Grossberg) for contrast enhance-
ment and colour night vision. Finally, Phoha and Oldham [279] proposed a layered,
competitive ANN to reconstruct a distorted image; however, it can also perform edge
detection.

Discussion

There seem to be three types of problems in pre-processing (unrelated to the three pos-
sible operation types) to which ANNs can be applied:

• optimisation of an objective function specified by a traditional pre-processing ap-
proach;

• approximation of a mathematical transformation used in reconstruction, by re-
gression;

• general regression/classification, usually directly on pixel data (neighbourhood
input, pixel output).

To solve the first type of problem, HNNs can be used for the optimisation involved in
traditional methods. In most of the applications reviewed, however, mapping the actual
problem to the energy function of the HNN turned out to be difficult. Occasionally, the
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original problem had to be modified before it could be solved by the HNN. Having
managed to map the problem appropriately, the HNN can be a useful tool in image
pre-processing, although convergence to a good result is not guaranteed.

For the reconstruction problem, regression (feed-forward) ANNs can be applied. Al-
though some applications of ANNs were indeed successful, it would seem that these
applications call for more traditional mathematical techniques, because a guaranteed
performance of the reconstruction algorithm is essential.

In several other applications, regression or classification ANNs were trained to perform
image restoration directly on pixel data. A remarkable first finding in the literature re-
search was that in a large number of applications, non-adaptive ANNs (such as CNNs)
were used. Secondly, where ANNs were adaptive, their architectures usually differed
much from those of the standard ANNs: prior knowledge about the problem was used
to design them (e.g. in the templates used in CNNs). This indicates that the fast, parallel
operation of ANNs, and the ease with which they can be embedded in hardware, can be
important factors in choosing for a neural implementation of a certain pre-processing
operation. However, their ability to learn from data is apparently of less importance.
While it is relatively easy to construct a linear filter with a certain desired behaviour,
e.g. by specifying its frequency profile, it is much harder to obtain a representative
data set to learn the optimal function by using a high-dimensional regression method
(see also chapters 5 and 6 of this thesis). This holds especially when the desired ANN
behaviour is only critical for a small subset of all possible input samples (e.g., in edge
detection). Moreover, it is not at all trivial to choose a suitable error measure for super-
vised training, as the mean squared error (MSE) often used in ANN training might give
unwanted results in an image processing setting [337].

An important caveat is that the ANN parameters are likely to become tuned to one type
of image (e.g., a specific sensor, scene setting, scale, etc.), which limits the applicability of
the trained ANN. When the underlying conditional probability distribution, e.g., p(y|x)
in eqn. 2.11, changes, the ANN – like all statistical models – needs to be retrained.

2.4.2 Enhancement and feature extraction

After pre-processing, the next step in the image processing chain is extraction of in-
formation relevant to later stages (e.g. subsequent segmentation or object recognition).
In its most generic form, this step can extract low-level information such as edges, tex-
ture characteristics etc. This kind of extraction is also called image enhancement, as cer-
tain general (perceptual) features are enhanced. As enhancement algorithms operate
without a specific application in mind, the goal of using ANNs is to outperform tradi-
tional methods, either in accuracy or computational speed.

Other approaches extract more application-specific geometric or perceptual features,
such as corners, junctions and object boundaries. For particular applications, even more



2.4 ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING 21

high-level features may have to be extracted, e.g. eyes and lips for face recognition. A
goal of this type of feature extraction is to lower the computational cost. However, it also
serves as a means for controlling the so-called curse of dimensionality 2 when training
ANNs for classification or regression problems. Feature extraction is usually tightly
coupled with classification or regression; what variables are informative depends on the
application, e.g. object recognition. Generally, one wants to extract those features that
preserve the class separability as well as possible [114], i.e., minimising the within-class
variability while maximising the between-class variability [85]. Some ANN approaches
consist of two stages, possibly coupled, in which features are extracted by the first ANN
and object recognition is performed by the second ANN. Such approaches are discussed
both here and in section 2.4.4.

Enhancement

Among the applications where ANNs have been developed for image enhancement
[45, 225, 246, 278, 324, 337, 338, 358, 376], one would expect most applications to be
based on regression ANNs [278, 286, 338, 376]. However, several approaches rely on a
classifier, typically resulting in a binary output image [45, 225, 246, 324, 337].

The most well-known enhancement problem is the detection of edges. A straight-
forward application of regression feed-forward ANNs, trained to behave like various
edge detectors, was reported by Pugmire et al. [286] and Spreeuwers [337]. Chandre-
sakaran et al. [45] used a novel feed-forward architecture to classify an input window as
containing an edge or not. The weights of the ANN were set manually instead of being
obtained from training. A number of more complicated, modular approaches were also
proposed [225, 278, 338]. Of course, if edge detection can be formulated as an optimisa-
tion problem, HNNs can be applied to image enhancement as well. This is exactly what
Tsai et al. do for very precise enhancement of endocardiac borders [358].

Some approaches utilise other types of ANNs. Shih et al. [324] applied an ART network
for binary image enhancement. Moh and Shih [246] describe a general approach for
implementation of morphological image operations by a modified feed-forward ANN
using shunting mechanisms, i.e. neurons acting as switches.

Feature extraction

Among the ANNs that have been trained to perform feature extraction [65, 66, 112,
113, 129, 191, 202, 203, 273, 310, 312, 325, 346, 371, 372, 380], feed-forward ANNs [112,

2A property of the classification or regression problem one wants to solve. Briefly, the problem is that
a higher dimensionality of the feature space leads to an increased number of parameters that need to be
estimated. The risk of overfitting the model will increase with the model complexity (dimensionality),
which will often lead to peaking [369], i.e. performance decreasing when the number of dimensions grows
beyond a certain point.



22 ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING

Input OutputBottleneck layer

Figure 2.4: A nonlinear auto-associator ANN, mapping the 3D input to 2D in the bottleneck
layer. Bias weights have not been drawn.

113, 325, 371, 372, 380], auto-associator ANNs (and variations) [273, 310, 312] and
SOMs [129, 132, 191, 202, 203, 359, 393] have been used in most of the reviewed ap-
plications. The HNN [346] and the perceptron [65, 66] have also been used, to perform
feature matching.

Auto-associator ANNs, a special type of feed-forward ANNs, are very applicable to
feature extraction. Usually, the input signal is obtained from a convolution window.
The ANNs contain at least one hidden layer with less units than the input and output
layers – see figure 2.4 for an example. They are then trained to recreate the input data.
The bottleneck architecture forces the ANNs to project the original d-dimensional data
onto a lower, m-dimensional (possibly nonlinear) manifold from which the original data
should be predicted as well as possible. Features can be extracted by supplying the
ANNs with the original data and reading of the m-dimensional data. If the ANN has
one hidden layer, the ANN projection can be shown to be identical to PCA [12]; when
more hidden layers are used, nonlinear mappings can be learned [83, 200, 261, 360].

It is also possible to use a mixture of linear subspaces to approximate a nonlinear man-
ifold (see e.g. [151, 356]). This approach comes close to the SOM feature extraction
method, which is to is to first cluster data in the high-dimensional space, and use the
cluster centres as prototype representations for the entire cluster. Chapters 7 and 8 fur-
ther discuss the mixture-of-subspaces approach.

ANN feature extraction was performed for:

• subsequent segmentation of food images [273] and MR (Magnetic Resonance) im-
ages [129], automatic target recognition (ATR) [371, 372], ATR in remote sensing
images (taking orientation into account) [191], recognition of characters [325, 346],
medical image analysis [132, 359, 393], tracking facial movement [310] and stereo
matching [65, 66];

• finding the orientation of objects [112, 247];

• finding control points of deformable models [380];
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• clustering local content of an image before it was encoded [312].

In some cases, SOMs were used to cluster low-level features found by Gabor filters, e.g.
in face recognition [202] and wood defect detection [203].

In most applications, extracted features were used for subsequent segmentation, image
matching or object recognition. Since rotation of (anisotropic) textures or objects typ-
ically cause the largest intra-class variation, some feature extraction approaches were
designed to cope explicitly with changes in orientation of objects.

Discussion

In the approaches to image enhancement, it is noteworthy that prior knowledge was
again often used to restrict the ANNs. Some ANNs had manually set weights; some
used the knowledge in their architecture (e.g., by using shunting mechanisms to force
a feed-forward ANN to make binary decisions). The same conclusion seems to hold
as for pre-processing (see 2.4.1): that operating speed and the possibility of hardware
implementation are more important than the ANN ability to learn from data.

For feature extraction, a number of clustering and dimensionality reduction ANNs were
discussed. It is important to make a distinction between application of supervised and
unsupervised ANNs. For a supervised auto-associator ANN, the information loss im-
plied by the data reduction can be measured directly on the predicted output variables.
For unsupervised feature extraction using the SOM, the information loss is more diffi-
cult to measure as the desired output is unknown.

Both supervised and unsupervised ANN feature extraction methods have advantages
compared to traditional feature extraction techniques such as PCA. Feed-forward ANNs
with several hidden layers can be trained to perform nonlinear feature extraction.
Moreover, a special purpose feature extractor can be trained when the desired output is
known. The major disadvantage of nonlinear feature extraction ANNs is the lack of a
formal, statistical basis. This issue is a subject for further research.

2.4.3 Segmentation

Segmentation is partitioning an image into parts that are coherent according to some
criterion. When considered as a classification task, the purpose of segmentation is to
assign labels to individual pixels or voxels. Some neural-based approaches perform
segmentation directly on the pixel data, obtained either from a window (occasionally
from more bands, e.g. as present in remote sensing and Magnetic Resonance (MR) im-
ages) that is slid across the image, or the information is provided to a neural classifier in
the form of local features. These features typically characterise texture or geometry in a
local neighbourhood around the pixel that is to be labelled.
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Here only segmentation based on pixel or voxel data is considered. To this end, many
ANN approaches have been presented, based on feed-forward ANNs [141, 183, 206,
226, 294, 317, 326, 327, 384], SOMs [3, 136, 193, 206, 255, 294, 368] and other self-
organising ANNs [124, 127, 128, 232], HNNs [46, 125, 126, 230, 303, 373], probabil-
istic ANNs [206, 374], radial basis function ANNs [206], CNNs [14, 365] and RAM net-
works [314]. Also, biologically inspired ANN approaches have been proposed: the per-
ception model developed by Grossberg [137, 138], which is able to segment images from
surfaces and their shading, and the brain-like networks proposed by Opara and Wor-
gotter [265]. For a review of ANN approaches to image segmentation and a comparison
to traditional methods, see [268].

Hierarchical segmentation approaches have been designed to combine ANNs on differ-
ent abstraction levels [317, 373]. The guiding principles behind hierarchical approaches
are specialisation and bottom-up processing: one or more ANNs are dedicated to low
level feature extraction/segmentation, and the results from the low-level processing
ANNs are combined on a higher abstraction level where another (neural) classifier per-
forms the final image segmentation. Reddick et al. developed a pixel-based two stage
approach where a SOM is trained to segment multispectral MR-images [129]. The seg-
ments are subsequently classified into white matter, grey matter, etc., by a feed-forward
ANN. Non-hierarchical, modular approaches have also been developed in which each
ANN is dedicated to a special task [3, 226, 361] or where each ANN is specialised to
recognise pixels belonging to a particular class [317].

In general, pixel-based ANNs have been trained to classify image content based on:

• texture [3, 129, 136, 183, 206, 226, 266, 270, 314, 326, 327, 361, 383];

• colour [125, 126, 128, 384];

• a combination of texture and local shape [50, 141, 221, 317, 374].

ANNs have also been used as pre- and post-processing steps for segmentation al-
gorithms, e.g. for:

• clustering of pixels [255, 366, 368];

• deciding whether a pixel occurs inside or outside a segment [373];

• de-fuzzifying segmented images [124, 127];

• identification of surfaces [137, 138];

• motion segmentation [232];

• delineation of contours [49, 365];

• connecting edge pixels [14, 303].
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Discussion

It is clear that ANNs are applicable to many different kinds of pixel-based segmentation
tasks. In most applications, ANNs were trained as supervised classifiers to perform the
desired segmentation. In these cases, all information (within a window) is provided
directly to the classifier. The size of the window should be roughly comparable to that
of the texture elements (texels) for structured textures (textures consisting of repeatedly
occuring fixed elements), or large enough to obtain reliable discriminative texture stat-
istics in case of unstructured textures. The perfect (minimal error-rate) classifier should
then be able to produce the best segmentation result.

A central problem in image segmentation is that most pattern recognition techniques,
among which ANNs, do not make use of the fact that neighbouring pixels are highly
correlated. This hinders their application to problems requiring invariance to trans-
lation, rotation and/or scale. A solution would be to build such spatial information
directly into the neural classifier (e.g., using weight sharing [207] or by taking symmet-
ries into account [311]); alternatively, the classifier could be trained explicitly to cope
with the variation by including training images in all relevant orientations and scales.
Secondly, an open question is how to combine local (neighbourhood) information with
context information (for example, on neighbouring areas already segmented) and prior
knowledge. These problems will be considered in section 2.5.

One might argue that in view of these problems, feature-based texture segmentation is
preferable, as prior knowledge can be used in the feature extraction stage and it will be
easier to avoid the curse of dimensionality. Although this is true, in some cases feature-
based segmentation is not feasible, since there is no limited set of images on which
an algorithm has to work. In such applications, e.g., image database retrieval, prior
knowledge on which features should be used is not available and adaptive pixel-based
methods can prove useful. Section 8.4 discusses such an approach to image database
retrieval.

A problem in performance evaluation of segmentation is how to obtain a ground truth
for the (in most cases supervised) segmentation algorithms. In general, the true class
membership of the pixels/voxels in the training set is known with varying degrees of
confidence. In [97], this problem is addressed by letting an expert demarcate the inner
parts of areas with a similar (coherent) texture but leaving the transition areas unclas-
sified. Certainly, intra- and inter-observer variability needs to be assessed thoroughly
before confident training and test sets can be compiled. Even when a reliable ground
truth is available, objective performance assessment entails more than simply comput-
ing error rates on novel test images. Different segmentation algorithms could be com-
pared using some of the proposed spatial quality measures. Generally, these measures
express desirable properties such as within-region homogeneity and between-region
heterogeneity [91, 163] (for an overview see [391]). However, there is not yet a single
measure capable of unequivocally quantifying segmentation quality.
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2.4.4 Object recognition

Object recognition consists of locating the positions and possibly orientations and
scales of instances of classes of objects in an image (object detection) and classify-
ing them (object classification). Among the ANN approaches developed for pixel-
based object recognition several types of ANNs can be distinguished: feed-forward-like
ANNs [82, 94, 98, 112, 113, 121, 130, 132, 168, 191, 202, 203, 220, 274, 277, 305, 309, 349,
359, 359, 371, 393, 395], variants using weight sharing [15, 109, 120, 207, 208, 209, 364],
recurrent ANNs [86, 396], ART networks [39, 41, 324], bi-directional auto-associative
memories [199], mixtures-of-experts [371, 372], (evolutionary) fuzzy ANNs [188], the
Neocognitron [116, 118, 254] and variants hereof [16, 236], piecewise-linear neural clas-
sifiers [330], higher-order ANNs [335, 336] and HNNs [10, 386]. Besides, interesting
hardware ANNs have been built for object recognition: the RAM network [52, 89] and
optical implementations [185, 322]. Finally, SOMs are occasionally used for feature ex-
traction from pixel data [132, 191, 202, 203, 359, 393]; the output of the map is then
propagated to a (neural) classifier. For an overview of an important application area of
ANN object recognition, automatic target recognition (ATR), see [302].

Several novel ANN architectures have been developed specifically to cope with con-
comitant object variations in position, (in-plane or out-of-plane) rotation and scale (in
one case, an approach has been developed that is invariant to changes in illumina-
tion [322]). An interesting approach that is invariant to 2D translations, in-plane rotation
and scale is the what-and-where filter [39], a combination of a multi-scale oriented filter
bank (where) and an invariant matching module (what). Other approaches rely on:

• pre-processing the data to remove the invariances, e.g. removing rotation using a
polar mapping [112, 113, 395];

• learning the variations explicitly in training, e.g. by adding mirrored and rotated
versions of the original samples to the training set [41, 44, 223, 305] or by synthes-
ing images [94, 98, 274];

• built-in invariance over a limited range, to both translation and rotation [82] or to
translation and/or scale (e.g., the Neocognitron [116, 118, 254] and shared weight
ANNs [15, 109, 120, 207, 208, 209, 364]).

Rare conditions such as object occlusion or the occurrence of multiple objects within
the (sub)image that is processed by the classifier have hardly been considered expli-
citly. An experimental architecture developed by McQuiod is capable of recognising
multiple objects simultaneously within an image [236]. Recognition of object parts (due
to occlusion) is also considered in section 2.4.6.

Clearly, when object recognition is performed by teaching a classifier to recognise the
whole object from a spatial pattern of pixel intensities, the complexity of the classifier
grows quickly with the size of the object and with the number of dimensions (2D v 3D).
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Moreover, depending on the contents of the scene (image), context information may be
required before the objects of interest can be recognised with confidence. The incorpor-
ation of context information may again lead to a large number of extra parameters and
thereby a more complex classifier. To cope with this problem, so-called multiresolution
approaches have been developed [305, 359, 371, 372, 386, 387]. In these approaches,
the ANN obtains as input the intensities from pixels located on different levels of a
pyramid [181] but centred at the same location. In this way, the classifier is provided
with context information but a combinatorial explosion in the number of parameters is
avoided. Still, variations in scale have to be learned explicitly by the classifier through
training.

Another disadvantage of ANN pyramid approaches is that they sample the scale-space3

coarsely as the resolution is reduced with a factor two at each level in the pyramid.
A special type of ANN that incorporates the scale information directly in a pyramidal
form is the so-called higher-order ANN [335, 336]. This ANN builds up an internal
scale-space-like representation by what is called coarse coding. However, higher-order
ANNs need to learn variations in scale explicitly too. They should be used with caution
because the coarse coding scheme may lead to aliasing as the high-resolution image is
not blurred [181] before computing the coarser image on the next level.

Recurrent ANNs, i.e. ANNs with feed-back loops [147, 148], can be used to develop
special approaches to object recognition [86, 396]. The added value of using a recur-
rent ANN lies in its memory: the current state contains information about the past,
which may constitute valuable context information. The recurrent ANN developed by
Ziemke [396] performs a convolution with an image in order to detect oil spills. Accord-
ing to the author, the recurrency principle ensures a more robust object recognition.

Several of the approaches for object detection and classification operate on binary im-
ages [16, 39, 52, 82, 89, 300]. Whereas binarising images simplifies the recognition prob-
lem considerably and facilitates inspection of the weights of the ANNs (e.g., by rule
extraction), reducing the grey-level spectrum leads to a large increase in quantification
noise [282]. This inevitably decreases the recognition performance of the ANN.

Discussion

The advantage of pixel-based neural approaches to object recognition is that all (relev-
ant) information is provided as input to the classifier, at least when a sufficiently large
window size can be chosen. Context information and prior knowledge can also be in-
cluded using, e.g., shared weights or an image pyramid. Shared weight ANNs will be
discussed in depth in chapters 3 and 4. A major disadvantage of such approaches is
that object variations in rotation and scale have to be learned explicitly by the classifier

3A technique which entails constructing a stack of images in which details are gradually smoothed
out, revealing larger structures [222].
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(translation can usually be coped with by scan-wise application of the ANN). This again
calls for a very large, complete training set and a classifier that can generalise well, al-
though some model-based approaches have been presented that can generate such a
complete training set [94, 274]. It is an issue for future research how to cope with occlu-
sion or the occurrence of multiple objects within one (sub)image; in this situation many
approaches may fail. Moreover, in volume data objects are three-dimensional. Very
little research has been performed in application of ANNs for recognition of objects in
3D images.

2.4.5 Image understanding

Image understanding is the final step in the image processing chain, in which the goal
is to interpret the image content. Therefore, it couples techniques from segmentation
or object recognition with the use of prior knowledge of the expected image content
(such as image semantics). As a consequence, there are few applications of ANNs on
pixel data. In two such applications, ANNs were trained to classify ships, which were
recognised from pixel data by an advanced modular approach consisting of a SOM and
a feed-forward ANN [272] and to analyse satellite images [7].

A major problem when applying ANNs for high level image understanding is their
black-box character. Although there are proposals for explanation facilities [95] and rule
extraction [354], it is usually hard to explain why a particular image interpretation is the
most likely one, Another problem in image understanding relates to the amount of input
data. When, e.g., seldomly occurring images are provided as input to a neural classifier,
a large number of images are required to establish statistically representative training
and test sets. By contrast, for segmentation or object recognition based on low level
information, much less images are needed. In conclusion, an ANN is not an optimal
tool for image understanding problems.

2.4.6 Optimisation

Some image processing (sub)tasks such as stereo matching can best be formulated as
optimisation problems, which may be solved by ANNs. In most of the papers reviewed,
a HNN was used [56, 253, 303, 321, 344, 346, 353, 388]. In some applications, the HNN
obtained pixel-based input [303, 321, 346, 388], in other applications the input consisted
of local features [56, 253, 344, 353].

HNNs have been applied to optimisation problems in reconstruction and restoration
(not discussed here; see section 2.4.1), segmentation, matching and recognition. The
following problems were mapped onto the HNN’s error function:
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• segmentation of an image with an intensity gradient, by interpolating a surface,
where the error function contained an interpolation term and smoothness con-
straints [303, 321];

• relaxation labeling for thresholding [388], in which a matrix of “compatibilities”
between neighbouring pixels was used to define the error function;

• stereo matching, by establishing correspondence between features (land-
marks) [253]; each node represents a possible feature match, the weights are set
according to a compatibility between features, based on disparity;

• 2D and 3D object recognition as a graph matching problem, in which detected
primitives and their attributes were used as in the stereo matching approach
above [344, 346];

• approximation of curve of edge points by a polygon [56], where the error function
is the arc-to-chord deviation between the curve and the polygon;

• establishing feature trajectories in motion images [353], again using compatibility
between features, based on motion model fit, trajectory continuity and 2D geo-
metry.

Mainly, HNNs have been applied for segmentation and recognition tasks that are too
difficult to realise with conventional neural classifiers because the solutions entail par-
tial graph matching or recognition of 3D objects. Matching and recognition are both
solved by letting the ANN converge to a stable state while minimising an energy func-
tion. It was also shown that iterating the HNN can be interpreted as a form of probab-
ilistic relaxation [142].

A disadvantage of HNNs is that training and use are both of high computational com-
plexity. However, other more traditional algorithms for nonlinear programming, in
general, also produce high computational loads [149]. In this context, it should be kept
in mind that some (constrained) nonlinear programming problems can be solved optim-
ally by traditional algorithmic approaches. For this subclass of optimisation problems,
a conventional algorithmic solution should be preferred. The HNN is an interesting
approach for problems that lie beyond this subclass of solvable optimisation problems.

2.5 Discussion

This literature review has shown that one of the major advantages of ANNs is that they
are applicable to a wide variety of problems. There are, however, still caveats and fun-
damental problems that require attention. Some of these issues are general, in the sense
that they are not resolved by other, competing techniques from the pattern recognition
field which may be applied to the same image processing problems. Other problems are
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caused by using statistical, data-oriented technique to solve image processing problems.
Finally, some problems are fundamental to the way ANNs approach pattern recognition
problems. General issues in pattern recognition, the problems related to the application
of pattern recognition techniques on image data and the specific ANN related issues are
discussed separately.

2.5.1 Issues in pattern recognition

When trying to solve a pattern recognition problem, one may be faced with several
problems that are fundamental in applied statistical pattern recognition: avoiding the
curse of dimensionality, selecting the most discriminative features and achieving a good
transferability.

The first problem, the curse of dimensionality, occurs when too many input variables are
provided to a classifier or regression function. The risk of ending up with a classifier or
regressor that generalises poorly increases with the number of dimensions of the input
space. The problem is caused by the inability of existing classifiers to cope adequately
with a large number of (possibly irrelevant) parameters, a deficiency that makes feature
extraction and/or feature selection necessary steps in classifier development. Feature
extraction has been discussed in detail in section 2. Feature selection is, because of its
dependence on a trained classifier, an ill-posed problem. Which features give the best
performance, depends on the particular classifier that is used [99, 184, 285]. Besides of-
fering a way to control the curse of dimensionality, feature selection also provide insight
in the properties of a classifier and the underlying classification problem [99]. Also, one
should keep in mind that the conditional distributions of the input data to a classifier
or regression function – its features – largely determine the performance that can be
obtained, rather than the choice of classifier.

A problem that is especially important in some applications, such as medical image pro-
cessing or industrial inspection, is how to ensure the transferability of a classifier. When
trained to classify samples obtained from one setting with a particular prior (class) dis-
tribution, a classifier will have a poorer and possibly unacceptably low performance
when transferred to another setting where the prior class distribution is different. A
question related to this is how to account for changing underlying input distributions4,
p(x|ωj) or p(y|x) (see section 2.2.1). In general, the parameters of the classifier or regres-
sion function need to be re-estimated from a data set that is representative for the novel
(prior) distribution. This problem is intrinsic to all statistical models as they are based
on inductive inference. Models that have not been re-trained should recognise samples
falling outside the distribution they were trained on and discard them, thereby avoid-

4Note that for a classifier that has been trained, e.g., to recognise objects appearing at a certain scale
directly from pixel data, classification of similar objects at a different scale is equivalent to classifying
samples from a novel distribution p(x|ωj).
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ing the assignment of “wild-guess” outputs (see e.g. [350, 352]). This is called outlier
detection. Finally, the question of how to incorporate costs of different misclassifications
or computational costs of various algorithms is not yet fully answered.

2.5.2 Obstacles for pattern recognition in image processing

Besides fundamental problems within the field of pattern recognition, other problems
arise because statistical techniques are used that consider each pixel as an independent
variable. Another problem is how one should incorporate prior knowledge into pat-
tern recognition techniques. Also, the evaluation of image processing approaches is not
always straightforward.

A problem in the application of pattern recognition techniques to images is how to in-
corporate context information and prior knowledge about the expected image content.
Prior knowledge could be knowledge about the typical shape of objects one wants to
detect, knowledge of the spatial arrangement of textures or objects or of a good approx-
imate solution to an optimisation problem. According to Perlovsky [276], the key to
restraining the highly flexible learning algorithms ANNs are, lies in the very combin-
ation with prior knowledge. However, most pattern recognition methods do not even
use the prior information that neighbouring pixel values are highly correlated. The
latter problem can be circumvented by extracting features from images first, by using
distance or error measures on pixel data which do take spatial coherency into account
(e.g. [151, 329]), or by designing an ANN with spatial coherency (e.g. [118, 207]) or con-
textual relations beween objects (e.g. [53]) in mind. On a higher level, some methods,
such as the pyramid and scale-space approaches reviewed in section 2.4.4, can provide
a segmentation algorithm with context information that may improve its performance.

There is a clear need for thorough validation of the developed image processing al-
gorithms [67, 144]. In the literature reviewed, tests on a large set of independent images
had only occasionally been performed. Validation and comparison between different
algorithms are only possible when a reliable ground truth exists and meaningful (object-
ive) quality measures are available. For some processing tasks like object recognition,
a ground truth is in most cases easy to obtain. In other applications, different (human)
observers may not fully agree about the ground truth. Even with a reliable ground truth
available, it is clear that performance assessment entails much more than simply com-
puting error rates on novel test images: it is equally important how methods deal with,
e.g., noisy measurements, changes in lighting, occlusion etc.

Finally, in image processing, classification and regression problems quickly involve a
very large number of input dimensions, especially when the algorithms are applied
directly on pixel data. This is problematic, due to the curse of dimensionality dis-
cussed before. However, the most interesting future applications promise to deliver
even more input. Whereas in almost all reviewed articles, ANNs were applied to two-
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dimensional images, in e.g. microscopy and medical imaging (CT and MR imaging),
three-dimensional modalities enjoy an increasingly widespread use. Adding an ex-
tra spatial dimension leads to a combinatorial explosion in the number of paramet-
ers. One way to cope with this problem is to develop feature-based pattern recognition
approaches; another way would be to design an architecture that quickly adaptively
downsamples the original image.

2.5.3 Artificial neural network issues

In section 2.2, a number of unresolved problems for feed-forward ANNs, SOMs and
HNNs was mentioned. Here the lack of a profound theoretical basis for ANNs, the
problem of choosing the best architecture and the black-box problem will be considered.

Several theoretical results regarding the approximation capabilities of ANNs have been
proven. Although feed-forward ANNs with two hidden layers can approximate any
(even discontinuous) function to an arbitrary precision, theoretical results on, e.g., the
rate of convergence are lacking. One obstacle in developing a more profound statistical
foundation for ANNs is the lack of guaranteed convergence to the global minimum of
the error measure. The combination of initial parameters, the topology and the learning
algorithm together determine the performance of an ANN after its training has been
completed. Furthermore, there is always a danger of overtraining an ANN, as minim-
ising the error measure occasionally does not correspond to finding a well-generalising
ANN. Having said that, the large body of work on application of ANNs presented in
the last decade provides even novice users with many rules-of-thumb on how to set
the various parameters, and methods such as regularisation, early stopping or even
ensemble training or bagging can help in avoiding the problem of overtraining.

Another problem is how to choose the best ANN architecture. Although there is some
work on model selection [108, 251], no general guidelines exist which guarantee the
best trade-off between model bias and variance (see page 12) for a particular size of
the training set. Training unconstrained ANNs using standard performance measures
such as the mean squared error might even give very unsatisfying results. This, we
assume, is the reason why in a number of applications, ANNs were not adaptive at all
(e.g. CNNs) or heavily constrained by their architecture (e.g., the Neocognitron, shared
weight ANNs). Note that this does not automatically imply that unconstrained ANNs
should not be applied to image processing problems. It does indicate, however, that
great care should be taken when assessing performance of particular ANNs and that as
much prior knowledge as possible should be used in both ANN design and training.

ANNs suffer from what is known as the black-box problem: the ANN, once trained,
might perform well but offers no explanation on how it works. That is, given any input
a corresponding output is produced, but it cannot be easily explained why this decision
was reached, how reliable it is, etc. In image understanding, the black-box problem of
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ANNs is certainly problematic, so their use in such applications will remain limited.
In some image processing applications, e.g., monitoring of (industrial) processes, elec-
tronic surveillance, biometrics, etc. a measure of the reliability is highly necessary to
prevent costly false alarms. In such areas, it might even be preferable to use other, less
well performing methods that do give a statistically profound measure of reliability.

2.6 Conclusions

This survey was structured according to the six steps in the image processing chain: pre-
processing, feature extraction, segmentation, object recognition, image understanding
and optimisation. ANNs have been trained to perform one or more of these tasks with
various degrees of success:

• In pre-processing, several regression ANNs were developed for reconstruction
and restoration. Often, these ANNs were not adaptive, or only partially. A gen-
eral conclusion was that neural solutions are, in general, truly interesting when
existing algorithms fail or when ANNs may reduce the amount of computation
considerably.

• For enhancement, prior knowledge was often used to restrict the applied feed-
forward regression and classification ANNs. The two main feature extraction
methods were nonlinear mapping (by auto-associator ANNs) and clustering (by
SOMs).

• Many ANN approaches for segmentation have been developed. Among the di-
verse segmentation tasks, texture segregation is the segmentation problem that
has most frequently been attacked by an ANN classifier.

• Object recognition is another problem which has received much attention in the
literature on ANN applications in image processing. Although many successful
applications were discussed, there are some problems left to investigate. For ex-
ample, object occlusion and multiple occurrence of objects has hardly been con-
sidered.

• Image understanding is a dubious application of ANNs because of their black-box
character and the need for large numbers of images as training and test sets. As
long as there is no accepted facility for explaining why a particular class label has
been assigned to a case, black-box classifiers will not be widely applied in image
understanding.

• Finally, the HNN can solve optimisation problems. However, several issues re-
main problematic, such as mapping the problem at hand to the HNN architecture
and bypassing the high dependency of the initial configuration. HNNs become an
interesting alternative to conventional techniques when the latter cannot solve the
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Image processing task (section)

ANN type ANN architecture

Reconstruction (2.4.1)

Restoration (2.4.1)

Enhancem
ent (2.4.2)

Feature extraction (2.4.2)

Segm
entation (2.4.3)

Object recognition (2.4.4)

Im
age understanding (2.4.5)

Optim
isation (2.4.6)

Feed-forward
Perceptron •

Multi-layer, regression • • •
Multi-layer, classification • • • •

Auto-associatior •
Radial basis function •

Shared weights •
Recursive •

Neocognitron •
Self-organising

Adaptive resonance theory (ART) • •
Self-organising map (SOM) • • • •

Hopfield
Hopfield • • • • • •

Hardware-based
Cellular (CNN) • • •

Generalised adaptive neural filters (GANF) •
Associative memories (and RAM) • • •

Other
Fuzzy neural/neuro-fuzzy • • • •

Various • • •

Table 2.1: An overview of ANN types and architectures used for image processing tasks. The
three ANN architecture types introduced in section 2.2 (feed-forward, self-organising
and Hopfield) are the most widely used. Clearly, some ANN architectures are applic-
able only to specific steps in the image processing chain.
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optimisation problem, either because of its nonlinear character or because of the
computational complexity.

An overview of ANN architectures used for different image processing tasks is given in
table 2.1. It shows that the three main ANN models described in section 2.2 are most
widely used, although a large number of more exotic architectures have been applied
to different problems as well. Although supervised feed-forward networks have been
applied in many steps of the image processing chain, in the earlier steps they were of-
ten restricted. Training unrestricted feed-forward ANNs only is useful when a good
ground truth is available, such as in object recognition and image understanding. Ob-
viously, unsupervised methods are useful mainly in situations where a ground truth is
not known, e.g. segmentation and feature extraction. Finally, the more hardware-like
ANNs are useful in any situation where large amounts of data have to be processed
quickly. However, as these ANNs have limited learning capabilities, they are vehicles
for using prior knowledge rather than fully adaptive algorithms.

Although one of the often mentioned advantages of ANNs is the possibility of hardware
(VLSI) implementation, it would seem that this is not used in practice very often. The
same holds for ANNs as for parallel computation in general: the application has to be
costly enough to warrant the development of highly specialised hardware, since tradi-
tional sequential computing methods become cheaper and faster each year (cf. Moore’s
law [293]), and software remains much more flexible than hardware.

It can be concluded that ANNs can be useful tools in image processing problems for
either classification, regression or for (supervised and unsupervised) feature extraction.
One of the major advantages of using ANNs for image processing problems must be
that they present the user with a very powerful tool with wide applicability. The advent
of sophisticated ANN simulation packages (e.g. MATLAB [179] or SNNS [390]) makes
for easy application.

As was mentioned in chapter 1, this thesis will focus both on actual applications of
neural networks to image processing tasks and the problems discussed above:

• the choice of ANN architecture;

• the use of prior knowledge about the problem in constructing both ANNs and
training sets;

• the black-box character of ANNs.

In the next chapters an ANN architecture developed specifically to address these prob-
lems, the shared weight ANN, will be investigated. However, these questions will play
a role in all of the subjects discussed in this thesis.
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SHARED WEIGHT NETWORKS FOR
OBJECT RECOGNITION

3.1 Introduction

In this chapter, some applications of shared weight neural networks will be discussed.
These networks are more commonly known in the literature as TDNNs, Time Delay
Neural Networks [23], since the first applications of this type of network were in the field
of speech recognition1. Sejnowski et al. used a slightly modified feed-forward ANN
in their NETtalk speech synthesis experiment [316]. Its input consisted of an alpha nu-
merical representation of a text; its training target was a representation of the phonetic
features necessary to pronounce the text. Sejnowski took the input of the ANN from
the “stream” of text with varying time delays, each neuron effectively implementing
a convolution function; see figure 3.1. The window was 7 frames wide and static. The
higher layers of the ANN were just of the standard feed-forward type. Two-dimensional
TDNNs later developed for image analysis really are a generalisation of Sejnowski’s ap-
proach: they used the weight-sharing technique not only after the input layer, but for
two or three layers. To avoid confusion, the general term “shared weight ANNs” will
be used. However, when searching the literature, one will also encounter the terms
TDNNs, convolutional ANNs or space displacement ANNs.

The rest of this chapter will focus on just a few implementations of shared weight
ANNs, those developed by Le Cun et al. [207, 208, 209] and Fogelman Soulie and Vien-
net [109, 364]. These ANN architectures are interesting, in that they incorporate prior
knowledge of the problem to be solved – object recognition in images – into the struc-
ture of the ANN itself. The first few layers of these ANNs act as convolution filters on

1The basic mechanisms employed in TDNNs, however, were known long before. In 1962, Hubel and
Wiesel introduced the notion of receptive fields in mammalian brains [164]. Rumelhart et al. in their 1986
paper [306] proposed the idea of sharing weights for solving the T-C problem, in which the goal is to
classify a 3× 3 pixel letter T and a 3× 2 pixel letter C, independent of translation and rotation [243].



38 SHARED WEIGHT NETWORKS FOR OBJECT RECOGNITION

z
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Th i i t h e i np u tss

Output

Hidden units

Figure 3.1: The operation of the ANN used in Sejnowski’s NETtalk experiment. The letters (and
three punctuation marks) were coded by 29 input units using place coding: that
is, the ANN input vector contained all zeroes with one element set to one, giving
7× 29 = 203 input units in total. The hidden layer contained 80 units and the output
layer 26 units, coding the phoneme.

the image, and the entire ANN can be seen as a nonlinear filter. This also allows us to try
to interpret the weights of the trained ANNs in terms of image processing operations.

In section 3.2, the basic shared weight architecture used in this chapter will be intro-
duced, as well as some variations. Next, two applications, to handwritten digit recog-
nition (section 3.3) and automatic target recognition (section 3.4), will be shown. The
chapter ends with a discussion on shared weight ANNs and the results obtained in
section 3.5.

3.2 Shared weight networks

The ANN architectures introduced by Le Cun et al. [207, 208, 209] use the concept of
sharing weights, that is, a set of neurons in one layer using the same incoming weight.
The use of shared weights leads to all these neurons detecting the same feature, though
at different positions in the input image (receptive fields); i.e. the image is convolved with
a kernel defined by the weights. The detected features are – at a higher level – combined,
to obtain shift-invariant feature detection. This is combined with layers implementing
a subsampling operation to decrease resolution and sensitivity to distortions.

Le Cun et al. actually describe several different architectures, though all of these use
the same basic techniques. The architecture as proposed in [207] will be discussed here
as an example (see figure 3.2); differences with other implementations will be discussed
later.
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10 32 4 5 6 7 8 9

Total

L5 Output layer
10

10 x (30 + 1)
30
Hidden layerL4

30 x (12 x (4 x 4) + 1)
12 x (4 x 4)
Subsampling mapsL3

1256

10

30

192

12 x (4 x 4) x (1) + 12 x (8 x (5 x 5))
12 x (4 x 4) x (8 x (5 x 5) + 1)
12 x (8 x 8) 768
Feature mapsL2

12 x (8 x 8) x (1) + 12 x (5 x 5) 

256
12 x (8 x 8) x (5 x 5 + 1)

Input layer
16 x 16

L1

# Neurons

# Connections

# Weights

1068
19968

38592
2592

57905790

310310

976064660

Figure 3.2: The LeCun shared weight ANN.
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Figure 3.3: A feature map and a subsampling map.
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3.2.1 Architecture

The LeCun ANN, shown in figure 3.2, comprises at least 5 layers, including input and
output layers:

• The input layer consists of a grey-level image of 16× 16 pixels.

• The second layer contains the so-called feature maps; see figure 3.3. Each neuron
in such a feature map has the same 5× 5 set of incoming weights, but is connected
to a square at a unique position in the input image. This set can be viewed as a
convolution filter, or template; that is, if a neuron in a feature map has high output,
this corresponds to a match with the template. The place of the match in the input
image corresponds to the place of the neuron in the feature map. The image is
under-sampled, as the receptive field for two neighbouring neurons is shifted two
pixels in the input image. The rationale behind this is that, while high resolution
is important for detecting a feature, it is not necessary to know its position in the
image with the same precision.

Note that the number of connections between the input and feature map layer is
far greater than the number of weights, due to the weight-sharing. However, neur-
ons do not share their bias. Figure 3.2 shows the number of neurons, connections
and weights for each layer.

• The third layer consists of sub-sampling maps (figure 3.3). This layer is included
mainly to reduce the number of free parameters. The principle is the same as
for the feature maps: each neuron in a sub-sampling map is connected to a 5 × 5
square and all neurons in one sub-sampling map share the same set of 25 weights.
Here, too, the feature map is under-sampled, again losing some of the information
about the place of detected features.

The main difference however, is that each neuron in a sub-sampling map is con-
nected to more than one feature map. This mapping of feature maps onto sub-
sampling maps is not trivial; Le Cun et al. use different approaches in their art-
icles. In [207], only the number of feature maps connected to each sub-sampling
map, 8, is mentioned; it is not clear which feature maps are linked to which sub-
sampling maps. In [209] however, table A.2 in appendix A.1 is given. Again, due
to the use of shared weights, there are significantly less weights than connections
(although biases are not shared). See figure 3.2 for an overview.

• The output of the sub-sampling map is propagated to a hidden layer. This layer
is fully connected to the sub-sampling layer. The number of neurons is 30.

• The output layer is fully connected to the hidden layer. It contains 10 neurons,
and uses place coding for classification; the neurons are numbered 0 . . . 9, and the
neuron with the highest activation is chosen. The digit recognised is equal to the
neuron number.
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The total number of neurons in the ANN is 1256. Without weight sharing, the total
number of parameters would be 64660, equal to the number of connections. However,
the total number of unique parameters (weights and biases) is only 9760.

Shared weight ANNs can be trained by any standard training algorithm for feed-
forward ANNs ([147, 148]), provided that the derivative of the cost function with re-
spect to a shared weight is defined as the sum of the derivatives with respect to the
non-shared weights [364]. The individual weight updates are used to update the bias
for each neuron, since biases are not shared.

Clearly, the architecture presented uses prior knowledge (recognising local features,
combining them at a higher level) about the task to solve (i.e., object recognition), thus
addressing the problem discussed in section 2.5.2. In [332], the authors show that this
approach indeed gives better performance. They compare three simple architectures: a
standard back-propagation ANN, an ANN with one feature map and one sub-sampling
map and an ANN with two feature maps, each mapped onto one sub-sampling map. It
is shown that the more prior knowledge is put into the ANN, the higher its generalisa-
tion ability2. This experiment will be discussed in chapter 4.

3.2.2 Other implementations

Although the basics of other ANN architectures proposed by Le Cun et al. and others
are the same, there are some differences to the one discussed above [207]. In [208], an
extension of the architecture is proposed, which from here on will be called “LeNet”. Al-
though this ANN has a larger number of connections, the number of unique parameters
is even lower than that of the LeCun ANN. LeNet further differs from the LeCun ANN
in a number of ways:

• after the second layer, there are effectively two equal, independent subnetworks;

• the subsampling layer is even more constrained, by not only sharing weights
between subsampling masks, but demanding that all weights in one map are equal
as well (effectively implementing a uniform filter);

• there is no hidden layer before the output layer.

More details of the LeNet architecture can be found in appendix A.2.

The “LeNotre” architecture is a proposal by Fogelman Soulie et al. in [109] and, under
the name Quick, in [364]. It was used to show that the ideas that resulted in the con-
struction of the ANNs described above can be used to make very small ANNs that still
perform reasonably well. In this architecture, there are only two feature map layers of

2Generalisation ability is defined as the probability that a trained ANN will correctly classify an ar-
bitrary sample, distinct from the training samples. It is therefore identical to the test error for sufficiently
large testing sets drawn from the same distribution as the training set.
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two maps each; the first layer contains two differently sized feature maps. The LeNotre
ANN is described in more detail in appendix A.3.

3.2.3 Related work

Shared weight ANNs have been applied to a number of other recognition problems,
such as word recognition [24], cursive script recognition [313], face recognition [109,
205, 364], automatic target recognition [120] and hand tracking [259]. In a different
application, Obellianne et al. [260] describe an architecture in which two shared weight
ANNs are coupled at the output layer, in order to build an associative memory. It was
used to classify noisy tomography images, and performed well in reducing noise even
when the noise-level was increased.

Other architectures employing the same ideas can be found as well. In [117], an ANN
architecture specifically suited to object recognition is proposed; the Neocognitron. It
is based on the workings of the visual nervous system, and uses the technique of re-
ceptive fields and of combining local features at a higher level to more global features
(see also 2.4.4). The ANN can handle positional shifts and geometric distortion of the
input image. However, the architecture of the Neocognitron is more complicated than
that of the LeCun ANN. For example, it uses two kinds of neurons; combines excitatory
and inhibitory links; and mixes fixed and variable links. It also differs from the LeCun
architecture in the fact that it is trained by unsupervised learning.

Others have applied standard feed-forward ANNs in a convolution-like way to large
images. Spreeuwers [337] and Greenhill and Davies [135] trained ANNs to act as filters,
using pairs of input-output images; for example, Spreeuwers used a ray-traced image of
some boxes as input and the hand-edited edge map of the same picture as the training
goal. In his experiments, simple 3-layer ANNs were used containing only one hidden
layer, in contrast with the elaborate architectures described before. Furthermore, the
input neurons were completely connected to the hidden layer. However, applying such
ANNs to all possible input windows in an image (as in a convolution) makes it equi-
valent to a shared weight ANN with one feature map. Finally, some approaches use
convolution-like ANNs with receptive fields, but without shared weights, e.g. the face
detection ANNs of Rowley et al. [305].

3.3 Handwritten digit recognition

This section describes some experiments using the LeCun, LeNet and LeNotre ANNs in
a handwritten digit recognition problem. For a more extensive treatment, see [68]. The
ANNs are compared to various traditional classifiers, and their effectiveness as feature
extraction mechanisms is investigated.
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(a) (b)

Figure 3.4: A digit before (a) and after (b) pre-processing.

First, in section 3.3.1, the handwritten digit data set will be introduced. Next, the ex-
periments performed will be described and discussed in section 3.3.2, and results will
be compared to those found in the literature in section 3.3.3. Finally, some experiments
to judge the power of shared weight ANNs as feature extractors will be discussed in
section 3.3.4.

3.3.1 The data set

The data set used in the experiments was taken from the Special Database 3 distributed
on CD-ROM by the U.S. National Institute for Standards and Technology (NIST) [382].
Currently, this database is discontinued; it is now distributed together with Database
7 as Database 19. Of each digit, 2,800 samples were available. After randomising the
order per class, the set was split into three parts: a training set of 1,000 images per
class, a testing set of 1,000 images per class and a validation set of 500 images per class.
The latter set was used in the ANN experiments for early stopping: if the error on the
validation set increased for more than 50 cycles continuously, training was stopped and
the ANN with minimum error on the validation set was used. This early stopping is
known to prevent overtraining [154, 283].

The binary digit images were then pre-processed in the following steps [68]:

• shearing, to put the digit upright;

• scaling of line width, to normalise the number of pixels present in the image;

• segmenting the digit by finding the bounding box, preserving the aspect ratio;

• converting to floating point and scaling down to 16 × 16 using low-pass filtering
and linear interpolation.

Figure 3.4 shows an example.
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(a) Shared weight ANNs
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(b) Traditional classifiers
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(c) Feed-forward ANNs
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(d) Reject curves

Figure 3.5: Classification errors on the testing set, for (a) the LeCun, LeNet and LeNotre ANNs;
(b) the nearest mean classifier (nm), linear and quadratic Bayes plug-in rules (lc,
qc) and the 1-nearest neighbour classifier (1nn); (c) standard one hidden layer feed-
forward ANNs with 256 and 512 hidden units. (f) Reject-error curves on the test-
ing set for the shared weight ANNs and the 1-nearest neighbour classifier (1nn), all
trained on the entire training set (1,000 samples per class).
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(a) Polynomial SVMs
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(b) Radial basis SVMs

Figure 3.6: Classification errors on the testing set, for (a) SVMs with a polynomial kernel func-
tion of degrees 1, 2, 4 and 6 and (b) SVMs with a radial basis kernel function, σ = 5,
10, 20.

3.3.2 Experiments

Instances of the LeCun, LeNet and LeNotre ANNs were trained on subsets of the train-
ing set containing 10, 25, 50, 100, 250, 500 and 1000 samples per class. Following [207],
weights and biases were initialised randomly using a uniform distribution in the range[
− 2.4

F , 2.4
F
]
, where F was the total fan-in of a unit (i.e. the number of incoming weights).

Back-propagation was used for training, with a learning rate of 0.5 and no momentum.
Training targets were set to 0.9 for the output neuron coding the right digit class, and
0.1 for the other output neurons. After training, the testing set was used to find the
error.

For comparison, a number of traditional classifiers were trained as well: the nearest
mean linear classifier (which is denoted nm in the figures), the linear and quadratic
Bayes plug-in classifiers3 (lc and qc) and the 1-nearest neighbour classifier (1nn) (see
e.g. [85, 114, 377] for a discussion on these statistical pattern classifiers). For the Bayes
plug-in classifiers, regularisation was used in calculating the 256× 256 element covari-
ance matrix C:

C′ = (1− r − s) C + r diag(C) +
s

256
tr(C)I (3.1)

where diag(C) is the matrix containing only the diagonal elements of C, tr(C) is the
trace of matrix C, and using r = s = 0.1. Furthermore, two standard feed-forward

3The Bayes classifier assumes models for each of the classes are known; that is, the models can be
“plugged in”. Plugging in normal densities with equal covariance matrices leads to a linear classifier;
plugging in normal densities with different covariance matrices per class leads to a quadratic classifier.
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ANNs were trained, containing one hidden layer of 256 and 512 hidden units, respect-
ively. Finally, support vector classifiers (SVMs, [62, 351, 362]) were trained with poly-
nomial kernels of various degrees and with radial basis kernels, for various values of
σ.

Results are shown in figures 3.5 (a)-(c) and figure 3.6. The shared weights ANNs per-
form well, better than most traditional classifiers. Of the three ANNs, the best seems to
be the LeCun ANN, which has the largest number of parameters. The smallest ANN,
LeNotre, gives the largest errors. The 1-nearest neighbour classifier and the standard
feed-forward ANNs perform as well as the shared weight ANNs or slightly better, as
do the SVMs.

In general, classifiers performing better also have many more parameters and require
more calculation in the testing phase. For example, when trained on 1,000 samples per
class the LeCun ANN (2.3% error) performs slightly worse than the 1-nearest neighbour
classifier (1.8% error) and the best performing SVMs (e.g. radial basis kernels, σ = 10:
1.4% error), but slightly better than the 256 hidden unit feed-forward ANN (2.4% error).
The LeCun ANN has 63,660 parameters, requiring as many FLOPs (floating point op-
erations) to test one sample. In contrast, the 1-nearest neighbour rule, trained on 1,000
samples per class, requires 10,000 distance calculations in 256 dimensions, i.e. roughly
5,120,000 FLOPs. Similarly, the SVM uses a total of 8,076 support vectors in its 10 clas-
sifiers, requiring 4,134,912 FLOPs. However, the fully connected feed-forward ANN
with 256 hidden units requires 256× 256 + 256× 10 = 68,096 FLOPs, a number compar-
able to the LeCun ANN. In conclusion, the shared weight ANNs seem to perform well
given their limited number of parameters, but a standard feed-forward ANN performs
equally well using the same amount of computation. This indicates that the restrictions
placed on the shared weight ANNs are not quite necessary to obtain a good perform-
ance. It also contradicts the finding in [332] that the use of shared weights leads to better
performance.

A reject rule was also implemented, by imposing a threshold on the relative difference
between the highest and second highest output of an ANN. For the 1-nearest neigh-
bour classifier, rejection was based on the relative difference between the distance to the
nearest neighbour and the nearest neighbour of another class. Reject-error curves are
given in figure 3.5 (d), for ANNs and the 1-nearest neighbour classifier trained on the
entire training set. For low rejection thresholds, the ranking of the classifiers remains
the same.

3.3.3 Comparison

The results obtained here, summarised in table 3.1 (a), are comparable to those found
in literature. In 1992, NIST organised a competition in handwritten digit recognition
in which several companies and universities competed. Performances of the systems



3.3 HANDWRITTEN DIGIT RECOGNITION 47

ANN Error Reject

LeCun 2.3 % 4.1 %
LeNet 3.4 % 13.4 %
LeNotre 4.9 % 26.9 %

(a) Performance of shared
weight ANNs.

Institute Feature extractor Classifier Error

OCR Systems unknown unknown 2.6 %
AT&T Bell Labs none k-NN with tangent distancea 3.2 %
AEG Electrocom pre-processing, PCA polynomial 3.4 %
ELSAG-BAILEY unknown “neural algorithm” 3.4 %
IBM morphology, contours, ... ANN 3.5 %
AT&T Bell Labs LeNet LeNet 3.7 %

(b) Performance of winning algorithms in the 1992 NIST competition.

No. Paper(s) ANN Dataset Learn set Test set Error Reject

1 [207, 209] LeCun USPSb 7,291 2,007 5.0 % n/a
2 [208] LeNet USPS 7,291 2,007 3.4 % n/a
3 [109, 364] LeNet NIST-3 15,000 5,000 1.4 % 0.8 %
4 [109, 364] LeNotre NIST-3 15,000 5,000 4.1 % 8.8 %

(c) Performance of shared weight ANNs found in literature.

Table 3.1: An overview of performance of various approaches. “Reject” is the percentage of the
objects it is necessary to reject to reach a 1% classification error on the total set.

aThis technique defines a set of possible transformations on an image (translation, rotation, dilation,
...) controlled by a set of parameters. A special distance measure, the tangent distance, is then introduced
which is locally invariant to these transformations. This distance measure can be computed efficiently
by approximating the nonlinear transformation parameter manifold locally by a linear hyperplane. The
tangent distance is then used as a feature vector in subsequent classification [328, 364].

bA database of the United States Post Office. Zip code images were extracted from envelopes passing
through Buffalo, NY and segmented into 5 digit images by postal service contractors.
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competing are given in table 3.1 (b). Note that these results are not directly comparable
to the results obtained here for a number of reasons: competitors were free to choose
their own training set and not required to disclose their algorithms, and NIST used a set
of 100,000 digits written under other circumstances to test the systems.

An overview of reported performances of shared weight ANNs is given in table 3.1 (c).
Again, these numbers are difficult to compare. In experiments 1 and 2, a different data
set was used. The results of experiments 3 and 4, in which the database used was the
same, are better than the results obtained here (table 3.1 (a)). However, the data was
pre-processed and split differently and not randomised. Furthermore, the authors used
the Levenberg-Marquardt training algorithm [148], did not use early stopping, and do
not report how many repetitions of the experiments led to their results. Finally, they
used a different reject function: the total Euclidean distance between the actual output
vector of an ANN and the target vector.

3.3.4 Feature extraction

In appendix A, images of the LeCun, LeNet and LeNotre ANNs trained on the entire
training set are shown (in figures A.2, A.4 and A.6, respectively). Some feature maps
seem to perform operations similar to low-level image processing operators such as
edge detection. It is also noteworthy that the extracted features, the outputs of the last
subsampling layer, are nearly binary (either high or low). However, visual inspection
of the feature and subsampling masks in the trained shared weight ANNs in general
does not give much insight into the features extracted. In the next chapter, a number of
simpler problems will be studied in order to learn about the feature extraction process
in shared weight ANNs.

Here another approach is taken to investigate whether the shared weight ANNs extract
useful features: the features were used to train other classifiers. First, the three architec-
tures were cut halfway, after the last layer of feature maps or subsampling maps, so that
the first part could be viewed to perform feature extraction only. The original training,
testing and validation sets were then mapped onto the new feature space by using each
sample as input and finding the output of this first part of the ANN. This reduced the
number of features to 192 for the data sets generated by the LeCun and LeNet ANNs,
and 54 for those generated by the LeNotre ANN.

In the experiments, a number of classifiers were trained on these data sets: the nearest
mean linear classifier (nm), the Bayes plug-in linear and quadratic classifier (lc and qc)
and the 1-nearest neighbour classifier (1nn). For the Bayes plug-in classifiers, the es-
timate of the covariance matrix was regularised in the same way as before (3.1), using
r = s = 0.1. Figures 3.7 (a)-(c) show the results for the features extracted by the LeCun,
LeNet and LeNotre ANNs, respectively.

For one ANN, LeNet, it was found that some of the feature maps did not perform any
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(a) LeCun
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(b) LeNet
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Figure 3.7: Performance of various classifiers trained on data sets extracted from the feature
extraction parts of the (a) LeCun, (b) LeNet and (c) LeNotre ANNs. (d) Variance of
the output of the LeNet ANN’s last feature extraction layer over 10,000 samples.

function. Figure 3.7 (d) shows the variance over the data set extracted from the last
subsampling map layer of this ANN: for roughly 80 units, it is near zero. As discussed
in section 3.2.2, the LeNet ANN consists of a number of rather independent parts –
figure A.3 shows how any map never receives input from more than one other map.
In some of the parts, the weights have grown very high, pushing the summed input of
the units far into the nonlinear part of the transfer function, effectively disabling them.
Therefore, the aforementioned classifiers were trained on outputs with variance larger
than 1.0 × 10−6 only. This also explains why the LeNet ANN performed worse than
expected.
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In all cases the 1-nearest neighbour classifier performs better than the classification parts
of the ANNs themselves. The Bayes plug-in quadratic classifier performs nearly as
well as the ANNs (compare figure 3.5 (a) to figures 3.7 (a)-(c)). This is to be expected,
as for the shared weight ANNs the last layer, having only a small number of units,
cannot implement highly nonlinear classifiers. Interestingly, the LeCun ANN does not
seem to use its 30 unit hidden layer to implement a highly nonlinear classifier, as the
difference between this ANN’s performance and that of the Bayes plug-in quadratic
classifier is the same as for the shared weight ANNs lacking this hidden layer. Clearly,
for all shared weight ANNs, most of the work is performed in the shared weight layers;
after the feature extraction stage, a quadratic classifier suffices to give good classification
performance.

Most traditional classifiers trained on the features extracted by the shared weight ANNs
perform better than those trained on the original feature set (figure 3.5 (b)). This shows
that the feature extraction process has been useful. In all cases, the 1-nearest neighbour
classifier performs best, but only when it is trained on the features extracted by the
LeCun ANN is its performance (1.7% error for 1,000 samples/class, see figure 3.7 (a))
better than on the original data set (1.8% error, figure 3.5 (b)). On features extracted from
both other shared weight ANNs, performance never becomes better than that of the 1-
nearest neighbour classifier or the SVMs trained on the entire data set (figures 3.5 (b),
3.6).

3.3.5 Discussion

A number of shared weight ANN architectures were implemented and applied to a
handwritten digit recognition problem. Although some non-neural classifiers (such as
the 1-nearest neighbour classifier and some support vector classifiers) perform better,
they do so at a larger computational cost. However, standard feed-forward ANNs seem
to perform as well as the shared weight ANNs and require the same amount of com-
putation. The shared weight ANN results obtained were compared to those found in
the literature and seem to be slightly worse than the state-of-the-art. Differences in ex-
perimental setup partly explain these discrepancies. In the LeNet architecture, several
parts do not have a function after training; the variance in unit activitity is near zero.
The training parameters could probably be tuned to prevent this; however, this was not
attempted.

Unfortunately, it is very hard to judge visually what features the ANNs extract. How-
ever, the ANNs were also tested on their feature extraction behaviour, by using the
output of the last subsampling map layer as a new data set in training a number of
traditional classifiers. The ANNs indeed act well as feature extractors, as these classi-
fiers performed well. For the largest training set size (1000 samples/class), however,
performance was never better than on the original data set, except for the 1-nearest
neighbour classifier trained on features extracted by the LeCun ANN.
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3.4 Automatic target recognition

This section describes another application of shared weight ANNs, to automatic target
recognition (ATR, [25, 26]), in this case the task of recognising nearby tanks in infra-red
(IR) images. ANNs have, often successfully, been applied to target recognition prob-
lems (for overviews, see [299, 302]). In most of these problems, however, the ANNs are
rather dedicated to the task at hand. Several non-standard pre-processing or learning
techniques have been developed for these problems (e.g. [290]).

Here, the overall recognition strategy is based on the notion that vehicles include a row
of wheels; the ANNs are used as feature detectors to find these wheels. Although the
ANNs are trained on individual samples, they are used as nonlinear filters on entire
images. After feature detection, a search is performed for a row of wheels. The advant-
age of such an approach is the fact that, assuming that false alarms from the ANNs are
independent, any coincidental occurrence of a row of detections similar to a wheel row
pattern is not very likely, thus suppressing the number of false alarms. It is assumed
that the distance to the potential object is known (for example using radar, laser range
finder, passive range imaging, digital terrain models, etc.), which given a known IFOV
(Instantaneous Field Of View) provides the approximate scale parameter. This scale
parameter is used to compute the magnification to match the input of the ANN feature
detector. The procedure to search for a row of wheels is described in section 3.4.2.

In [120], an approach similar to this is reported, also utilising a shared weight ANN for
the recognition of vehicles in IR images. The difference between their work and this
lies in the fact that here the ANNs are used only as wheel feature detectors, whereas
Gader et al. attempt to find complete vehicles and use shared weight ANNs containing
morphological operations.

The remainder of this section will start with a discussion of the data set used, in sec-
tion 3.4.1. Although shared weight ANNs can be applied without any modification,
there is a major difference between standard classification problems and this particular
problem, in that rejection of unknown samples is of great importance. That is, it is a
form of one-class classification [79, 350]. This problem will be discussed in section 3.4.2.
The resulting system has been tested on scale dependency and sensitivity to clutter in
the background of images. Experimental results are given in section 3.4.3, showing that
the system performs adequately.

3.4.1 The data set

The data set consisted of a database of infrared (IR) images. 160 12-bit 1000× 240 images
were available, each of which depicts one vehicle under different rotations. 80 of these
images were taken in the 3 − 5µ range, the other 80 in the 8 − 12µ range, all using the
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(a)

(b) (c)

Figure 3.8: Example images: (a) A 3− 5µ IR image. Wheel sample bounding boxes are indicated.
Note that all 160 images contain a number of “hot plates”, which are included to
calibrate the cameras. These plates were masked out when testing the system. (b) A
clutter image taken with the UA-92 camera. (c) A clutter image taken with the TNO
Scorpio camera.

TNO-FEL DUDA-1 camera. Figure 3.8 (a) gives an example of an image. Three extra
images were used to test the sensitivity of the system to background clutter. Two of
these (512× 512 pixels) were taken with the 8− 12µ UA-92 camera; the other (512× 256)
was taken with the TNO Scorpio 8 − 12µ camera. Examples are given in figure 3.8
(b) and (c). Although the number of clutter images is rather low, the images used are
sufficient to get an idea of the clutter sensitivity. All images were then pre-processed
by converting to floating point images, subtracting the image mean and dividing the
result by two times the image standard deviation. Because the grey value distributions
usually were asymmetric, the conversion resulted in images containing values roughly
in the range [−1.0, 7.0].

In each image, samples of wheels were manually indicated by a bounding box. Note
that, since the images contained various vehicles with several orientations, there
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ANN 20 unit 10 unit No. of No. of No. of No. of
hidden layer RBF layer outputs units links weights

LeNotre 2 386 3556 194
LeNotreH • 2 406 5580 1206
LeNotreR • 1 395 4440 636
LeNotreRH • • 1 415 5920 1376

Table 3.2: The ANN architectures used in the ATR experiments. The basic LeNotre architecture
is shown in figure A.5 in appendix A. The other architectures contain either an added
RBF layer or an added hidden layer, or both. In the latter case, the hidden layer
precedes the RBF layer.

was quite some variation between samples and a large number of partially obscured
samples. Then, 25% of the images (40 images, containing 290 wheels in total) was
chosen at random and put aside to serve as a testing set. From the remaining 120 im-
ages, samples of wheels and background were extracted. Of each wheel in the image, a
16 × 16 pixel sample was created by extracting the image content in the bounding box
(preserving the aspect ratio) and rescaling using low-pass filtering and linear interpola-
tion. Note that in most of the images, the original wheel bounding box width fell in the
range 30-40 pixels, meaning the samples had to be scaled by a factor of 0.4-0.6.

Of each sample, a horizontally mirrored version was added to incorporate the prior
knowledge that recognition of wheels should be invariant under this transformation.
As a side effect, this (artificially) enlarged the training set, which helps in training the
ANNs. Furthermore, from each image a number of negative (i.e., non-wheel) samples
were extracted: background samples, samples taken between the wheel centres and
samples taken above or below the wheel centres. The latter two were added to force
the ANN to give precise localised responses on the wheel centres only. The size of
background samples was chosen to fall in the same range as the original size of the
foreground samples. Of the data set created in this way, 5 random splits into a training
set (83.3% of all samples) and a validation set (17.7%) were constructed. On average,
the training sets contained 1,494 wheel samples and 2153 background samples and the
validation sets 298 wheel samples and 431 background samples.

3.4.2 The vehicle detection algorithm

ANN feature detection

In the ATR experiments, the basic ANN architecture used was the LeNotre ANN (see
section 3.2.2). However, in the case of recognising (small) objects against noisy back-
grounds, it is important to use a form of rejection or outlier detection [350]. Many
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advanced approaches to incorporate outlier detection in ANNs have been proposed,
among which the use of special learning rules [249] which force ANNs to learn closed
decision boundaries and advanced forms of vector quantisation such as Adaptive Res-
onance Theory (or ART [40, 250]). In this work, two simpler solutions were tested.
The first is to add an output unit to the ANN which should represent all non-wheel
(background) samples. The second, more sensible approach is to use a form of vector
quantisation inside the ANN. The standard method of incorporating vector quantisa-
tion is to use a radial basis function layer. This layer contains units with a Gaussian
transfer function, localising their responses, of which the width σ and the position µ
are learned [148]. The advantage is that the response to wheel samples is automatically
local, so that far-away (non-wheel) samples will give low ouput. The main disadvant-
age is that the number of representative vectors has to be chosen in advance.

When an ANN is built with one hidden layer of RBF units, the result is a classifier that
is reminiscent of the Parzen estimator [85, 114] (although no actual density estimation
is performed). The output of that layer will be low in places where no data is expected
and high near data cluster centres, so one output unit can be used which should be high
for normal samples and low for background samples. Of course, one could also use
additional normal (i.e. sigmoid) hidden layers before the RBF layer, to pre-transform
the samples to a space of lower dimensionality.

In total, four variations of the LeNotre architecture were tested, with or without a 20
unit hidden layer and/or a 10 unit RBF layer. They are listed in table 3.2.

Wheel row detection

The output of the ANN is, for each pixel, a number representing the probability of the
presence of a wheel at that location. For further processing, a 5× 5 pixel maximum filter
was applied, after which these local maxima were thresholded using a threshold t. This
threshold can be found according to some criterion; for example, in such a way that no
false alarms are generated for clutter images.

For wheel row detection, the typical pattern of wheel detections has to be found, i.e.
the normal configuration of wheels on the vehicle. For the vehicles considered in this
application, the typical pattern is a set of wheels located on a line. This leads to a search
space in the shape of a wide rectangle. For the images considered, the observer was at
the same height as the object itself. This means that the rectangle always is oriented ho-
rizontally, independent of the orientation of the vehicle. Hence the search was executed
as a score boarding process: each detected wheel leads to a score within a rectangular
81× 9 area around it. A wheel row was detected if for a certain pixel a score higher than
or equal to 4 was obtained.

A different approach should be taken if the observer is not located in the plane ortho-
gonal to the rotation axis of the vehicle. In that case the row of wheels has a different
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Figure 3.9: The vehicle detection algorithm.

orientation in the image, depending on its rotation angle. This means that during the
detection phase, the score boarding rectangle will have to be applied for all rotation
angles. However, a finite set of representative rotations of this score boarding rectangle
will do. As a side effect, the false alarm rate will increase (as possibly more patterns are
erroneously identified as objects). Thus, any knowledge about possible rotation angles
should be incorporated in the algorithm to reduce the false alarm rate.

Figure 3.9 shows a schematic presentation of the entire recognition algorithm. Fig-
ure 3.10 shows some examples of processed images.

3.4.3 Experiments

Training

Of each of the ANN architectures listed in table 3.2, five instances were trained on dif-
ferently randomised and split data sets (as discussed in section 3.4.1). In all experi-
ments, the algorithm used was the conjugate gradient descent method [155, 323]. This
algorithm has no parameters. Training targets were set to 0.25 for background samples
and 0.75 for wheel samples; for the non-RBF ANNs, with two output units, place cod-
ing was used. The validation set was used to prevent overtraining, by stopping training
when the error on the validation set did not decrease for 50 cycles.

The ANNs were trained on isolated samples, but should be used to “scan” an image for
the presence of certain classes, i.e. as nonlinear filters. The input of the ANN feature
detectors will be the content of a window sliding over the input image; the result of
the filter will be an image. In this image, each pixel contains the probability of the
presence of the class represented by that unit at that location for one ANN evaluation.
Figures 3.10 (b) and (e) show examples of such filtered images.

In table 3.3 the results gathered during the ANN training phase are given. Note that



56 SHARED WEIGHT NETWORKS FOR OBJECT RECOGNITION

(a) (d)

(b) (e)

(c) (f)

(g) (h)

Figure 3.10: The recognition process for three images: an image containing wheels (a)-(c), an
image containing no wheels (d)-(f) and the clutter image of figure 3.8 (c) in (g)-(h).
The top row contains the original images, the second row contains the outputs of
an ANN (in this case, LeNotreH

2 ) and the third row images show the results of the
score boarding process. In all images, the grey value range has been stretched for
visualisation purposes. Note: for the evaluation of the sensitivity to background
clutter, the vehicles in the clutter image have been masked out.
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ANN Error Trial Min. Avg. Std.
on 1 2 3 4 5 on val. dev.

LeNotre Train 19.0 17.5 23.9 22.2 18.1 17.5 20.1 2.8
Valid. 20.0 18.5 26.3 22.6 19.9 18.5 21.5 3.1

LeNotreH Train • 16.6 • 20.6 • 15.8 20.3 • 24.5 15.8 19.6 3.5
Valid. 21.3 20.4 16.3 22.8 26.1 16.3 17.2 8.7

LeNotreR Train • 13.2 20.2 • 19.7 30.0 • 17.4 17.4 20.1 6.2
Valid. 18.1 22.8 22.1 31.0 17.7 17.7 22.3 5.4

LeNotreRH Train 40.6 40.9 • 23.9 • 22.5 • 21.1 23.9 29.8 10.0
Valid. 42.7 41.1 23.2 23.5 24.0 23.2 30.9 10.1

Table 3.3: Training results in % error on the training set. Only ANNs marked with “•” were
used in the subsequent testing phase; the other ANNs were judged to perform too
poorly to warrant further processing. The minimum errors are those for which the
error on the validation set was minimal.

the errors given in this table are not test errors and that anomalies may occur due to
the rather arbitrary way of measurement. Performance was measured as follows. For a
sample to be considered correctly classified,

• for non-RBF ANNs (having background as an extra class), the output unit repres-
enting the wheel class should be highest;

• for RBF ANNs, the output of the ANN should be larger than 0.5 for a wheel
sample, whereas for a background sample it should be smaller than 0.5.

This means that during training the RBF ANNs, 0.5 is used as a rejection threshold. This
need not be the optimal choice; however, the optimal threshold can only be found after
training. The error percentage can at least be used for comparison between training
sessions, RBF ANN architectures and data sets.

It is evident that results are quite erratic: for different trials, very different performances
are reached. There are two possible reasons:

• the different splitting of the data into a training and validation set for the five in-
stances, which would indicate that there is not enough training data for the ANN
to generalise upon;

• the difficulty of the problem easily leads the ANNs into local minima, depending
on the weight initialisation.

Testing the ANNs proved to be highly time-consuming, as each ANN was tested on
40 test images at a large range of scales. To restrict the number of testing runs, only
ANNs whose performance was visually judged to be reasonable were considered for
further processing. These ANNs are indicated by a “•” in table 3.3. Note that none of
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Figure 3.11: Detection performance for LeNotreH
2 using tlm = 0.67: (a) Number of detected pat-

terns versus scale; a scale of 1.0 means the scale of the original image (recall that
most samples were scaled with factors between 0.4 and 0.6, see section 3.4.1). Over
a relatively large range (0.3-0.7) the number is larger than 4, meaning a vehicle will
be detected, and relatively stable. (b) Number of detected patterns around the cor-
rect scale; here a scale of 1.0 means the image scaled with the average factor used
when the wheel samples were extracted (i.e. the wheels have the same size as those
used to train the ANN). Both graphs indicate the average number of patterns detec-
ted over all 40 test images; the bars indicate the standard deviation.

the standard LeNotre ANNs were tested; these were all deemed to perform too poorly
to be of any further interest.

Performance and scale sensitivity

Figure 3.11 shows the detection performance, using the wheel row detection algorithm,
of LeNotreH

2 . This was the best performing ANN, but other ANNs gave similar results.
Figure 3.11 (a) indicates for threshold t = 0.67, for a number of scales, the average num-
ber of detected patterns in the 81 × 9-pixel search area. The 0.67 threshold was found
to be optimal for LeNotreH

2 : it was the highest threshold which gave no false alarms on
the three clutter images. Note that this threshold need not be optimal for all ANNs –
see table 3.4 for an overview. Figure 3.11 (b) shows the performance around the optimal
scale, that is the scale for which the wheels in the image have on average the same size as
was used to train LeNotreH

2 , 16× 16 pixels. It clearly shows a peak around the optimal
scale. However, taking into account the imprecision in the range finding procedure and
the errors made when the bounding boxes were indicated in the data set, it is unlikely
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ANN Threshold Vehicles ANN Threshold Vehicles
detected detected

LeNotreH
1 0.86 23% LeNotreR

3 0.75 35%
LeNotreH

2 0.67 83% LeNotreR
5 0.71 59%

LeNotreH
3 0.72 60% LeNotreRH

3 0.76 9%
LeNotreH

5 0.76 14% LeNotreRH
4 0.74 40%

LeNotreR
1 0.79 35% LeNotreRH

5 0.71 49%

Table 3.4: The maximum threshold for each ANN for which no false alarm was found in the clut-
ter images and the corresponding percentage detected of the total number of vehicles.

that one will be able to calculate this optimal scale with enough precision.

If four or more patterns are detected (the dotted line in figure 3.11), the conclusion is that
a vehicle is present in the images. The graphs have been somewhat smoothed (using
bins of 0.025) to present the results clearly. The figures show that, to a certain extent, the
number of detected patterns per unit area is constant and independent of the scale. Only
for very small scales this does not hold: the number of detected patterns drops below
4 and consequently no vehicle is detected. This means that tests on clutter images will
not have to be performed on an entire range of scales, since a single scale gives a good
indication for the rest of the range. Another conclusion is that the ANN feature detector
does not only detect wheels; otherwise, one would expect at most 19 (and probably less)
detected patterns, since that is the maximum number of wheels present in a test image.

Sensitivity to background clutter

To test the sensitivity of the system to background clutter, it was tested on three clutter
images, i.e. images in which the vehicles were masked out. Figure 3.12 shows receiver-
operator curves for each ANN. Note that, since there were only 3 clutter images, only 3
levels of false alarm are possible. However, the trend should be clear.

A problem with the evaluation of clutter images was the normalisation step. Recall
that each image was normalised by subtracting its mean and dividing by two times its
standard deviation (section 3.4.1). Since images containing vehicles have a small num-
ber of pixels with relatively high values, this results in a very non-symmetric grey-value
distribution. In clutter-images however, the result is quite symmetric and the resulting
normalised image has a lower maximum grey-value than an image containing a vehicle.
To investigate to what extent the ANNs simply respond to image intensity variation,
one ANN (LeNotreH

2 ) was tested on the clutter-images for various levels of intensity
multiplication. Figure 3.12 (d) shows that for small multiplications, performance re-
mains good. For large multiplications however (larger than two), performance drops to
a point where the system begins to produce a large number of false alarms. Although
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this is undesirable, this may not be a problem as long as the condition is met that the
vehicle to be recognised has a relatively high intensity compared to its surroundings.

3.4.4 Discussion

A system was described for detection of vehicles in IR imagery. Using shared weight
ANNs as feature detectors, a simple post-processing step incorporated the prior know-
ledge that an image of a vehicle should contain four or more wheels on a single line.
The system performs reasonably well. Comparison to other methods is hard, as there is
no standard data set for ATR in IR images. Gader et al. [120] claim good results using
their shared weight ANN approach, but do not test their system for sensitivity to clutter
or scale.

The hypothesis that some form of rejection would be necessary was disproved by the
experiments, since ANNs with an RBF layer did not perform significantly better than
the other systems. Only in the case without an added hidden layer did the addition
of an RBF layer contribute something. Also, the addition of an RBF layer to an ANN
having an extra hidden layer does not seem to contribute anything. This can be the
result of these ANNs being complex enough to solve the problem as well as possible,
but is more likely to be caused by the data set size being insufficient to train these more
complex ANNs. The fact that various trained instances of one ANN architecture show
great variation in performance also points in this direction.

The ANNs have been tested on sensitivity to scale and seem to be sensitive to differences
in small areas around the right scale, yet give responses over a large range of scales.
Clutter sensitivity seems to be reasonable on the three images used. With the best ANN,
LeNotreH

2 , it is possible to reach a 0% false alarm rate and still recognise 83% of the
vehicles present in the testing set.

To improve performance, several steps could be taken:

• significantly enlarge the training set;

• optimise the number of hidden units and/or radial basis units;

• train a bank of ANNs on different types of wheels, or other vehicle features such
as windshields or tank barrels, and aggregate their output;

• employ a more intelligent post-processing step.

Visual inspection of the trained ANNs (not shown here) to investigate their feature ex-
traction behaviour again revealed little. In fact, as the signal-to-noise ratio of the images
used in training these ANNs is much lower than it was for the handwritten digit images,
very little can be deduced from the processing of the input by the feature map layer.
Gader et al. [120] inspected trained feature maps and claimed they were “... suggestive



3.5 CONCLUSIONS 61

of a diagonal edge detector with a somewhat weak response” and “... of a strong hori-
zontal edge detector with some ability to detect corners as well”; however, these maps
can be interpreted to perform any of a number of image processing primitives.

3.5 Conclusions

In this chapter, shared weight ANNs were introduced and applied to two real-world
problems. Although the applications showed they can be successfully applied to a
range of problems and make good feature extraction mechanisms, very little could yet
be learned about the way they function, i.e. what actually makes them good feature
extractors.

To gain a better understanding, either the problem will have to be simplified, or the goal
of classification will have to be changed. The first idea will be worked out in the next
chapter, in which simplified shared weight ANNs will be applied to toy problems. The
second idea will be discussed in chapters 5 and 6, in which feed-forward ANNs will be
applied to image restoration (regression) instead of feature extraction (classification).
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Figure 3.12: (a)-(c) Receiver-operator curves (ROCs) as a function of threshold t for each ANN
architecture. (d) Receiver-operator curves for LeNotreH

2 as a function of threshold t,
for various intensity multiplication factors of the background clutter.



4

FEATURE EXTRACTION IN SHARED
WEIGHT NETWORKS

4.1 Introduction

This chapter investigates whether ANNs, in particular shared weight ANNs, are cap-
able of extracting “good” features from training data. In the previous chapter the cri-
terion for deciding whether features were good was whether traditional classifiers per-
formed better on features extracted by ANNs. Here, the question is whether sense can
be made of the extracted features by interpretation of the weight sets found. There is
not much literature on this subject, as authors tend to research the way in which ANNs
work from their own point of view, as tools to solve specific problems. Gorman and
Sejnowski [133] inspect what kind of features are extracted in an ANN trained to recog-
nise sonar profiles. Various other authors have inspected the use of ANNs as feature
extraction and selection tools, e.g. [99, 319], compared ANN performance to known
image processing techniques [57] or examined decision regions [238]. Some effort has
also been invested in extracting (symbolic) rules from trained ANNs [318, 354] and in
investigating the biological plausibility of ANNs (e.g. [363]).

An important subject in the experiments presented in this chapter will be the influ-
ence of various design and training choices on the performance and feature extraction
capabilities of shared weight ANNs. The handwritten digit and vehicle recognition ex-
periments showed that, although the ANNs performed well, the complexity of both the
ANN and the data set made visual inspection of trained ANNs impossible. For inter-
pretation therefore it is necessary to bring both data set and ANN complexity down
to a bare minimum. Of course, many simple problems can be created [68]; here, two
classification problems will be discussed.

In section 4.2, the first problem studied will be that of edge recognition. A data set was
constructed containing both edges of varying slopes and uniform regions. First, an op-
timal architecture and weight set is calculated, based on the Laplacian edge detector.
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Figure 4.1: (a) The edge samples in the edge data set. (b) The Laplacian edge detector. (c) The
magnitude of the frequency response of the Laplacian edge detector.

Next, a set of ANN architectures will be trained. In this set the amount of prior know-
ledge on the problem will be gradually increased and the operation of each ANN will
be compared to the hand-crafted solution.

One of the conclusions will be that the artificial nature of the data set causes problems.
Therefore, in section 4.3, the second problem discussed will be that of classifying a sub-
set of the NIST database consisting of 10 samples of digit “1” and 10 samples of digit
“7”. Here, one of the goals is to use more than one receptive field and see which fea-
tures are extracted by the various receptive fields. A new training algorithm will be
introduced in section 4.4 which can aid in interpretation of weight sets.

Finally, section 4.5 will draw some conclusions.

4.2 Edge recognition

In this section, the problem of edge recognition is treated as a classification problem:
the goal is to train an ANN to give high output for samples containing edges and low
output for samples containing uniform regions. This makes it different from edge de-
tection, in which localisation of the edge in the sample is important as well. A data set
was constructed by drawing edges at 0◦, 15◦, . . . , 345◦ angles in a 256× 256 pixel binary
image. These images were rescaled to 16 × 16 pixels using bilinear interpolation. The
pixel values were -1 for background and +1 for the foreground pixels; near the edges,
intermediate values occurred due to the interpolation. In total, 24 edge images were cre-
ated. An equal number of images just containing uniform regions of background (−1)
or foreground (+1) pixels were then added, giving a total of 48 samples. Figure 4.1 (a)
shows the edge samples in the data set.

The goal of this experiment is not to build an edge recogniser performing better than the
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Hidden layer (p)
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Figure 4.2: A sufficient ANN architecture for edge recognition. Weights and biases for hidden
units are indicated by wpo and bp respectively. These are the same for each unit. Each
connection between the hidden layer and the output layer has the same weight wqp

and the output unit has a bias bq. Below the ANN, the image processing operation
is shown: convolution with the Laplacian template fL, pixel-wise application of the
sigmoid f (.), (weighted) summation and another application of the sigmoid.

traditional methods; it is to study how an ANN performs edge recognition. Therefore,
first a theoretically optimal ANN architecture and weight set will be derived, based on a
traditional image processing approach. Next, starting from this architecture, a series of
ANNs with an increasing number of restrictions will be trained, based on experimental
observations. In each trained ANN, the weights will be investigated and compared to
the calculated optimal set.

4.2.1 A sufficient network architecture

To implement edge recognition in a shared weight ANN, it should consist of at least 3
layers (including the input layer). The input layer contains 16 × 16 units. The 14 × 14
unit hidden layer will be connected to the input layer through a 3× 3 weight receptive
field, which should function as an edge recognition template. The hidden layer should
then, using bias, shift the high output of a detected edge into the nonlinear part of the
transfer function, as a means of thresholding. Finally, a single output unit is needed
to sum all outputs of the hidden layer and rescale to the desired training targets. The
architecture described here is depicted in figure 4.2.

This approach consists of two different subtasks. First, the image is convolved with a
template (or filter) which should give some high output values when an edge is present



66 FEATURE EXTRACTION IN SHARED WEIGHT NETWORKS

and low output values overall for uniform regions. Second, the output of this opera-
tion is (soft-)thresholded and summed, which is a nonlinear neighbourhood operation. A
simple summation of the convolved image (which can easily be implemented in a feed-
forward ANN) will not do. Since convolution is a linear operation, for any template
the sum of a convolved image will be equal to the sum of the input image multiplied
by the sum of the template. This means that classification would be based on just the
sum of the inputs, which (given the presence of both uniform background and uniform
foreground samples, with sums smaller and larger than the sum of an edge image) is
not possible. The data set was constructed like this on purpose, to prevent the ANN
from finding trivial solutions.

As the goal is to detect edges irrespective of their orientation, a rotation-invariant edge
detector template is needed. The first order edge detectors known from image pro-
cessing literature [282, 385] cannot be combined into one linear rotation-invariant de-
tector. However, the second order Laplacian edge detector can be. The continuous
Laplacian,

fL(I) =
∂2 I
∂x2 +

∂2 I
∂y2 (4.1)

can be approximated by the discrete linear detector shown in figure 4.1 (b). It is a
high-pass filter with a frequency response as shown in figure 4.1 (c). Note that in well-
sampled images only frequencies between −π

2 and π
2 can be expected to occur, so the

filters behaviour outside this range is not critical. The resulting image processing oper-
ation is shown below the ANN in figure 4.2.

Using the Laplacian template, it is possible to calculate an optimal set of weights for this
ANN. Suppose the architecture just described is used, with double sigmoid transfer
functions (eqn. 2.4). Reasonable choices for the training targets then are t = 0.5 for
samples containing an edge and t = −0.5 for samples containing uniform regions. Let
the 3× 3 weight matrix (wpo in figure 4.2) be set to the values specified by the Laplacian
filter in figure 4.1 (b). Each element of the bias vector of the units in the hidden layer,
bp, can be set to e.g. bp

opt = 1.0.

Given these weight settings, optimal values for the remaining weights can be calculated.
Note that since the DC component1 of the Laplacian filter is zero, the input to the hidden
units for samples containing uniform regions will be just the bias, 1.0. As there are
14 × 14 units in the hidden layer, each having an output of f (1) ≈ 0.4621, the sum of
all outputs Op will be approximately 196 · 0.4621 = 90.5750. Here f (·) is the double
sigmoid transfer function introduced earlier (eqn. 2.4).

1The response of the filter at frequency 0, or equivalently, the scaling in average pixel value in the
output image introduced by the filter.



4.2 EDGE RECOGNITION 67

For images that do contain edges, the input to the hidden layer will look like this:

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⊗
0 1 0
1 -4 1
0 1 0

=

0 0 0 0
2 2 2 2

-2 -2 -2 -2
0 0 0 0

(4.2)

There are 14× 14 = 196 units in the hidden layer. Therefore, the sum of the output Op

of that layer for a horizontal edge will be:

∑
i

Op
i = 14 f (2 + bp

opt) + 14 f (−2 + bp
opt) + 168 f (bp

opt)

= 14 f (3) + 14 f (−1) + 168 f (1)
≈ 14 · 0.9051 + 14 · (−0.4621) + 168 · 0.4621 = 82.0278 (4.3)

These values can be used to find the wqp
opt and bq

opt necessary to reach the targets. Using
the inverse of the transfer function,

f (x) =
2

1 + e−x − 1 = a ⇒ f−1(a) = ln
(

1 + a
1− a

)
= x, a ∈ 〈−1, 1〉 (4.4)

the input to the output unit, Iq = ∑i Op
i wqp

i + bq = ∑i Op
i wqp

opt + bq
opt = 0, should be

equal to f−1(t), i.e.:

edge: t = 0.5 ⇒ Iq = 1.0986
uniform: t = −0.5 ⇒ Iq = −1.0986. (4.5)

This gives:

edge: 82.0278 wqp
opt + bq

opt = 1.0986

uniform: 90.5750 wqp
opt + bq

opt = −1.0986. (4.6)

Solving these equations gives wqp
opt = −0.2571 and bq

opt = 22.1880.

Note that the bias needed for the output unit is quite high, i.e. far away from the usual
weight initialisation range. However, the values calculated here are all interdependent.
For example, choosing lower values for wpo and bp

opt will lead to lower required values
for wqp

opt and bq
opt. This means there is not one single optimal weight set for this ANN

architecture, but a range.

4.2.2 Training

Starting from the architecture described in section 4.2.1, a number of ANNs were trained
on the data set discussed in section 4.2. The weights and biases of each of these ANNs
can be compared to the optimal set of parameters calculated above.
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An important observation in all experiments was that as more restrictions were placed
on the architecture, it became harder to train. Therefore, in all experiments the con-
jugate gradient descent (CGD, [148, 323]) training algorithm was used. This algorithm
is less prone to finding local minima or diverging than back-propagation, as it uses a
line minimisation technique to find the optimal step size in each iteration. The method
has only one parameter, the number of iterations for which the directions should be
kept conjugate to the previous ones. In all experiments, this was set to 10. The CGD
algorithm will be discussed in more detail in section 4.4.

Note that the property that makes CGD a good algorithm for avoiding local minima
also makes it less fit for ANN interpretation. Standard gradient descent algorithms,
such as back-propagation, will take small steps through the error landscape, updat-
ing each weight proportionally to its magnitude. CGD, due to the line minimisation
involved, can take much larger steps. In general, the danger is overtraining: instead
of finding templates or feature detectors that are generally applicable, the weights are
adapted too much to the training set at hand. In principle, overtraining could be pre-
vented by using a validation set, as was done in chapter 3. However, here the interest is
in what feature detectors are derived from the training set rather than obtaining good
generalisation. The goal actually is to adapt to the training data as well as possible. Fur-
thermore, the artificial edge data set was constructed specifically to contain all possible
edge orientations, so overtraining cannot occur. Therefore, no validation set was used.

All weights and biases were initialised by setting them to a fixed value of 0.01, except
where indicated otherwise2. Although one could argue that random initialisation might
lead to better results, for interpretation purposes it is best to initialise the weights with
small, equal values.

ANN1: The sufficient architecture

The first ANN used the shared weight mechanism to find wpo. The biases of the hidden
layer, bp, and the weights between hidden and output layer, wqp, were not shared. Note
that this ANN already is restricted, as receptive fields are used for the hidden layer
instead of full connectivity. However, interpreting weight sets of unrestricted, fully
connected ANNs is quite hard due to the excessive number of weights – there would be
a total of 50,569 weights and biases in such an ANN.

Training this first ANN did not present any problem; the MSE quickly dropped, to
1 × 10−7 after 200 training cycles. However, the template weight set found – shown
in figures 4.3 (a) and (b) – does not correspond to a Laplacian filter, but rather to a
directed edge detector. The detector does have a zero DC component. Noticeable is
the information stored in the bias weights of the hidden layer bp (figure 4.3 (c)) and the

2Fixed initialisation is possible here because units are not fully connected. In fully connected ANNs,
fixed value initialisation would result in all weights staying equal throughout training.
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Figure 4.3: (a) The template and (b) the magnitude of its frequency response, (c) hidden layer
bias weights and (c) weights between the hidden layer and output layer, as found in
ANN1.
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Figure 4.4: Stages in ANN1 processing, for three different input samples: (a) the input sample;
(b) the input convolved with the template; (c) the total input to the hidden layer,
including bias; (d) the output of the hidden layer and (e) the output of the hidden
layer multiplied by the weights between hidden and output layer.
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weights between the hidden layer and the output layer, wqp (figure 4.3 (d)). Note that in
figure 4.3 and other figures in this chapter, individual weight values are plotted as grey
values. This facilitates interpretation of weight sets as feature detectors. Presentation
using grey values is similar to the use of Hinton diagrams [153].

Inspection showed how this ANN solved the problem. In figure 4.4, the different pro-
cessing steps in ANN classification are shown in detail for three input samples (fig-
ure 4.4 (a)). First, the input sample is convolved with the template (figure 4.4 (b)). This
gives pixels on and around edges high values, i.e. highly negative (-10.0) or highly
positive (+10.0). After addition of the hidden layer bias (figure 4.4 (c)), these values
dominate the output. In contrast, for uniform regions the bias itself is the only input
of the hidden hidden layer units, with values approximately in the range [−1, 1]. The
result of application of the transfer function (figure 4.4 (d)) is that edges are widened,
i.e. they become bars of pixels with values +1.0 or -1.0. For uniform regions, the output
contains just the two pixels diagonally opposite at the centre, with significantly smaller
values.

The most important region in these outputs is the centre. Multiplying this region by
the diagonal +/- weights in the centre and summing gives a very small input to the
output unit (figure 4.4 (e)); in other words, the weights cancel the input. In contrast, as
the diagonal -/+ pair of pixels obtained for uniform samples is multiplied by a diagonal
pair of weights of the opposite sign, the input to the output unit will be negative. Finally,
the bias of the output unit (not shown) shifts the input in order to obtain the desired
target values t = 0.5 and t = −0.5.

This analysis shows that the weight set found is quite different from the optimal one
calculated in section 4.2.1. As all edges pass through the centre of the image, the edge
detector need not be translation-invariant: information on where edges occur is coded
in both the hidden layer bias and the weights between the hidden layer and the output
layer.

ANN2: Sharing more weights

To prevent the ANN from coding place-specific information in biases and weights, the
architecture will have to be simplified further. As a restriction, in the next ANN architec-
ture the weights between the hidden layer and output layer were shared. That is, there
was one single weight shared among all 196 connections between the hidden units and
the output unit. Training took more time, but still converged to a 1 × 10−6 MSE after
2,400 cycles. Still, the network does not find a Laplacian; however, the template found
(figure 4.5 (a) and (b)) has a more clear function than the one found before. It is a strong
detector for edges with slope −45◦, and a weak detector for edges with slope 45◦.

In the bias weights of the hidden layer (figure 4.5 (c)), place-specific information is now
stored for edges which are not amplified well by this detector. Bias weight values are
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Figure 4.5: (a) The template, (b) the magnitude of its frequency response and (b) hidden layer
bias weights as found in ANN2.

also significantly higher than before (an average of -1.2144). This allows the ANN to
use the transfer function as a threshold operation, by scaling large positive pixel values
differently from large negative pixel values. In conclusion, responsibility for edge re-
cognition is now shared between the template and the bias weights of the hidden layer.

ANN3: Sharing bias

As the biases of hidden layer units are still used for storing place-dependent inform-
ation, in the next architecture these biases were shared too3. Training became even
harder; the ANN would not converge using the initialisation used before, so weights
were initialised to a fixed value of 0.1. After 1,000 episodes, the MSE reached 8× 10−4,
just slightly higher than the minimal error possible (at 3 × 10−4, larger than zero due
to the interpolation used in scaling the edge samples). The template found is shown in
figures 4.6 (a) and (b).

Note that the template now looks like a Laplacian edge detector; its frequency response
is similar to that of the Laplacian in the range

[
−π

2 , π
2

]
. However, there are still small dif-

ferences between various weights which are equal in the true Laplacian. In fact, the filter
seems to be slightly tilted, with the top left corner containing weights with higher mag-
nitude. Also, the frequency response shows that the filter gives a bandpass response in
diagonal directions. To obtain a more Laplacian-like template, further restrictions will
have to be placed on the ANN.

ANN4: Enforcing symmetry

In the last ANN, the prior knowledge that the goal is to obtain a rotation-invariant filter
was used as well, by sharing weights in the filter itself. The mask used for this purpose

3Sharing biases would have required a major rewrite of the simulation package used,
SPRLIB/ANNLIB [155]. Therefore, biases were shared by replacing all biases by their average after each
training cycle.
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Figure 4.6: (a) The template found in ANN3 and (b) the magnitude of its frequency response. (c)
The template found in ANN4 and (d) the magnitude of its frequency response.

was:
A B A
B C B
A B A

(4.7)

i.e. connections with identical mask letters used shared weights. Note that in this ANN
there are only 6 free parameters left: the three weights in the mask, a bias weight for
both the hidden and output layer and one weight between the hidden and output layer.

Training was again more cumbersome, but after initialising weights with a fixed value
of 0.1 the ANN converged after 1,000 episodes to an MSE of 3 × 10−4. The filter found
is shown in figures 4.6 (c) and (d). Finally, a solution similar to the optimal one was
found: its frequency response is like that of the Laplacian in the range

[
−π

2 , π
2

]
and the

weights are symmetric.

4.2.3 Discussion

The experiments described in this section show that ANNs can be used as edge de-
tectors. However, the presence of receptive fields in the architecture in itself does
not guarantee that shift-invariant feature detectors will be found, as claimed by
some [208, 209, 364]. Also, the mere fact that performance is good (i.e., the MSE is
low) does not imply that such a feature extraction process is used. An important ob-
servation in ANN1 and ANN2 was that the ANN will use weights and biases in later
layers to store place-dependent information. In such a network, where edge positions
are stored, in principle any template will suffice. Obviously, this makes interpretation
of these templates dubious: different observers may find the ANN has learned different
templates.

One reason for the ease with which ANNs store place-dependent information might be
the relative simplicity of the dataset: the fact that edges all passed through the centre
of the image makes this possible. Therefore, in the next section similar ANNs will be
trained on a real-world dataset.
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When the ANNs were further restricted by sharing biases and other weights (ANN3),
convergence became a problem. The explanation for this is that the optimal weight set is
rather special in ANN terms, as the template has to have a zero DC component (i.e., its
weights have to add up to zero). Although this seems to be a trivial demand, it has quite
large consequences for ANN training. Optimal solutions correspond to a range of inter-
dependent weights, which will result in long, narrow valleys in the MSE “landscape”.
A small perturbation in one of the template weights will have large consequences for
the MSE. Simple gradient descent algorithms such as back-propagation will fail to find
these valleys, so the line-optimisation step used by CGD becomes crucial.

The last ANN, ANN4, was able to find an edge detector very similar to the Laplacian.
However, this architecture was restricted to such an extent that it can hardly be seen
as representative for practical application of ANNs. This indicates there is a trade-off
between complexity and the extent to which experiments are true-to-life on the one
hand, and the possibility of interpretation on the other. This effect might be referred to
as a kind of ANN interpretability trade-off4. If an unrestricted ANN is trained on a real-
world data set, the setup most closely resembles the application of ANNs in everyday
practice. However, the subtleties of the data set and the many degrees of freedom in
the ANN prevent gaining a deeper insight into the operation of the ANN. On the other
side, once an ANN is restrained, e.g. by sharing or removing weights, lowering the
number of degrees of freedom or constructing architectures only specifically applicable
to the problem at hand, the situation is no longer a typical one. The ANN may even
become too constrained to learn the task at hand. The same holds for editing a data
set to influence its statistics or to enhance more preferable features with regard to ANN
training, which will be discussed in chapter 6.

4.3 Two-class handwritten digit classification

The experiments described in this section address the problem raised in section 4.2.3,
i.e. that the data set used in the previous experiments may have been too simple. To
construct a more real-life dataset while still maintaining the expectation that weights
can be interpreted, a small NIST subset was used. This subset consisted of 10 samples
each of the classes “1” and “7”, shown in figure 4.7. The 16× 16 pixel values were scaled
linearly between −1.0 (background) and 1.0 (foreground). Training targets were set to
t = 0.5 for class “1” and t = −0.5 for class “7”.

For this problem, it is already impossible to find an architecture and weight set by hand
which will give minimal error. The receptive fields in the ANNs are expected to act as

4Note that this is not precisely the same issue as addressed by the bias-variance trade-off (see page 12),
which is concerned with the relation between model complexity and error. The concern here is with the
specificity of the model with respect to interpretation which, in principle, is unrelated to complexity:
making a model more specific need not introduce a bias.
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Figure 4.7: The two-class handwritten digit data set.

feature detectors, extracting characteristic shapes from the data. Beforehand, it is quite
hard to indicate by hand which weight sets will detect the most salient features. How-
ever, as the width of the strokes in the digit images lies in the range 3− 5 pixels, feature
detectors should have widths and heights roughly in the range 3− 7 pixels.

The starting point therefore will be the ANN used for edge recognition, shown in fig-
ure 4.2. However, three different architectures will be used. The first has a 3 × 3 pixel
receptive field and 14× 14 = 196 units in the hidden layer, the second contains a 5× 5
pixel receptive field and 12× 12 = 144 hidden units and the last contains a 7 × 7 pixel
receptive field and 10 × 10 = 100 hidden units. As for this data set it is to be expected
that using more than one feature map will increase performance, architectures using
two feature maps were trained as well. In this case, the number of hidden units doubles.

4.3.1 Training

Most ANNs were rather hard to train, again due to the restrictions placed on the archi-
tecture. CGD was used with 10 steps during which directions were kept conjugate. All
ANN weights and biases were initialised using a fixed value of 0.01, except where indic-
ated otherwise. For most restricted architectures, reaching an MSE of exactly 0 proved
to be impossible. Therefore, training was stopped when the MSE reached a sufficiently
low value, 1.0× 10−6.

ANN1: Unrestricted

The first ANNs were identical to the one shown in figure 4.2, except for the fact that
three different ANNs were trained with 3 × 3 (ANN3×3

1 ), 5 × 5 (ANN5×5
1 ) and 7 × 7

(ANN7×7
1 ) pixel receptive fields, respectively. These ANNs quickly converged to a

nearly zero MSE: after 250 training cycles, the MSE was in the order of 1 × 10−10. The
feature detectors found, shown in figure 4.8 (a), are not very clear however. The fre-
quency responses (figure 4.8 (b)) give more information. The filters most closely re-
semble horizontal edge detectors: note the basic shape returning for the three sizes of
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Figure 4.8: (a) Feature detectors found in the receptive fields of ANN3×3
1 , ANN5×5

1 and ANN7×7
1 .

(b) The corresponding frequency response magnitudes. (c) Weights between hidden
layer and output layer.
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feature detector.

As was the case in the edge recognition ANNs, the weights between the hidden layer
and the output unit have been used to store positions of the digits. Figure 4.8 (c)
illustrates this. Positive weights indicate pixel positions where typically only class
“7” samples have high values; negative weights indicate positions where class “1” is
present. Although noisy, these same basic shapes are present for each size of the recept-
ive field.

In contrast to what was found for the edge recognition ANNs, the bias weights
in the second layer were not used heavily. Bias values fell roughly in the range[
−2× 10−2, 2× 10−2], i.e. negligible in comparison to feature detector weight values.

ANN2: Fully restricted

In the next architecture, the number of weights was restricted by sharing weights
between hidden layer and output layer and by sharing the bias weights in the second
layer (i.e., the basic architecture was the same as ANN3 for edge recognition, on
page 71). As a consequence, there were far fewer parameters left in the ANNs: the
number of weights in the feature detector plus two biases and one weight between hid-
den and output layer.

Training became quite a bit harder. It did not converge for the ANN with the 3× 3 pixel
receptive field; the MSE oscillated around 1.5× 10−2. For the other two ANNs, training
was stopped when the MSE fell below 1 × 10−6, which took 2000 cycles for the 5 × 5
pixel receptive field ANN and 1450 cycles for the 7× 7 pixel receptive field ANN.

The feature detectors found are shown in figure 4.9. Note that since the 3× 3 receptive
field ANN did not converge, the resulting filter cannot be interpreted. Since the weights
between hidden layer and output layer can no longer be used, the feature detectors of
the other two look rather different. The 5 × 5 pixel feature detector is the most pro-
nounced: it is a detector of 3-pixel wide bars with a slope of 45◦. Evidence for this can
also be found by inspecting the output of the hidden layer for various inputs, as shown
in figure 4.10. In the location of the stem of the “7”s, output values are much higher
than those in the location of the stem of the “1”s. Finally, the function of the 7× 7 pixel
feature detector is unclear.

From these results, it is clear that a feature detector size of 3 × 3 pixels is too small.
On the other hand, although the 7 × 7 pixel feature detectors gives good performance,
they cannot be interpreted well. The 5 × 5 pixel feature detector seems to be optimal.
Therefore, from here on only 5× 5 pixel feature detectors will be considered.
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Figure 4.9: (a) The feature detectors found in the receptive fields of ANN3×3
2 , ANN5×5

2 and
ANN7×7

2 . (b) The corresponding frequency response magnitudes.
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A
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w
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Hidden layer (p) Output layer (q)Input layer (o)
16 x 16 2 @ 12 x 12 1

Figure 4.11: ANN5×5
3 , with two 5 × 5 pixel feature detectors. Biases and weights between the

hidden layer and output layer have not been indicated.

ANN3: Two feature maps

Although the frequency response of the 5 × 5 pixel feature detector is clearer than the
others, the filter itself is still noisy, i.e. neighbouring weights have quite different values.
There is no clear global feature (within a 5 × 5 pixel region) that corresponds to this
detector. The reason for this might be that in fact several features are detected (either
amplified or attenuated) using this one set of weights. Therefore, ANN3 contained two
feature maps instead of one. In all other respects, the ANN was the same as ANN2, as
shown in figure 4.11.

If this ANN is initialised using a fixed value, the two feature detectors will always re-
main identical, as each corresponding weight in the two detectors is equally responsible
for the error the ANN makes. Therefore, random initialisation is necessary. This frus-
trates interpretation, as different initialisations will lead to different final weight sets.
To illustrate this, four ANNs were trained in which weights were initialised using val-
ues drawn from a uniform distribution with range [−0.01, 0.01]. Figure 4.12 shows four
resulting template pairs. The feature detector found before in ANN5×5

2 (figure 4.9) often
returns as one of the two feature maps. The other feature detector however shows far
more variation. The instantiation in the second row of figure 4.12 (b) looks like the ho-
rizontal edge detector found in ANN1 (figures 4.8 (a), (b)), especially when looking at
its frequency response (in the fourth column). However, in other ANNs this shape does
not return. The first and fourth ANN indicate that actually multiple feature detectors
may be distributed over the two feature maps.
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Figure 4.12: Feature detector pairs found in ANN3, for four different random weight initialisa-
tions ((a)-(d)).
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To allow inspection of weights, initialisation with fixed values seems to be a prerequis-
ite. To allow this, the training algorithm itself should allow initially identical weights
to take on different values during training. The next section will introduce a training
algorithm developed specifically for training ANNs with the goal of weight interpreta-
tion.

4.4 Decorrelating conjugate gradient descent

The last experiment on the NIST subset showed that interpretation of ANNs with mul-
tiple feature detectors is difficult. The main causes are the random weight initialisation
required and a tendency of the ANNs to distribute features to be detected in a non-
obvious way over receptive fields. To address the latter problem, hidden units learning
identical functions, a modular approach has been suggested [180]. However, this is not
applicable in cases in which there is no clear decomposition of a task’s input space into
several domains.

To allow fixed value weight initialisation and still obtain succinct feature detectors, a
new training algorithm will be proposed. The algorithm is based on CGD, but has as a
soft constraint the minimisation of the squared covariance between receptive fields. In
this way, the symmetry between feature detectors due to fixed value initialisation can
be broken, and receptive field weight sets are forced to become orthogonal while still
minimising the ANN’s MSE. First, the philosophy behind the training algorithm will
be discussed in section 4.4.1. Next, the algorithm itself is given in section 4.4.2. Finally,
experimental results on the small digit data set are discussed in section 4.4.3.

4.4.1 Decorrelation

Note that, in trained ANNs, weight sets belonging to different receptive fields need
not be exactly the same for the feature maps to perform the same function. This is be-
cause weights are interdependent, as was already noted in section 4.2.1. As an example,
consider the weight vectors wpo,A and wpo,B (from here on, wA and wB) in ANN5×5

3
(figure 4.11). As long as wA = c1wB + c2, biases in the hidden and output layer and
the weights between these layers can correct the differences between the two weight
sets, and their functionality can be approximately identical5. The conclusion is that to
compare weight sets, one has to look at their correlation.

Suppose that for a certain layer in an ANN (as in figure 4.11) there are two incoming
weight vectors wA and wB, both with K > 2 elements and var(wA) > 0 and var(wB) >

5Up to a point, naturally, due to the nonlinearity of the transfer functions in the hidden and output
layer. For this discussion it is assumed the network operates in that part of the transfer function which is
still reasonably linear.
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0. The correlation coefficient C between these vectors can be calculated as:

C(wA, wB) =
cov(wA, wB)√

var(wA)var(wB)
(4.8)

The correlation coefficient C(wA, wB) is a number in the range [−1, 1]. For C(wA, wB) =
±1, there is a strong correlation; for C(wA, wB) = 0 there is no correlation. Therefore,
the squared correlation C(wA, wB)2 can be minimised to minimise the likeness of the
two weight sets.

Although this seems a natural thing to do, a problem is that squared correlation can be
minimised either by minimising the squared covariance or by maximising the variance
of either weight vector. The latter is undesirable, as for interpretation the variance of one
of the weight vectors should not be unnecessarily increased just to lower the squared
correlation. Ideally, both weight vectors should have comparable variance. Therefore, a
better measure to minimise is just the squared covariance. To do this, the derivative of
the covariance w.r.t. a single weight wA

i has to be computed:

∂cov(wA, wB)2

∂wA
i

=
∂

∂wA
i

(
1
K ∑K

k=1(wA
k −wA)(wB

k −wB)
)2

=
2
K

cov(wA, wB)(wB
i −wB) (4.9)

This derivative can then be used in combination with the derivative of the MSE w.r.t.
the weights to obtain a training algorithm minimising both MSE and squared covari-
ance (and therefore squared correlation, because the variance of the weight vectors will
remain bounded since the ANN still has to minimise the MSE).

Correlation has been used before in neural network training. In the cascade correlation
algorithm [101], it is used as a tool to find an optimal number of hidden units by tak-
ing the correlation between a hidden unit’s output and the error criterion into account.
However, it has not yet been applied on weights themselves, to force hidden units to
learn different functions during training.

4.4.2 A decorrelating training algorithm

Squared covariance minimisation was incorporated into the CGD method used before.
The pseudo code of the original CGD algorithm is given in figure 4.13. Note that the
derivative of the error function E to be minimised (usually the MSE) is used only to
update g, and the function E itself only in the line minimisation [155, 284].

The squared covariance term was integrated into the derivative of the error function
as an additive criterion, as in weight regularisation [28]. A problem is how the added
term should be weighted (cf. choosing the regularisation parameter). The MSE can
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function w := ConjugateGradientDescent(µ, σ, N)
w(0) := UniformRandom(µ− σ, µ + σ) Uniform distribution, offset µ, range [−σ, σ]
d := ∂

∂w E(w(0)) Derivative of MSE
g(0) := h(0) := −d
for t := 1 to N do

w(t) := LineMinimise(E, w(t− 1), h(t− 1))
Minimise error E from point w(t− 1) along direction h(t− 1)

d := ∂
∂w E(w(t)) Derivative of MSE

g(t) := −d Gradient
γ := (g(t)−g(t−1))Tg(t)

g(t−1)Tg(t−1) Polak-Ribiere update rule
h(t) := g(t) + γh(t− 1) New direction

od
end

Figure 4.13: The conjugate gradient descent (CGD) algorithm. The parameters, µ, σ and N, de-
termine the offset and range of the uniform distribution from which w is initialised
and the number of directions kept conjugate, respectively.

start very high but usually drops rapidly. The squared covariance part also falls in the
range [0, ∞〉, but it may well be the case that it cannot be completely brought down
to zero, or only at a significant cost to the error. The latter effect should be avoided:
the main training goal is to reach an optimal solution in the MSE sense. Therefore, the
covariance information is used in the derivative function only, to determine the dir-
ection in which steps are taken. It is not used in the absolute minimisation function
LineMinimise. Furthermore, the squared covariance gradient, dcov, is normalised to the
length of the ordinary gradient dE (i.e. just its direction is used) and weighed with a
factor λ. The pseudo code of the adapted algorithm, called the decorrelating conjugate
gradient descent (DCGD) method, is given in figure 4.14.

Note that the derivative of the squared covariance is only calculated once for each pair
of weight sets and attributed to only one of the weight sets. This allows one weight
set to learn a globally optimal function, while the second set is trained to both lower
the error and avoid covariance with the first set. It also allows initialisation with fixed
values, since the asymmetrical contribution of the squared covariance term provides a
symmetry breaking mechanism (which can even improve performance in some classi-
fication problems, see [71]). However, the outcome of the DCGD training process is still
dependent on the choice of a number of parameters. DCGD even introduces a new one
(the weight factor λ). If the parameters are chosen poorly, one will still not obtain un-
derstandable feature detectors. This is a problem of ANNs in general, which cannot be
solved easily: a certain amount of operator skill in training ANNs is a prerequisite for
obtaining good results. Furthermore, experiments with DCGD are reproducable due to
the possibility of weight initialisation with fixed values.
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function w := DecorrelatingConjugateGradientDescent(µ, σ, λ, N)
w(0) := UniformRandom(µ− σ, µ + σ) Uniform distribution, offset µ, range [−σ, σ]
dE := ∂

∂w E(w(0)) Derivative of MSE
dcov := 2

K(K−1) ∑K−1
k=1 ∑K

l=k+1
∂

∂w C(wk(0), wl(0))2 Derivative of squared covariance

g(0) := h(0) := −(dE + λ ||dE||
||dcov||d

cov) Normalised sum of both derivatives
for t := 1 to N do

w(t) := LineMinimise(E, w(t− 1), h(t− 1))
Minimise error E from point w(t− 1) along direction h(t− 1)

dE := ∂
∂w E(w(t)) Derivative of MSE

dcov := 2
K(K−1) ∑K−1

k=1 ∑K
l=k+1

∂
∂w C(wk(t), wl(t))2 Derivative of squared covariance

g(t) := −(dE + λ ||dE||
||dcov||d

cov) Gradient: normalised sum of derivatives

γ := (g(t)−g(t−1))Tg(t)
g(t−1)Tg(t−1) Polak-Ribiere update rule

h(t) := g(t) + γh(t− 1) New direction
od

end

Figure 4.14: The decorrelating conjugate gradient descent (DCGD) algorithm. The parameters
µ and σ again control initialisation, λ determines the relative weight of the deriv-
ative of the squared covariance and N determines the number of directions kept
conjugate.

The DCGD algorithm is computationally expensive, as it takes covariances between all
pairs of receptive fields into account. Due to this O(n2) complexity in the number of
receptive fields, application of this technique to large ANNs is not feasible. A possible
way to solve this problem would be to take only a subset of covariances into account.

4.4.3 Training ANN5×5
3 using DCGD

The ANN trained using CGD in section 4.3.1, ANN5×5
3 , was trained using DCGD.

Weights and biases were initialised to a fixed value of 0.01 (i.e. µ = 0.01, σ = 0.0)
and N = 10 directions were kept conjugate at a time. The only parameter varied was
the weighting factor of the squared covariance gradient, λ, which was set to 0.5, 1, 2 and
5. Training converged but was slow. The MSE eventually reached the values obtained
using CGD (1.0 × 10−6, cf. section 4.3.1); however, DCGD training was stopped when
the MSE reached about 1.0× 10−5, after about 500-1000 cycles, to prevent overtraining.
In all cases, classification was perfect.

Figure 4.15 shows the feature detectors found in ANN5×5
3 trained using DCGD. Squared

correlations C2 between them are very small, showing that the minimisation was suc-
cesful (the squared covariance was, in all cases, 0). For λ = 1 and λ = 2, the feature
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(a) λ = 0.5: C2 = 1.1× 10−4
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(d) λ = 5: C2 = 4.0× 10−8

Figure 4.15: Feature detector pairs found in ANN5×5
3 using DCGD with various values of weight

factor λ ((a)-(d)). C2 is the squared correlation between the feature detectors after
training.
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Figure 4.16: The output of (a) the first and (b) the second feature map of ANN5×5
3 trained with

DCGD (λ = 1), for two samples of class “1” (left) and two samples of class “7”
(right). The samples used were, for both digits, the leftmost two in figure 4.7.

detectors are more clear than those found using standard CGD, in section 4.3.1. Their
frequency responses resemble those of the feature detectors shown in figure 4.12 (b)
and, due to the fixed weight initialisation, are guaranteed to be found when training is
repeated. However, λ should be chosen with some care; if it is too small (λ = 0.5), the
squared covariance term will have too little effect; if it is too large (λ = 5), minimisation
of the squared covariance term becomes too important and the original functionality of
the network is no longer clearly visible.

The features detected seem to be diagonal bars, as seen before, and horizontal edges.
This is confirmed by inspecting the output of the two feature maps in ANN5×5

3 trained
with DCGD, λ = 1, for a number of input samples (see figure 4.16). For samples of class
“1”, these outputs are lower than for class “7”, i.e. features specific for digits of class
“7” have been found. Furthermore, the first feature detector clearly enhances the stem
of “7” digits, whereas the second detector amplifies the top stroke.

Finally, versions of ANN5×5
3 with three and four feature maps were also trained using

DCGD. Besides the two feature detectors found before no clear new feature detectors
were found.

4.5 Conclusions

Two cases were discussed in which small ANNs were trained on relatively simple data
sets. The goal was to find whether ANNs can detect useful features and, if so, whether
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they can be interpreted by a human observer.

The first case, edge recognition, showed that for some problems ANN architectures
and corresponding weight sets giving minimum error can be found by hand. How-
ever, training the architectures does not guarantee that these weight sets will be found.
First, there may be a large range of weight sets optimising the MSE, which makes in-
terpretation harder. This makes initialisation of weights with low, fixed values neces-
sary. Second, the presence of bias weights and non-shared weights allows an ANN to
store place-specific information instead of finding shift-invariant templates. When more
and more prior knowledge is used in restricting the architecture (by sharing biases and
weights, or even enforcing a mask) the network finds the optimal weight set specified.
However, training the ANNs becomes very hard. Furthermore, these ANNs can hardly
be seen as representative of normal practice anymore. This was called the interpretab-
ility trade-off, i.e. the trade-off between the possibility of interpretation and the danger
of experiments not being representative of real-life problems.

A possible reason for an ANN finding place-dependent solutions might be the artificial
nature of the edge data set, in which all edges pass through the centre of the image.
Therefore, a problem more true to life was studied by training similar ANNs on a sub-
set of the NIST database containing just 10 samples each of the digits “1” and “7”. How-
ever, these networks were still able to store place-dependent information in the weights
between the hidden layer and output layer. Only after restricting the network did the
ANN find a more pronounced feature detector in its receptive field.

Experiments on the digit data set with an ANN with two receptive fields showed that
the distribution of feature detectors over the receptive fields is unclear. As random ini-
tialisation is necessary, different experiments lead to different results, which give the
impression that multiple feature detectors are presented in each receptive field. To gain
a better understanding, a new training algorithm was proposed. In this algorithm, de-
correlating conjugate gradient descent (DCGD), the squared covariance between weight
sets is minimised along with the MSE. It was shown that, mainly because it allows
weight initialisation with fixed values, DCGD can lead to recognisable feature detect-
ors that are distributed clearly over the receptive fields. Note that covariance may not
always be the best criterion for obtaining interpretable weight sets. There may very
well be problems for which the optimal weight sets are different, yet highly covariant.
However, DCGD does show that taking criteria other than output error into account is
feasible.

The experiments in this chapter were performed to find whether training ANNs with
receptive field mechanisms leads to the ANN finding useful, shift-invariant features
and if a human observer could interpret these features. In general, it was shown that
the mere presence of receptive fields in an ANN and a good performance do not mean
that shift-invariant features are detected. Interpretation was only possible after severely
restricting the ANN architecture, data set complexity and training method. One thing
all experiments had in common was the use of ANNs as classifiers. Classification is a
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“derived” goal, i.e. the task is assigning (in principle arbitrary) outputs, representing
class labels, to input samples. The ANN is free to choose which features to use (or not)
to reach this goal. Therefore, to study the way in which ANNs solve problems moving
to regression problems might yield results more fit for interpretation, especially when
a regression problem can be decomposed into a number of independent subproblems.
The next chapter will study the use of ANNs as nonlinear filters for image enhancement.





5

REGRESSION NETWORKS FOR IMAGE
RESTORATION

5.1 Introduction

In this chapter and the next, the applicability of neural networks to nonlinear image pro-
cessing problems will be studied. Whereas in the previous chapter ANNs were trained
to perform classification, here they will be used for regression. The primary goal is to
see whether standard feed-forward ANNs can be applied successfully to a nonlinear im-
age filtering problem. If so, what are the prerequisites for obtaining a well-functioning
ANN? Secondly, the question (as in the previous chapter) is whether these ANNs cor-
respond to classic image processing approaches to solve such a task. Note that the goal
here is not to simply apply ANNs to an image processing problem, nor to construct
an ANN that will perform better at it than existing techniques. Instead, the question
is to what extent ANNs can learn the nonlinearities needed in some image processing
applications.

To investigate the possibilities of using feed-forward ANNs and the problems one might
encounter, the research concentrates on a single example of a nonlinear filter: the Kuwa-
hara filter for edge-preserving smoothing [201]. Since this filter is well-understood and
the training goal is exactly known, it is possible to investigate to what extent ANNs are
capable of performing this task. The Kuwahara filter also is an excellent object for this
study because of its inherent modular structure, which allows splitting the problem into
smaller parts. This is known to be an advantage in learning [6] and gives the opportun-
ity to study subproblems in isolation. Pugmire et al. [286] looked at the application of
ANNs to edge detection and found that structuring learning in this way can improve
performance; however, they did not investigate the precise role this structuring plays.

ANNs have previously been used as image filters, as discussed in section 2.4.1. How-
ever, the conclusion was that in many applications the ANNs were non-adaptive. Fur-
thermore, where ANNs were adaptive, a lot of prior knowledge of the problem to be
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Figure 5.1: (a) The Kuwahara filter: k × k subwindows in a (2k − 1) × (2k − 1) window; here
k = 3. (b) Kuwahara filter operation as a sequence of operations.

solved was incorporated in the ANN’s architectures. Therefore, in this chapter a num-
ber of modular ANNs will be constructed and trained to emulate the Kuwahara filter,
incorporating prior knowledge in various degrees. Their performance will be compared
to standard feed-forward ANNs. Based on results obtained in these experiments, in
chapter 6 it is shown that several key factors influence ANN behaviour in this kind of
task.

This chapter starts by discussing the Kuwahara filter, in section 5.2. Next, the various
ANN architectures used are introduced in section 5.3. In section 5.4, the experiments
performed using these ANNs are described, followed by a discussion of the questions
raised by the results in sections 5.5 and 5.6. Chapter 6 then discusses possible causes of
the problems encountered in the experiments and investigates solutions.

5.2 Kuwahara filtering

The Kuwahara filter is used to smooth an image while preserving the edges [201, 252,
357]. Figure 5.1 (a) illustrates its operation. The input of the filter is a (2k− 1)× (2k− 1)
pixel neighbourhood around the central pixel. This neighbourhood is divided into 4
overlapping subwindows Wi, i = 1, 2, 3, 4, each of size k × k pixels. For each of these
subwindows, the average µi and the variance σ2

i of the k2 grey values is calculated. The
output of the filter is then found as the average µm of the subwindow Wm having the
smallest grey value variance (m = arg mini σ2

i ). This operation can be applied in a
scan-wise manner to filter an entire image. For an example of the effect of the filter, see
figure 5.2.

The filter is nonlinear. As the selection of the subwindow based on the variances is data-
driven, edges are not blurred as in normal uniform filtering. Since a straight edge will
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(a) Image A (b) Image B (c) Image C

Figure 5.2: Images used for (a) training and (b)-(c) testing purposes. The top images are the
originals; the bottom images are the Kuwahara filtered versions (for image A, the
training target). For presentation purposes, the contrast of the images has been
stretched [385].

always lie in at most three subwindows, there will always be at least one subwindow
that does not contain an edge and therefore has low variance. For neighbouring pixels
in edge regions, different subwindows will be selected (due to the minimum operation),
resulting in sudden large differences in grey value. Typically, application of the Kuwa-
hara filter to natural images will result in images which have an artificial look but which
may be more easily segmented or interpreted.

This filter was selected for this research since:

• It is modular (figure 5.1 (b) illustrates this). This means the operation can be split
into subtasks which can perhaps be learned more easily than the whole task at
once. It will be interesting to see whether an ANN will need this modularity and
complexity in order to approximate the filter’s operation. Also, it offers the op-
portunity to study an ANN’s operation in terms of the individual modules.

• It is nonlinear. If ANNs can be put to use in image processing, the most rewarding
application will be one to nonlinear rather than linear image processing. ANNs
are most often used for learning (seemingly) highly complex, nonlinear tasks with
many parameters using only a relatively small number of samples.
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5.3 Architectures

Although an abundance of ANN architectures has been applied to image filtering, in
the experiments in this chapter only the most widely used type of ANN was used, the
standard feed-forward ANN (as discussed in section 2.2.1). This type of ANN is well-
studied; the learning algorithms and pitfalls are well known and it has been shown
that a feed-forward ANN is a universal approximator [160], making it applicable to the
image filtering problem. However, relatively little is known about the actual operation
of the ANN, that is, the inner workings of the “black box” many consider it to be (for a
rather polemic discussion on this topic, see the excellent paper by Green [134]).

In the previous chapter, it was shown that when studying ANN properties, such as
internal operation (which functions are performed by which hidden units) or general-
isation capabilities, one often encounters a phenomenon which could be described as an
ANN interpretability trade-off (section 4.2.3). This, trade-off, controlled by restricting
the architecture of an ANN, is between the possibility of understanding how a trained
ANN operates and the degree to which the experiment is still true-to-life. In order to
cover the spectrum of possibilities, a number of modular ANNs with varying degrees
of freedom was constructed. The layout of such a modular ANN is shown in figure 5.3.
Of the modular ANNs, four types were created, ANNM

1 . . . ANNM
4 . These are discussed

below in descending order of artificiality; i.e., the first is completely hand-designed,
with every weight set to an optimal value, while the last consists of only standard feed-
forward modules.

5.3.1 Modular networks

Each modular ANN consists of four modules. In the four types of modular ANN, dif-
ferent modules are used. These types are:

• For ANNM
1 , the modules were hand-designed for the tasks they are to perform. In

some cases, this meant using other than standard (i.e. sigmoid, linear) transfer func-
tions and very unusual weight settings. Figure 5.5 shows the four module designs
and the weights assigned to their connections:

– The average module (MODAvg, figure 5.5 (a)) uses only linear transfer functions
in units averaging the inputs. Four of these modules can be used to calculate
µ1, ..., µ4.

– The variance module (MODVar, figure 5.5 (b)) uses a submodule (on the left) to
calculate the average of the subwindow it is presented. The other submodule
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Figure 5.3: A modular ANN. MODAvg, MODVar, MODPos and MODSel denote the ANN mod-
ules, corresponding to the operations shown in figure 5.1 (b). The top layer is the
input layer. In this figure, shaded boxes correspond to values transported between
modules, not units.
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(on the right) just transports the original data to lower layers1. The calculated
averages are then subtracted from the original inputs, followed by a layer of units
using a f (a) = tanh2(a) transfer function to approximate the square of the input2

(see figure 5.4 (a)). Four of these modules can be used to find σ2
1 , . . . , σ2

4 .

– The position-of-minimum module for selecting the position of the minimum of
four inputs (MODPos, figure 5.5 (c)) is the most complicated one. Using the logar-
ithm of the sigmoid (eqn. 2.3) as a transfer function,

f (a) = ln
1

1 + exp(−a)
(5.1)

(see figure 5.4 (b)), units in the first three hidden layers act as switches comparing
their two inputs. Alongside these switches, linear transfer function units are used
to transport the original values to deeper layers. Weights wA and wB are very high
to enable the units to act as switches. If the input connected using weight wA

(input IA) is greater than the input connected using weight wB (input IB), the sum
will be large and negative, the output of the sigmoid will approach 0.0 and the
output of the unit will be −∞. If IB > IA, on the other hand, the sum will be large
and positive, the output of the sigmoid part will approach 1.0 and the final output
of the unit will be 0.0. This output can be used as an inhibiting signal, by passing
it to units of the same type in lower layers. In this way, units in the third hidden
layer have as output – if inputs are denoted as σ1, σ2, σ3 and σ4 – :

si =

{
0.0 σi < minm=1,...,4∧m 6=i σm

0.5 otherwise
(5.2)

Weights wA and wB are slightly different to handle cases in which two inputs are
exactly the same but one (in this case arbitrary) minimum position has to be found.
The fourth and fifth hidden layer ensure that exactly one output unit will indicate
that the corresponding input was minimal, by setting the output of a unit to 0.0
if another unit to the right has an output 6= 0.0. The units perform an xor-like
function, giving high output only when exactly one of the inputs is high. Finally,
biases (indicated by bA, bB and bC next to the units) are used to let the outputs
have the right value (0.0 or 0.5).

– The selection module (MODSel, figure 5.5 (d)) uses large weights coupled to the
position-of-minimum module outputs (inputs s1, s2, s3 and s4) to suppress the
unwanted average values µi before adding these. The small weights with which

1This part is not strictly necessary, but was incorporated since links between non-adjacent layers are
difficult to implement in the software package used [155].

2This function is chosen since it approximates a2 well on the interval it will be applied to, but is
bounded: it asymptotically reaches 1 as the input grows to ±∞. The latter property is important for
training the ANN, as unbounded transfer functions will hamper convergence.
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the average values are multiplied and the large incoming weight of the output
unit are used to avoid the nonlinearity of the transfer function.

Since all weights were fixed, this ANN was not trained.

• ANNM
2 modules have the same architectures as those of ANNM

1 . However, in this
case the weights were not fixed, hence the modules could be trained. These modules
were expected to perform poorly, as some of the optimal weights (as set in ANNM

1 )
were very high and some of the transfer functions are unbounded (see figure 5.4 (b)).

• In ANNM
3 modules, non-standard transfer functions were no longer used. As a result,

the modules MODVar and MODPos had to be replaced by standard ANNs. These
ANNs contained 2 layers of 25 hidden units, each of which had a double sigmoid
transfer function (eqn. 2.4). This number of hidden units was thought to give the
modules a sufficiently large number of parameters, but keeps training times feasible.

• In the final type, ANNM
4 , all modules consisted of standard ANNs with 2 hidden

layers of 25 units each.

With these four types, a transition is made from a fixed, hard-wired type of ANN
(ANNM

1 ), which is a hard-wired implementation of the Kuwahara filter, to a free type
(ANNM

4 ) in which only the prior knowledge that the filter consists of four subtasks is
used. The goal of the exercise is to see a gradual change in behaviour and performance.

Note that the ANNM
1 architecture is probably not the only error-free implementation

possible using ANN units. It should be clear from the discussion, though, that any ar-
chitecture should resort to using non-standard transfer functions and unconventional
weight settings to perform the nonlinear operations error-free over a large range of in-
put values. In this respect, the exact choices made here are less important.

5.3.2 Standard networks

As chapter 3 showed, the use of prior knowledge in ANN design will not always guar-
antee that such ANNs will perform better than standard architectures. To validate res-
ults obtained with the ANNs described in the previous section, experiments were also
performed with standard, fully connected feed-forward ANNs. Although one hidden
layer should theoretically be sufficient [119, 160], the addition of a layer may ease train-
ing or lower the number of required parameters (although there is some disagreement
on this, see [48, 80, 119]). Therefore, ANNs having one or two hidden layers of 1, 2, 3, 4,
5, 10, 25, 50, 100 or 250 units each were used. All units used the double sigmoid transfer
function (eqn. 2.4). These ANNs will be referred to as ANNS

L×U, where L indicates the
number of hidden layers (1 or 2) and U the number of units per hidden layer. ANNS

L
will be used to denote the entire set of ANNs with L hidden layers.
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5.4 Experiments

5.4.1 Data sets

To train the ANNs, a training set was constructed by drawing samples randomly, using
a uniform distribution, from image A (input) and its Kuwahara filtered version (output),
both shown in figure 5.2 (a). The original 8-bit 256 grey value image was converted to
a floating point image and rescaled to the range [−0.5, 0.5]. Three data sets were con-
structed, containing 1,000 samples each: a training set, a validation set and a testing set.
The validation set was used to prevent overtraining (see section 3.3.1): if the error on the
validation set did not drop below the minimum error found so far on that set for 1,000
cycles, training was stopped. Since in all experiments only k = 3 Kuwahara filters were
studied, the input to each ANN was a 5× 5 region of grey values and the training target
was 1 value. For the modular ANNs, additional data sets were constructed from these
original data sets to obtain the mappings required by the individual ANNs (average,
variance, position-of-minimum and selection).

5.4.2 Training

For training, the standard stochastic back propagation algorithm [306] was used.
Weights were initialised to random values drawn from a uniform distribution in the
range [−0.1, 0.1]. The learning rate was set to 0.1; no momentum was used. Training
was stopped after 25,000 cycles or if the validation set indicated overtraining, whichever
came first. All experiments were repeated five times with different random initialisa-
tions; all results reported are averages over five experiments. Where ever appropriate,
error bars indicate standard deviations.

Results are given in figures 5.6 and 5.7. These will be discussed for the different archi-
tectures in the next sections.

5.4.3 Modules

The different modules show rather different behaviour (figure 5.6). Note that in these
figures the MSE was calculated on a testing set of 1,000 samples. As was to be expec-
ted, the MSE is lowest for the hand-constructed ANNM

1 modules: for all ANNs except
MODPos, it was 0. The error remaining for the MODPos module may look quite high,
but is caused mainly by the ANN choosing a wrong minimum when two or more in-
put values σi are very similar. Although the effect on the behaviour of the final module
(MODSel) will be negligible, the MSE is quite high since one output which should have
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Figure 5.6: Performance of the individual modules on the testing set in each of the modular
ANNs, ANNM

1 . . . ANNM
4 .

been 0.5 is incorrectly set to 0.0 and vice versa, leading to an MSE of 0.25 for that in-
put pattern. For the other ANNs, it seems that if the manually set weights are dropped
(ANNM

2 ), the modules are not able to learn their function as well as possible (i.e., as well
as ANNM

1 ). Nonetheless, the MSE is quite good and comparable to ANNM
3 and ANNM

4 .

When the individual tasks are considered, the average is obviously the easiest function
to approximate. Only for ANNM

4 , in which standard modules with two hidden layers
were used, is the MSE larger than 0.0; apparently these modules generalise less well
than the hand-constructed, linear MODAvgs. The variance too is not difficult: MSEs are
O(10−5). Clearly, the position-of-minimum task is the hardest. Here, almost all ANNs
perform poorly. Performances on the selection problem, finally, are quite good. What
is interesting is that the more constrained modules (ANNM

2 , ANNM
3 ) perform less well

than the standard ones. Here again the effect that the construction is closely connected
to the optimal set of weights plays a role. Although there is an optimal weight set, the
training algorithm did not find it.

5.4.4 Modular networks

When the modules are concatenated, the initial MSEs of the resulting ANNs are poor:
for ANNM

2 , ANNM
3 and ANNM

4 O(1), O(10−1) and O(10−2) respectively. The MODPos

module is mainly responsible for this; it is the hardest module to learn due to the non-
linearity involved (see the discussion in section 5.4.3). If the trained MODPos in ANNM

2
. . . ANNM

4 is replaced by the constructed ANNM
1 module, the overall MSE always de-

creases significantly (see table 5.1). This is an indication that, although its MSE seems
low (O(10−2)), this module does not perform well. Furthermore, it seems that the over-
all MSE is highly sensitive to the error this module makes.

However, when the complete ANNs are trained a little further with a low learning
rate (0.1), the MSE improves rapidly: after only 100-500 learning cycles training can
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Type MSE MSE with MODPos of ANNM
1

ANNM
2 9.2× 10−1 ± 5.2× 10−1 8.7× 10−4 ± 1.7× 10−4

ANNM
3 1.2× 10−1 ± 1.2× 10−1 1.0× 10−3 ± 2.0× 10−4

ANNM
4 3.6× 10−2 ± 1.7× 10−2 1.2× 10−3 ± 2.4× 10−4

Table 5.1: Dependence of performance, in MSE on the image A testing set, on the MODPos mod-
ule. Values given are average MSEs and standard deviations.

be stopped. In Pugmire et al. [286], the same effect occurs. The MSEs of the final ANNs
on the entire image are shown in figures 5.7 (a), (e) and (i) for images A, B and C, re-
spectively. Images B and C were pre-processed in the same way as image A: the original
8-bit (B) and 5-bit (C) 256 grey value images were converted to floating point images,
with grey values in the range [−0.5, 0.5].

To get an idea of the significance of these results, re-initialised versions of the same
ANNs were also trained. That is, all weights of the concatenated ANNs were initialised
randomly without using the prior knowledge of modularity. The results of these train-
ing runs are shown in figures 5.7 (b), (f) and (j). Note that only ANNM

2 cannot be trained
well from scratch, due to the non-standard transfer functions used. For ANNM

3 and
ANNM

4 the MSE is comparable to the other ANNs. This would indicate that modular
training is not beneficial, at least according to the MSE criterion.

The ANNs seem to generalise well, in that nearly identical MSEs are reached for each
network on all three images. However, the variance in MSE is larger on Image B and
Image C than it is for Image A. This indicates that the modular networks may have
become slightly too adapted to the content of Image A.

5.4.5 Standard networks

Results for the standard ANNs, ANNSs, are shown in figure 5.7 (c)-(d), (g)-(h) and (k)-
(l) for images A, B and C. In each case, the first figure gives the results for ANNs with
one hidden layer; the second figure for ANNs with two hidden layers. What is most
striking is that for almost all sizes of the ANNs the MSEs are more or less the same.
Furthermore, this MSE is nearly identical to the one obtained by the modular ANNs
ANNM

2 . . . ANNM
4 . It also seems that the smaller ANNs, which give a slightly larger

MSE on Image A and Image B, perform a bit worse on Image C. This is due to the larger
amount of edge pixels in Image C; the next section will discuss this further.
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Figure 5.7: Performance of all ANNMs and ANNSs on the three images used: (a)-(d) on image
A (fig. 5.2 (a)), (e)-(h) on image B (fig. 5.2 (b)) and (i)-(l) on image C (fig. 5.2 (c)). For
the ANNSs, the x-axis indicates the number of hidden units per layer.
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Figure 5.8: (a) The original Image A. (b) and (c), from left to right: outputs of two ANNSs on Im-
age A; absolute differences between target image and ANN output and ANN output
error bar widths plotted as grey values.

5.5 Investigating the error

The experiments in the previous section indicate that, no matter which ANN is trained
(except for ANNM

1 ), the MSE it will be able to reach on the images is equal. However,
visual inspection shows small differences between images filtered by various ANNs; see
e.g. the left and centre columns of figure 5.8. To gain more insight in the actual errors the
ANNs make, a technique can be borrowed from the field of Bayesian learning, which
allows the calculation of error bars for each output of the ANN [28]. This technique is
explained in appendix B. The computation is based on the Hessian of the ANN output
w.r.t. its weights w, H = ∇2

wR(x; w), which needs to be found first. Using H, for each
input x a corresponding variance σ2

tot can be found. This makes it possible to create an
image in which each pixel corresponds to 2σtot, i.e. the grey value equals half the width
of the error bar on the ANN output at that location. Conversely, the inverse of σtot is
sometimes used as a measure of confidence in an ANN output for a certain input.

For a number of ANNs, the Hessian was calculated using a finite differencing approx-
imation [28]. To calculate the error bars, this matrix has to be inverted first. Unfortu-
nately, for the ANNMs, inversion was impossible as their Hessian matrices were too
ill-conditioned because of the complicated architectures, containing fixed and shared
weights. Figures 5.8 (b) and (c) show the results for two standard ANNs, ANNS

1×25 and
ANNS

2×25. In the left column the ANN output for Image A (5.2 (a)) is shown. The centre
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column shows the absolute difference between this output and the target image. In the
third column the error bars calculated using the Hessian are shown.

The figures show that the error the ANN makes is not spread out evenly over the image.
The highest errors occur near the edges in Image A, as can be seen by comparing the
centre column of figure 5.8 with the gradient magnitude of |∇IA| of Image A, shown in
figure 5.9 (a). This gradient magnitude is calculated as ([385])

|∇IA| =

√(
δIA

δx

)2

+
(

δIA

δy

)2

(5.3)

where δIA
δx is approximated by convolving Image A with a [−1 0 1] mask, and δIA

δy by
convolving Image A with its transpose.

The error bar images, in the right column of figure 5.8, show that the standard deviation
of ANN output is also highest on and around the edges. Furthermore, although the
output of the ANNs look identical, the error bars show that the ANNs actually behave
differently.

These results lead to the conclusion that the ANNs have learned fairly well to approx-
imate the Kuwahara filter in flat regions, where it operates like a local average filter.
However, on and around edges they fail to give the correct output; most edges are
sharpened slightly, but not nearly as much as they would be by the Kuwahara filter. In
other words, the linear operation of the Kuwahara filter is emulated correctly, but the
nonlinear part is not. Furthermore, the error bar images suggest there are differences
between ANNs which are not expressed in their MSEs.

5.6 Conclusions

A number of experiments on implementing a basic nonlinear filter, the Kuwahara filter,
were presented. Since this filter is of a modular algorithmic nature, modular versions of
the ANN were constructed and trained. A gradual shift in performance was expected
as ANNs were less and less constrained, at the same time losing the possibility of un-
derstanding the workings of the ANNs. To compare this to approaches not using prior
knowledge, a number of standard ANNs were trained as well.

The most noticeable result of the experiments is that whatever ANN is trained, be it a
simple one hidden unit ANN or a specially constructed modular ANN, approximately
the same performance (measured in MSE) can be reached. Modular training does not
seem to boost performance at all. However, inspection of error images and standard
deviation of ANN outputs suggests that there are differences between ANNs. Further-
more, the errors made by ANNs are concentrated around edges, i.e. in the part where
the Kuwahara filter’s nonlinearity comes into play.
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Figure 5.9: (a) The gradient magnitude of Image A, |∇IA|. (b) Performance of ANNS
1×50 for

various training set sample sizes.

There are a number of hypotheses as to what causes all ANNs to seemingly perform
equally well, some of which will be investigated in the next chapter:

• the problem may simply be too hard to be learned by a finite-size ANN. This does not
seem plausible, since even for a two-hidden layer ANN with 250 hidden units per
layer, resulting in a total of 69,000 free parameters, the MSE is no better than for
very simple ANNs. One would at least expect to see some enhancement of results;

• it is possible that the sample size of 1,000 is too small, as it was rather arbitrarily chosen.
An experiment was performed in which ANNS

1×50 was trained using training sets
with 50, 100, 250, 500, 1,000 and 2,000 samples. The results, given in figure 5.9 (b),
show however that the chosen sample size of 1,000 seems sufficient. The decrease
in MSE when using 2,000 samples in the training set is rather small;

• the training set may not be representative for the problem, i.e. the nature of the prob-
lem may not be well reflected in the way the set is sampled from the image. An
experiment to test this hypothesis is discussed in the next section (section 6.2);

• the error criterion may not be fit for training the ANNs or assessing their performance. It
is very well possible that the MSE criterion used is of limited use in this problem,
since it weighs both the interesting parts of the image, around the edges, and the
less interesting parts equally. The role of the MSE as an assessment criterion is
investigated in section 6.3 and its use in training in section 6.4;

• the problem may be of such a nature that local minima are prominently present in the error
surface, while the global minima are very hard to reach, causing suboptimal ANN
operation. This hypothesis is tested in section 6.5.

Besides testing the hypotheses put forward above, chapter 6 will inspect the modular
architectures discussed in this chapter. The goal is to answer the question whether the
use of prior knowledge is necessary for this application.



6

INSPECTION AND IMPROVEMENT OF
REGRESSION NETWORKS

6.1 Introduction

In chapter 5, a number of modular and standard ANNs were trained to perform a non-
linear image filtering operation. The results of the experiments raised a number of
questions, which were discussed in section 5.6. This chapter will try to answer these
questions. First, in section 6.2, the influence of data set sampling is investigated. Next,
in section 6.3 the appropriateness of the MSE as a performance measure is discussed
and new measures are presented. As it is shown that the MSE is not the optimal error
measure for this kind of problem, the use of different ANN error measures in training is
investigated in section 6.4. To investigate how ANNs solve the image processing task,
sections 6.5 and 6.6 deal with inspection of the standard and modular ANNs, respect-
ively. Finally, in section 6.7 some conclusions are drawn.

6.2 Edge-favouring sampling

Inspection of the ANN outputs and the error bars on those outputs led to the conclusion
that the ANNs had learned to emulate the Kuwahara filter well in most places, except
in regions near edges (section 5.5). A problem in sampling a training set from an image1

for this particular application is that such interesting regions, i.e. the regions where the
filter is nonlinear, are very poorly represented. Edge pixels constitute only a very small
percentage of the total number of pixels in an image (as a rule of thumb, O(

√
n) edge

1From here on, the term sampling will be used to denote the process of constructing a data set by
extracting windows from an image with coordinates sampled from a certain distribution on the image
grid.
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Figure 6.1: Performance of the individual modules in each of the modular ANNs, ANNM
1 . . .

ANNM
4 on the normal testing set (top row) and edge-favouring testing set (bottom

row).

pixels on O(n) image pixels) and will therefore not be represented well in the training
set when sampling randomly using a uniform distribution.

To learn more about the influence of the training set on performance, a second group of
data sets was created by sampling from Image A (figure 5.2 (a)) with a probability dens-
ity function based on its gradient magnitude image |∇IA| (eqn. 5.3). If |∇I| is scaled by
a factor c such that

∫
x
∫

y c · |∇I(x, y)|dydx = 1, and used as a probability density func-
tion when sampling, edge regions have a much higher probability of being included in
the data set than pixels from flat regions. This will be called edge-favouring sampling, as
opposed to normal sampling.

6.2.1 Experiments

Performances (in MSE) of ANNs trained on this edge-favouring set are given in fig-
ures 6.1 and 6.2. Note that the results obtained on the normal training set (first shown
in figure 5.7) are included again to facilitate comparison. The sampling of the data
set clearly has an influence on the results. Since the edge-favouring set contains more
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(h) Image B, ANNS
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(i) Image C, ANNM,
trained further
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Figure 6.2: Performance of all ANNMs and ANNSs on the three images used: (a)-(d) on Image
A (fig. 5.2 (a)), (e)-(h) on Image B (fig. 5.2 (b)) and (i)-(l) on Image C (fig. 5.2 (c)).
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MSE = 1.44 x 10−3MSE = 1.48 x 10−3

outputKuwahara
Target: Standard ANN

output
Modular ANN

Figure 6.3: Two ANN output images with details. For the left image, output of ANNM
4 trained

on the edge-favouring set, the MSE is 1.48 × 10−3; for the right image, output of
ANNS

1×100 trained on a normally sampled set, it is 1.44 × 10−3. The details in the
middle show the target output of the Kuwahara filter; the entire target image is
shown in figure 5.2 (a).

samples taken from regions around edges, the task of finding the mean is harder to learn
due to the larger variation. At the same time, it eases training the position-of-minimum
and selection modules. For all tasks except the average, the final MSE on the edge-
favouring testing set (figures 6.1 (b), (d), (f) and (h)) is better than that of ANNs trained
using a normal training set. The MSE is, in some cases, even lower on the normal testing
set (figures 6.1 (e) and (g)).

Overall results for the modular and standard ANNs (figure 6.2) suggest that perform-
ance decreases when ANNs are trained on a specially selected data set (i.e., the MSE
increases). However, when the quality of the filtering operation is judged by looking at
the filtered images (see e.g. figure 6.3), one finds that these ANNs give superior results
in approximating the Kuwahara filter. Clearly, there is a discrepancy between perform-
ance as indicated by the MSE and visual perception of filter quality. Therefore, the next
section will investigate the possibility of finding another way of measuring performance
for this application.

6.3 Performance measures for edge-preserving
smoothing

The results given in section 6.2.1 show that it is very hard to interpret the MSE as a
measure of filter performance. Although the MSEs differ only slightly, visually the
differences are quite large. If images filtered by various ANNs trained on the normal
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and edge-favouring data sets are compared, it seems clear which ANN performs better.
As an example, figure 6.3 shows two filtered images. The left image was filtered by
ANNM

4 trained on an edge-favouring training set. The image on the right is the out-
put of ANNS

1×100 trained on a normal data set. Although the MSEs are nearly equal
(1.48 × 10−3 for the left image versus 1.44 × 10−3 for the right one), in the left image
the edges seem much crisper and the regions much smoother than in the image on the
right; that is, one would judge the filter used to produce the left image to perform better.

One would like to find a measure for filter performance which bears more relation to
this qualitative judgement than the MSE. The reason why the MSE is so uninformative
is that by far the largest number of pixels do not lie on edges. Figure 6.4 (a) illustrates
this: it shows that the histogram of the gradient magnitude image is concentrated near
zero, i.e. most pixels lie in flat regions. Since the MSE averages over all pixels, it may
be quite low for filters which preserve edges poorly. Vice versa, the visual quality of the
images produced by the ANNs trained using the edge-favouring data set may be better
while their MSE is worse, due to a large number of small errors made in flat regions.

The finding that the MSE does not correlate well with perceptual quality judgement is
not a new one. A number of alternatives have been proposed, among which the mean
absolute error (MAE) seems to be the most prominent one. There is also a body of work
on performance measures for edge detection, e.g. Pratt’s Figure of Merit (FOM) [282] or
Average Risk [337]. However, none of these capture the dual goals of edge sharpening
and region smoothing present in this problem.

6.3.1 Smoothing versus sharpening

In edge-preserving smoothing, two goals are pursued: on the one hand the algorithm
should preserve edge sharpness, on the other hand it should smooth the image in re-
gions that do not contain edges. In other words, the gradient of an image should remain
the same in places where it is high2 and decrease where it is low.

If the gradient magnitude |∇I| of an image I is plotted versus |∇ f (I)| of a Kuwahara-
filtered version f (I), for each pixel I(i,j), the result will look like figure 6.4 (b). In this
figure, the two separate effects can be seen: for a number of points, the gradient is
increased by filtering while for another set of points the gradient is decreased. The
steeper the upper cloud, the better the sharpening; the flatter the lower cloud, the better
the smoothing. Note that the figure gives no indication of the density of both clouds:
in general, by far the most points lie in the lower cloud, since more pixels lie in smooth
regions than on edges. The graph is reminiscent of the scattergram approach discussed

2Or even increase. If the regions divided by the edge become smoother, the gradient of the edge itself
may increase, as long as there was no overshoot in the original image. Overshoot is defined as the effect
of artificially sharp edges, which may be obtained by adding a small value to the top part of an edge and
subtracting a small value from the lower part [385].
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Figure 6.4: (a) Histograms of gradient magnitude values |∇I| of Image A (figure 5.2 (a)) and a
Kuwahara filtered version (k = 3). (b) Scattergram of the gradient magnitude image
pixel values with estimated lines.

(and denounced) in [189], but here the scattergram of the gradient magnitude images is
shown.

To estimate the slope of the trend of both clouds, the point data is first separated into
two sets:

A =
{

(|∇I|(i,j), |∇ f (I)|(i,j))
∣∣∣ |∇I|(i,j) ≥ |∇ f (I)|(i,j)

}
(6.1)

B =
{

(|∇I|(i,j), |∇ f (I)|(i,j))
∣∣∣ |∇I|(i,j) < |∇ f (I)|(i,j)

}
(6.2)

Lines y = ax + b can be fitted through both sets using a robust estimation technique,
minimising the absolute deviation [284], to get a density-independent estimate of the
factors with which edges are sharpened and flat regions are smoothed:

(aA, bA) = arg min
(a,b)

∑
(x,y)∈A

|y− (ax + b)| (6.3)

(aB, bB) = arg min
(a,b)

∑
(x,y)∈B

|y− (ax + b)| (6.4)

The slope of the lower line found, aA, gives an indication of the smoothing induced by
the filter f . Likewise, aB gives an indication of the sharpening effect of the filter. The
offsets bA and bB are discarded, although it is necessary to estimate them to avoid a bias
in the estimates of aA and aB. Note that a demand is that aA ≤ 1 and aB ≥ 1, so the
values are clipped at 1 if necessary – note that due to the fact that the estimated trends
are not forced to go through the origin, this might be the case.
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To account for the number of pixels actually used to estimate these values, the slopes
found are weighed with the relative number of points in the corresponding cloud.
Therefore, the numbers

Smoothing( f , I) =
|A|

|A|+ |B|
(a′A − 1) and (6.5)

Sharpening( f , I) =
|B|

|A|+ |B|
(aB − 1) (6.6)

are used, where a′A = 1
aA

was substituted to obtain numbers in the same range [0, ∞〉.
These two values can be considered to be an amplification factor of edges and an atten-
uation factor of flat regions, respectively.

Note that these measures cannot be used as absolute quantitative indications of filter
performance, since a higher value does not necessarily mean a better performance; i.e.,
there is no absolute optimal value. Furthermore, the measures are highly dependent
on image content and scaling of f (I) w.r.t. I. The scaling problem can be neglected
however, since the ANNs were trained to give output values in the correct range. Thus,
for various filters f (I) on a certain image, these measures can now be compared, giv-
ing an indication of relative filter performance on that image. To get an idea of the range
of possible values, smoothing and sharpening values for some standard filters can be
calculated, like the Kuwahara filter, a Gaussian filter

fG(I, σ) = I ⊗ 1
2πσ2 exp

(
−x2 + y2

2σ2

)
(6.7)

for3 σ = 0.0, 0.1, . . . , 2.0; and an unsharp masking filter

fU(I, k) = I − k×

I ⊗

 -1 2 -1
2 -4 2

-1 2 -1

 (6.8)

which subtracts k times the Laplacian4 from an image, k = 0.0, 0.1, . . . , 2.0.

6.3.2 Experiments

Smoothing and sharpening performance values were calculated for all ANNs discussed
in section 6.2.1. The results are shown in figure 6.5. First, lines of performance values
for the Gaussian and unsharp masking filters give an indication of the range of possible

3For σ ≤ 0.5 the Gaussian is ill-sampled; in this case, a discrete approximation is used which is not
stricly speaking a Gaussian.

4This is an implementation of the continuous Laplacian edge detector mentioned in section 4.2.1,
different from the discrete detector shown in figure 4.1.
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Figure 6.5: Performance of standard filters, all ANNMs and ANNSs on the three images used:
(a)-(d) on Image A (fig. 5.2 (a)), (e)-(h) on Image B (fig. 5.2 (b)) and (i)-(l) on Image C
(fig. 5.2 (c)). In the legends, ef stands for ANNs trained on edge-favouring data sets,
as opposed to normally sampled data sets (nrm); further indicates ANNs initialised
by training the individual modules as opposed to ANNs trained from scratch (over);
and 10, 25 and so on denote the number of units per hidden layer.
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values. As expected, the Gaussian filter on Images A and B (figures 5.2 (a) and (b))
gives high smoothing values and low sharpening values, while the unsharp masking
filter gives low smoothing values and high sharpening values. The Kuwahara filter
scores high on smoothing and low on sharpening. This is exactly as it should be: the
Kuwahara filter should smooth while preserving the edges, it should not necessarily
sharpen them. If ANNs have a higher sharpening value, they are usually producing
overshoot around the edges in the output images.

The measures calculated for Image C (figure 5.2 (c)) show the limitations of the method.
In this image there is a large number of very sharp edges in an otherwise already rather
smooth image. For this image the Gaussian filter gives only very low smoothing values
and the unsharp masking filter gives no sharpening value at all. This is due to the
fact that for this image, subtracting the Laplacian from an image produces a very small
sharpening value, together with a negative smoothing value, caused by the Laplacian
greatly enhancing the amount of noise in the image. Since the values were clipped at 0,
the results are not shown in the figure.

Regarding the ANNs, some things become clear. First, the hand-constructed ANN
(ANNM

1 ) almost perfectly mimics the Kuwahara filter, according to the new measures.
However, as soon as the hand-set weights are dropped (ANNM

2 ), performance drops
drastically. Apparently the non-standard transfer functions and special architecture in-
hibits the ANN too much. ANNM

3 and ANNM
4 perform better and generalise well to

other images. However, besides ANNM
1 , no other ANN in this study seems to be able to

approximate the Kuwahara filter well. The best trained ANN still performs much worse.

Second, edge-favouring sampling has a strong influence. Most of the architectures dis-
cussed only perform reasonably when trained on a set with a significantly larger num-
ber of edge samples than acquired by random sampling, especially the ANNSs. This
indicates that, although the MSE actually indicates ANNs trained on an edge-favouring
set perform worse, sampling in critical areas of the image is a prerequisite for obtaining
a well-performing, nonlinear approximation to the Kuwahara filter.

Most standard ANNs perform poorly. Only for ANNS
2×10, ANNS

2×25 and ANNS
2×50 per-

formance is reasonable. In retrospect, this concurs with the drop in the MSE that can
be seen in figure 6.2 (d), although the differences there are very small. ANNS

2×50 clearly
performs best. A hypothesis is that this depends on the training of the ANNs, since
training parameters were not optimised for each ANN. To verify this, the same set of
standard ANNs was trained in experiments in which the weights were initialised using
random values drawn from a uniform distribution over the range [−1.0, 1.0], using a
learning rate of 0.5. Now, the optimal standard ANN was found to be ANNS

2×25, with
all other ANNs performing very poorly.

Generalisation is, for all ANNs, reasonable. Even on Image C (figure 5.2 (c)), which
differs substantially from the training image (Image A, figure 5.2 (a)), performance is
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quite good. The best standard ANN, ANNS
2×50, seems to generalise a little better than

the modular ANNs.

6.3.3 Discussion

In [87, 88] it is shown that the smoothing and sharpening performance measures pro-
posed here correlate well with human perception. It should be noted that in this study,
subjects had less problems in discerning various levels of smoothing than they had with
levels of sharpening. This indicates that the two measures proposed are not equival-
ently spaced.

The fact that the measures show that edge-favouring sampling in building a train-
ing set increases performance considerably, suggests possibilities for extensions. Pug-
mire et al. [286] claim that learning should be structured, i.e. start with the general prob-
lem and then proceed to special cases. This can be easily accomplished in training set
construction, by adding a constant to each pixel in the gradient magnitude image before
scaling and using it as a probability density function from which window coordinates
are sampled. If this constant is gradually lowered, edge-pixels become better represen-
ted in the training set. Another, more general possibility would be to train ANNs on
normally sampled data first and calculate an error image (such as those shown in the
centre column of figure 5.8). Next, the ANN could be trained further – or re-trained –
on a data set sampled using the distribution of the errors the ANN made, a new error
image can be calculated, and so on. This is similar to boosting and arcing approaches in
classification [33, 320]. An advantage is that this does not use the prior knowledge that
edges are important, which makes it more generally applicable.

6.4 Training using different criteria

Ideally, the sharpening and smoothing performance measures discussed in the previous
section should be used to train ANNs. However, this is infeasible as they are not differ-
entiable. This means they could only be used in learning procedures which do not need
the criterion function to be differentiable, such as reinforcement learning [140, 381]. This
falls outside the scope of the experiments in this chapter.

However, the previous section showed that ANNs did learn to emulate the Kuwahara
filter better when trained using the edge-favouring data set. Note that constructing a
data set in this way is equivalent to using a much larger data set and weighing the
MSE with the gradient magnitude. Therefore, this approach is comparable to using an
adapted error criterion in training the ANN. However, this weighting is quite specific
to this problem.
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In the literature, several more general alternatives to the MSE (eqn. 2.12) have been
proposed [36, 148]. Among these, a very flexible family of error criteria based on the Lp
norm is:

Ep(W, B) =
1

2|L| ∑
(xi ,yi)∈L

m

∑
k=1

|R(xi; W, B)k − yi
k|

p, (6.9)

where p ∈ Z∗. Note that for p = 2, this criterion is equal to the MSE. For p = 0,
each error is considered equally bad, no matter how small or large it is. For p = 1, the
resulting error criterion is known as the mean absolute error or MAE. The MAE is more
robust to outliers than the MSE, as larger errors are given relatively smaller weights than
in the MSE. For p > 2, larger errors are given more weight, i.e. the data is considered
not to contain outliers. In fact, which p to use should be decided by assuming a noise
model for the target data [36]. The L1 norm (robust to outliers) corresponds to a noise
distribution with large tails, a Laplacian distribution [378], under which outliers are
probable. At the other extreme, L∞ corresponds to a uniform noise distribution.

As discussed before, the Kuwahara filter is most interesting around the edges in an
image, were the filter behaves nonlinearly. It was also shown that exactly around these
edges most ANNs make the largest errors (figure 5.8). Therefore, it makes sense to use
an error criterion which puts more emphasis on larger errors, i.e. the Lp norm for p > 2.
To this end, a number of experiments were run in which different norms were used.

Although implementing these criteria in the back-propagation algorithm is trivial (only
the gradient calculation at the output units changes), the modified algorithm does not
converge well using standard settings. The learning rate and initialisation have to be
adapted for each choice of norm, to avoid divergence. Therefore, the norms were used
in the CGD training algorithm (see section 4.2.2), which is less sensitive to initialisation
and choice of criterion due to the line minimisation involved.

6.4.1 Experiments

The best performing ANN found in section 6.3, ANNS
2×50, was trained using CGD with

the Lp norm. The parameter p was set to 1, 2, 3, 5 and 7, and both the normal and the
edge-favouring training sets were used. The ANN was trained using the same settings
as before (see section 5.4.2); in the CGD algorithm, directions were kept conjugate for
10 iterations.

Figure 6.6 shows the results. Clearly, using the Lp norm helps the ANN trained on
the normal set to achieve better performance (figure 6.6 (a)). For increasing p, the
sharpening performance becomes higher. However, the smoothing performance still
lags behind that of the ANN trained using the MSE on the edge-favouring training set
(fig. 6.5 (d)).
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Figure 6.6: Performance of ANNS
2×50 on Image A (fig. 5.2 (a)), trained using different Lp norm

error criteria and (a) the normal training set and (b) the edge-favouring training set.

When ANNS
2×50 is trained using the Lp norm on the edge-favouring data set, smoothing

performance actually decreases (figure 6.6 (b)). This is caused by the fact that the training
set and error criterion in concert stress errors around edges so much, that the smoothing
operation in flat regions suffers. Figure 6.7 illustrates this by showing the output of
ANNS

2×25 as well as the absolute difference between this output and the target image,
for various values of p. For increasing p, the errors become less localised around the
edges; for p ≥ 3 the error in flat regions becomes comparable to that around edges.

In conclusion, using different Lp norms instead of the MSE can help in improving per-
formance. However, it does not help as much as edge-favouring sampling from the
training set, since only the latter influences the error criterion exactly where it matters,
around edges. Furthermore, it requires choosing a value for the parameter p, for which
an optimal setting is not clear beforehand. Finally, visual inspection still shows p = 2 to
be the best choice.

6.5 Inspection of standard networks

To gain insight into the relatively poor performance of most of the standard ANNs ac-
cording to the performance measure introduced in section 6.3, a very simple architec-
ture was created, containing only a small number of weights (see figure 6.8 (a)). Since
the Kuwahara filter should be isotropic, a symmetric weight mask was imposed on the
weights (cf. section 10). Furthermore, linear transfer functions were used to avoid the
complications introduced in the analysis by the use of sigmoids. No bias was used. This
ANN was trained on the normal data set, using a validation set. The learned weight set
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Figure 6.7: Top row: output of ANNS
2×50 trained using the Lp norm on the edge-favouring data

set, for various p. Bottom row: absolute difference between output and target image.

is shown in figure 6.9 (a). In filtering terms, the main component looks like a negative
Laplacian-of-Gaussian (i.e. the negative values around the centre and the slightly positi-
ve values in the four corners). Further analysis showed that this filter closely resembles
a linear combination of a normal Gaussian and a Laplacian-of-Gaussian.

To confirm the hypothesis that standard ANNs learned such linear approximations to
the Kuwahara filter, a simple standard ANN was trained in the same way ANNK was,
using the DCGD training algorithm (section 4.4). This ANN, ANNS

1×2, is shown in
figure 6.8 (b). All weights were initialised to a fixed value of 0.01, λ was set to 1 and the
number of directions to be kept conjugate was set to 10. After training, the MSE on the
testing set was 1.43 × 10−3, i.e. comparable to other standard ANNs (fig. 5.7), and C2

was 5.1× 10−3. The resulting weight sets show that the filter can indeed be decomposed
into a Gaussian-like and a negative Laplacian-like filter. Adding more hidden units and
training using DCGD, for which results are not shown here, did not cause any new
filters to be found.

This decomposition can well be explained by looking at the training objective. The
Kuwahara filter smoothes images while preserving the edges. The Gaussian is a
smoothing filter, while its second derivative, the Laplacian, emphasises edges when
subtracted from the original. Therefore, the following model for the filter found by the
ANN was set up:

f (c1, σ1, c2, σ2) = c1 fG(σ1)− c2 fL(σ2)

= c1
1

2πσ2
1

exp

(
−x2 + y2

2σ2
1

)
− c2

(x2 + y2)− σ2
2

2πσ6
2

exp

(
−x2 + y2

2σ2
2

)
(6.10)
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Figure 6.8: (a) ANNK, the most simple linear ANN to perform a Kuwahara filtering: a 5 × 5
unit input layer and one output unit without bias. The ANN contains 6 independent
weights indicated in the mask by the letters A through F. (b) ANNS

1×2: two hidden
units, no mask (i.e., no restrictions).

in which c1 and σ1 are parameters to be estimated for the Gaussian and c2 and σ2 are
parameters for the Laplacian. Figure 6.9 (c) shows these two functions.

A Gauss-Newton fitting procedure [179] was used to find the parameters of
f (c1, σ1, c2, σ2) given the weights shown in figure 6.9 (a). The resulting model weights
are shown in figure 6.9 (b) and a cross-section is shown in figure 6.9 (c). Although the
fit (c1 = 10.21, σ1 = 2.87, c2 = 3.41, σ2 = 0.99) is not perfect with a model fit MSE
εf = 2.5× 10−3, the correlation between the model and the actual weights is quite high
(C = 0.96).

The hypothesis was that this solution, i.e. applying a Gaussian and a Laplacian, was
a local minimum to which the ANNSs had converged. To test this, the model fitting
procedure was applied to each of the units in the first hidden layer of each of the ANNSs.
This resulted in a model fit error εf and correlation C between the actual weights and
the model weights for each unit.

6.5.1 Experiments

The results, given in figure 6.10 show that, at least for the smaller ANNs, the hypothesis
is supported by the data. For the ANNs trained on the normal data set, over a large
range of sizes (i.e. 1-5, 10 and 25 hidden units) the model closely fits each hidden unit.
Only for larger numbers of hidden units the fit becomes worse. The reason for this is
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Figure 6.9: (a) Weights found in ANNK (fig. 6.8 (a)). (b) Weights generated by the fitted model
(eqn. 6.10: c1 = 10.21, σ1 = 2.87, c2 = 3.41, σ2 = 0.99). (c) A cross section of this
model at x = 0. (d), (e) Weight matrices found in ANNS

1×2 (fig. 6.8 (b)) trained using
DCGD.
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Figure 6.10: A comparison between the actual weights in ANNSs and the fitted models, for both
ANNS

1s and ANNS
2s. The median εf is shown in (a) and (b) as the average εf is rather

uninformative due to outliers.
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that in these ANNs many units have an input weight distribution which is very hard to
interpret. However, these units do not play a large role in the final ANN output, since
they are weighted by small weights in the next layer.

For the ANNs trained on the edge-favouring set the fit is less good, but still gives a reas-
onable correlation. Note however that ANNs which have high performance w.r.t. the
smoothing and sharpening measures (section 6.3.2) do not necessarily show the lowest
correlation: ANNSs with more hidden units give even lower correlation. An opposite
effect is playing a role here: as ANNs become too large, they are harder to train.

The conclusion is that many of the standard ANNs have learned a linear approximation
to the Kuwahara filter. Although this approximation performs well in uniform regions,
its output does not correspond to that of the Kuwahara filter near edges.

6.6 Inspection of modular networks

It is interesting to see whether the modular ANNs still use their initialisation. Remem-
ber that to obtain good performance, the ANNMs had to either be trained further after
the modules were concatenated, or re-initialised and trained over (section 5.4.4). The
question is whether the modules are still performing the functions they were initially
trained on, or has the ANN – after being trained further for a while – found a better
solution? To inspect the ANNs, first the modules were evaluated on the sets they were
trained with. Next, the concatenated ANNMs were taken apart and the modules were
evaluated on the same sets. Figures 6.11 and 6.12 show some examples of such plots.

Unfortunately, detailed inspection is hard. Ideally, if each module was performing the
function it was trained to perform exactly, each plot would show a straight line y = x.
The plots show that this is, in most cases, not true. However, it is possible to make some
general remarks about the differences between the various ways of training the ANNs.
These differences are most clear for the mean and selection modules:

• for well-performing ANNs, the mapping in each module is no longer evident.
Instead, it seems these modules make rather good use of their nonlinearity (fig-
ure 6.11 (c)). The poorly performing ANNs still show a reasonably linear beha-
viour (figure 6.12 (a));

• there is a progressive increase in nonlinearity for ANNM
2 , ANNM

3 and ANNM
4 (fig-

ures 6.11 (a)-(c), 6.12 (a)-(c) and (d)-(f)). The added complexity allows the modules
more flexibility when they are trained further. Note however that the basic map-
ping is still preserved, i.e. the trend is still visible for all units;

• there is an increase in nonlinearity when ANNs are trained on the edge-favouring
set instead of the normal set (figures 6.12 (a)-(c) v. (d)-(f));
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Figure 6.11: Plots of outputs of the four MODAvgs before concatenation against outputs of the
same modules after concatenation and training further or over. Different markers
indicate different output units. The plots show progressively more freedom as the
modules become less restricted ((a)-(c)) and an increase in nonlinearity when mod-
ules are trained on the edge-favouring data set ((a)-(c) vs. (d)-(e)).

• as was to be expected, ANNMs trained from scratch generally do not find the
modular structure (figures 6.11 (d)-(e)).

This leads to the conclusion that although the initialisation by training models indi-
vidually was useful, the modules of the more well-performing ANNs are no longer per-
forming their original function. This is likely to be caused by the modules being trained
individually on ideal, noiseless data. Therefore, modules have not learned to deal with
errors made by other modules. This is corrected when they are trained further together
in the concatenated ANNs. The larger the correction, the better the final performance of
the concatenated ANN.

For the MODVars and MODPoss, the differences are less clear. Most of these modules
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Figure 6.12: Plots of MODSel outputs before concatenation against MODSel outputs after concat-
enation and training further or over. The plots show progressively more freedom as
the modules become less restricted ((a)-(c), (d)-(f)) and an increase in nonlinearity
when modules are trained on the edge-favouring data set ((a)-(c) v. (d)-(f)).

seem to have no function left in the final ANNs: the outputs are clamped at a certain
value or vary a little in a small region around a value. For MODVar, only ANNM

4 mod-
ules have enough flexibility. Here too, training on the edge-favouring set increases the
nonlinearity of the output (figures 6.13 (a)-(c)). MODPos, finally, is clamped in almost all
architectures. Only ANNM

4 modules give some variation in output (figures 6.13 (d)-(e)).
Networks trained from scratch are always clamped too.

In conclusion, it seems that in most ANNs, the modules on the right hand side (MODVar

and MODPos, see figure 5.3) are disabled. However, the ANNs that do show some activ-
ity in these modules are the ANNs that perform best, indicating that the modular initial-
isation to a certain extent is useful. All results indicate that, although the nature of the
algorithm can be used to construct and train individual modules, the errors these mod-
ules make are such that the concatenated ANNs perform poorly (see section 5.4.4). That
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Figure 6.13: Plots of MODVar and MODPos outputs before concatenation against the same out-
puts after concatenation and training further or over. Different markers indicate
different output units. The plots show many module outputs in the concatenated
ANNs are clamped at certain values. Note that in the latter two figures, the original
output is either 0.0 or 0.5; a small offset has been added for the different units for
presentation purposes.

is, modules trained separately on perfect data (e.g. pre-calculated positions of the min-
imal input) are ill-equipped to handle errors in their input, i.e. the output of preceding
modules. For the concatenated ANNs, the training algorithm leaves its modular ini-
tialisation to lower the overall MSE; trained as a whole, different weight configurations
are optimal. The fact that a trained MODPos has a very specific weight configuration
(with large weights) to be able to perform its function means it is more susceptible to
weight changes than other modules and will easily lose its original functionality. In
other words, the final concatenated ANN has “worked around” the errors made by
MODPos by disabling it.
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6.7 Conclusions

The previous chapter discussed a number of experiments, in which modular and stand-
ard feed-forward ANNs were trained to mimic the Kuwahara filter. The main result
was that all ANNs, from very simple to complex, reached the same MSE. A number
of hypotheses was proposed for this phenomenon: that the data set and error meas-
ure may not accurately represent the finer points of this particular problem or that all
ANNs have reached local minima, simply since the problem is too hard. Testing these
hypotheses in this chapter, it was shown that:

• using a different way of constructing training sets, i.e. by mainly sampling from
regions around the edges, is of great benefit;

• using performance measures which do not average over all pixels, but take the two
goals of edge-preserving smoothing into account, gives better insight into relative
filter performance;

• by the proposed smoothing and sharpening performance measures, which corres-
pond better to visual perception, modular ANNs performed better than standard
ANNs;

• using the Lp norm to train ANNs, with p � 2, improves performance, albeit not
dramatically;

• the smaller ANNSs have learned a linear approximation of the Kuwahara filter;
i.e., they have reached a local minimum;

• in the poorly performing modular ANNs, the modules still perform the functions
they were trained on. The better performing modular ANNs retain some of their
initialisation, but have adapted further to a point that the function of individual
modules is no longer clear. The better the performance of the final ANN (accord-
ing to the new measure) the less clear the initialisation is retained.

In the attempts to try to understand the operation of an ANN instead of treating it like
a black box, the interpretability trade-off (discussed in section 4.2.3) again played a role.
For the modular ANNs, as soon as some of the constraints were dropped, ANN per-
formance became much worse: there was no graceful degradation. It was shown too
that it is hard to interpret the operation of the modular ANN after training it further;
the operation of the ANN is distributed differently than in the original modular initial-
isation. The one advantage of using the prior knowledge of the modular nature of the
problem (for example, as in ANNM

4 ) is that it helps to avoid pain-staking optimisation of
the number of hidden layers and units, which was shown to be quite critical in standard
ANNs. Of course, for different problems this prior knowledge may not be available.

The main conclusion is that, in principle, ANNs can be put to use as nonlinear image
filters. However, careful use of prior knowledge, selection of ANN architecture and
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sampling of the training set are prerequisites for good operation. In addition, the stand-
ard error measure used, the MSE, will not indicate an ANN performing poorly. Unim-
portant deviations in the output image may lead to the same MSE as significant ones,
if there is a large number of unimportant deviations and a smaller number of import-
ant ones. Consequently, standard feed-forward ANNs trained by minimising the tradi-
tional MSE are unfit for designing adaptive nonlinear image filtering operations; other
criteria should be developed to facilitate easy application of ANNs in this field. Unfor-
tunately, such criteria will have to be specified for each application (see also [337]). In
this light it is not surprising to find a large number of non-adaptive, application-specific
ANNs in the literature (see section 2.4.1).

Finally, although all performance measures used in this chapter suggest that ANNs
perform poorly in edge-preserving smoothing, the perceptual quality of the resulting
filtered images is quite good. Perhaps it is the very fact that these ANNs have only par-
tially succeeded in capturing the nonlinearity of the Kuwahara filter that causes this.
In some cases this could be considered an advantage: constrained nonlinear paramet-
ric approximations to highly nonlinear filtering algorithms may give better perceptual
results than the real thing, which is, after all, only a means to an end.

As these chapters 3-6 have demonstrated that using supervised methods introduces a
number of problems in choosing the training set, specifying an error criterion etc., the
next chapter will move to unsupervised methods. The goal there is to have a method
build up a model of the data, based solely on the data itself. Only afterwards will these
methods then be used in subsequent classification or regression tasks. The expectation
is that this will allow both easier incorporation of prior knowledge and offer better
opportunities for interpretation.





7

SUBSPACE MODELS FOR FEATURE
EXTRACTION

7.1 Introduction

When techniques from statistical pattern recognition, such as ANNs, are applied to im-
age processing problems, images are often described as vectors in high-dimensional
spaces. An image is a function I(x, y) on a rectangular grid of pixel positions. For ap-
plication of pattern recognition techniques, the function values are usually stored in a
vector x. As treating entire images in this way is computationally infeasible, images
can be represented as distributions of d-dimensional vectors describing w×w pixel im-
age patches as well (so d = w2). However, the high-dimensional space in which these
vectors reside will never be entirely filled, since images typically do not contain ran-
dom configurations of pixels. The set of images that arise in practice and make sense to
human observers is only a very small subset of all possible images. In well-sampled im-
ages, neighbouring pixels will be highly correlated, and coherent regions in images (e.g.,
textures) can be better described by individual local models in the high-dimensional
space. In other words, a representation of images (or image patches) as vectors in a
high-dimensional space contains far more parameters than needed.

Furthermore, one would often like to model image information locally invariant to off-
set, contrast, translation, rotation and scale. However, if an image patch is just slightly
brightened, contrast enhanced, translated, rotated or scaled1, the distribution of the
vectors x will change drastically, whereas to a human observer the image content looks
very similar. That is, the representation is not naturally invariant. Figure 7.1 illustrates
this by showing an extreme case: when this texture is shifted by one pixel, its vector
representation will jump to the exact opposite side of the d-dimensional hypercube on
the surface of which all binary images lie.

1This latter set of operators – translation, rotation and scaling – will henceforth be referred to as
transformations in this chapter and the next.
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x = (1,0,1,0,...,1) T x = (0,1,0,1,...,0) T

Figure 7.1: An example of the invariance problem in describing image patches by high-
dimensional vectors x.

It can be shown that transformed versions of an image patch all lie on an m-dimensional
manifold in the d-dimensional space spanned by all pixel values, where m is the number
of degrees of freedom present in the transformations [224]. Although this manifold may
be intrinsically low-dimensional, it is likely to be nonlinear and lie folded up in the d-
dimensional space. A good representation would therefore be one which describes this
manifold using a small number of parameters, thereby avoiding the estimation prob-
lems in high-dimensional spaces and enforcing invariance to elementary transforma-
tions. This chapter discusses methods of describing image patches by low-dimensional
linear subspace models. Although there are nonlinear subspace models, e.g. auto-
associator ANNs (see section 2), nonlinear principal component analysis [229], principal
curves [340] and surfaces [145], these are often hard to compute in high-dimensional
spaces and algorithms to find them cannot be guaranteed to converge. However, non-
linear manifolds can be approximated using mixtures of linear subspace models. The
past few years have seen an increase in interest in such mixture models. e.g. mixtures-
of-PCA [151, 356] and mixtures-of-ICA [211, 213, 214].

In the remainder of this chapter, various models will be compared based on their applic-
ation to feature extraction, particularly texture description, e.g. for subsequent segment-
ation. In chapter 8, mixtures of these models will be discussed and applied to various
image processing problems. First, in section 7.2, a short overview of the ideas leading
to this work is given and the basic setup is discussed. Section 7.3 describes the data
used in texture description experiments later in the chapter. Next, section 7.4 discusses
various models that may be used to describe image data: Gaussians, principal compon-
ent analysis-based (PCA) and independent component analysis-based (ICA). Section 7.5
shows experiments comparing these models in terms of discriminating power and in-
variance w.r.t. the transformations mentioned above. The role of data normalisation,
sample size and model parameters is investigated. Based on observations in these ex-
periments, in section 7.6 the relative merits of ICA for texture description are discussed.
Finally, section 7.7 ends with conclusions.



7.2 OVERVIEW 129

7.2 Overview

7.2.1 Previous work

The Adaptive Subspace SOM

The work presented in this chapter was inspired by a technique proposed by Kohonen
in 1995 [197], the adaptive subspace self-organising map or ASSOM. This extension
of the ordinary SOM (see section 2.2.2) uses subspaces Si in each node i rather than
just single weight vectors. Training is not done on just single samples but sets E of
slightly translated, rotated and/or scaled signal or image samples, called episodes. These
episodes are treated as a single entity, that is, samples are assigned as a group to a
subspace based on a distance measure between an episode and a subspace, which is the
minimum projection error of any sample x ∈ E :

D(E , Si) = min
x∈E

||x− x̂j||, (7.1)

where x̂j is the orthogonal projection of x onto subspace Sj.

To train the ASSOM, samples drawn from a signal or an image are converted into epis-
odes by creating slightly transformed versions of the original sample. The distance
between each node and the episode is then calculated, and the winning node is defined
as that node to which the episode has minimum distance. In the adaptation phase,
the winning node’s subspace, and that of its neighbours, is rotated to better fit the just
presented episode.

The ASSOM gives good results (see figure 7.2), but is extremely slow in training. This
is caused not only by learning subspaces by rotating them, which demands careful and
prudent setting of learning parameters, but also by updating neighbourhoods to obtain
a topologically correct map. If these demands are dropped, i.e. by calculating the sub-
spaces in a batch-mode operation (e.g. using PCA) and performing non-topologically
correct clustering, the resulting system would be greatly simplified.

Mixtures of principal component analysers

An ASSOM-like system without the use of episodes and without the insistence on to-
pological correctness comes close to the systems described by Bregler and Omohun-
dro [32], Kambhatla and Leen [187], Hinton et al. [151], Roweis [304], Tipping and
Bishop [355, 356] and Meinicke and Ritter [237]. These are all mixture-of-PCA al-
gorithms, using different principal component analysis (PCA) formulations and clus-
tering algorithms. Although the ideas have long been known (see e.g. [115]), only re-
cently have they been applied to practical problems. Note that the discussion here is
necessarily brief, as PCA will be discussed more in-depth in section 7.4.2.
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Figure 7.2: An ASSOM trained on the natural images in the left column. The middle column
shows the first and second basis vector of each subspace; the right column shows
their Fourier transforms. Reproduced from [197].

Bregler and Omohundro [32] propose a system in which local PCA bases are trained
after clustering vectors using the k-means algorithm. This idea was extended by
Kambhatla and Leen in their method [187], which they call VQPCA (for vector quant-
isation PCA). The algorithm consists of alternating steps of assigning vectors to clusters
and re-calculating PCA bases for these clusters. Clustering, as in the ASSOM, is per-
formed based on a subspace distance criterion rather than the Euclidean distance from
vectors to cluster centers.

Hinton et al. [151] extend this model by linking PCA to factor analysis (FA). FA is a more
general method than PCA [17, 100, 231], in that it assumes noise components outside
a subspace2 to be uncorrelated, but with different variance in each noise direction. FA
models covariance (in the subspace) and variance (outside the subspace) independently,
whereas PCA only models covariance and assumes noise outside the subspace to have
identical variance in all directions. However, there is no closed form solution for finding
FA bases; they can be found using, for example, the EM algorithm [28, 84]. By using
latent variable methods proposed for FA and restricting the noise variance matrix, PCA
models can be fitted in this way as well.

A fully probabilistic version of PCA was proposed by Roweis [304] and Tipping and
Bishop [355], based on the same connection to FA. This model was later extended to
a mixture model by Tipping and Bishop [356]. The entire mixture model is trained

2In this chapter, “outside the subspace” will be used to denote the nullspace [343] of a subspace, i.e.
the (d−m) dimensional space perpendicular to that subspace.
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using the EM algorithm. All parameters except the number of models (subspaces) and
the number of dimensions per model are optimised automatically. In a variation on
this algorithm, Meinicke and Ritter [237] allow the method to optimise the number of
dimensions per model, by specifying the allowed noise variance.

Note that these probabilistic formulations actually require a few assumptions which
might not always be fulfilled in practical applications. The most important of these is
the assumption of equal noise variance in all dimensions outside the subspace, which
sets PCA apart from FA. Although this is part of the classical PCA model, it is never
used in traditional algorithms. For probabilistic formulations of PCA, on the contrary,
the noise has to be modelled explicitly.

Mixtures of independent component analysers

In principle, using the EM algorithm, it is quite straightforward to construct methods
for training mixtures of arbitrary subspace models, as long as they can be formulated
as a maximum likelihood (ML) problem. The EM algorithm [84] for mixture models
works by assigning samples to individual models based on current probability density
estimates (the E-step) and re-calculating each model’s parameters based on the set of
samples currently assigned to it (the M-step). The EM algorithm will be discussed in
more detail in section 8.2.2 (for mixtures-of-PCA).

Over the last years, independent component analysis or ICA has received much atten-
tion. ML-formulations were given by various authors [172, 175, 212, 227, 248] and a
mixture-of-ICA method was proposed by Lee et al. [211, 213, 214]. However, the mod-
els in this mixture are constrained to have a number of dimensions equal to that of the
original space, i.e. m = d. In appendix C, a learning rule is derived based on this mix-
ture model which allows finding undercomplete ICA bases. The overcomplete case,
where m > d, is discussed in [219].

7.2.2 Subspace mixture model elements

A common element of the techniques described above is the fact that the training al-
gorithm necessarily consists of two steps, usually applied iteratively. First, data some-
how has to be split into a number of clusters. Approaches so far have used k-means
clustering, vector quantisation and the E-step in the EM algorithm. However, in prin-
ciple any clustering method may be applied, as long as it is based on a given matrix of
distances between vectors and clusters (models). In section 8.2, the mean shift cluster-
ing algorithm [47, 61] will be discussed, which automatically determines the number of
models.

After the data has been clustered, models will have to be fitted to each of the clusters.
Using hard clustering methods such as k-means, this is quite straightforward. In the EM
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No. Content Album

S1 Herringbone weave D16
S2 French canvas D20
S3 Netting D34
S4 Oriental straw cloth D52
S5 Raffia looped D84

to a high pile
S6 Loose burlap D103

(a) Structured textures

No. Content Album

N1 Grass lawn D9
N2 Straw D15
N3 Pressed calf leather D24
N4 Beach pebbles D54
N5 Handmade paper, D110

grassy fiber
N6 Plastic bubbles D111

(b) Natural textures

Table 7.1: The two sets of 6 Brodatz texture images used. In the “Album” columns, the numbers
as given in the Brodatz album [34] are shown. Figure 7.3 shows the texture images.

algorithm, the M-step re-calculates the model parameters based on weighted contribu-
tions from all data vectors. After the models have been found, distances between all
data points and all models can be found again, after which the data can be re-clustered.

As the clustering and model fitting steps in most methods can be decoupled quite easily,
they will be studied in isolation. In this chapter, the models will be discussed. First, in
section 7.4 a number of possible models will be discussed in more detail. Experiments
will then be performed in section 7.5 to learn about (predicted) performance of each
model type as texture descriptors and the influence of various implementation choices.
This knowledge will be used in chapter 8 to build mixture models for texture segment-
ation, object recognition and image database retrieval.

7.3 Texture data

Throughout this chapter, all models will be compared on their ability to describe texture.
To this end, two sets of textures were taken from the Brodatz album [34], which is often
used for segmentation evaluation. Table 7.1 gives details on the texture sets; figure 7.3
shows the individual texture images. The first set contains 6 structured textures, the
second 6 more natural textures. It is to be expected that subspace methods will work
better on the former, as these exhibit stronger correlation between pixels.

The original 256 × 256 pixel images were rescaled to a size of 192 ×192 pixels using
bicubic interpolation. This was done to make sure texel sizes (i.e. the sizes of the “struc-
turing elements”) in the structured textures were smaller than 16 × 16 pixels, the max-
imum image patch size used in the experiments in this chapter. Furthermore, larger
image sizes would have lead to more computation. For each image, the grey value
range was rescaled to [0, 1].
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(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

(g) N1 (h) N2 (i) N3

(j) N4 (k) N5 (l) N6

Figure 7.3: The 12 Brodatz textures used in the experiments in this chapter: structured textures
(S1–S6) and natural textures (N1–N6). Table 7.1 gives details on both sets.
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Figure 7.4: Three different window shapes used, shown here for a 16× 16 pixel window size.

7.3.1 Data collection and episode construction

As the mixture models will be trained on image patches rather than entire images, train-
ing sets will have to be sampled from the images. Various choices play a role in this:
window size and window shape. In the remainder of this chapter, a window size of
16 × 16 pixels will be used, although some experiments with smaller sizes (8 × 8 and
12 × 12 pixels) will be presented as well. Besides window size, the choice of window
shape plays a role. The easiest way of sampling a data set from an image is to extract
rectangular windows and place the pixel values row-wise in a vector. However, this
introduces directional sensitivity into the training set, as larger diagonal structures can
be represented than horizontal or vertical one. Therefore, some authors propose mul-
tiplying the windows by a round or Gaussian window shape (where σ = 1

4 w) to limit
the effect of pixels far away from the window center [166, 196]. The three options are
shown in figure 7.4. Note that using round window shapes, less pixels are retained
than with the others (e.g. a round window shape in a 16 × 16 pixel window contains
188 pixels). The experiments in this chapter were performed using rectangular window
shapes, unless indicated otherwise.

In all experiments in this chapter, the notion of episodes introduced by Kohonen (sec-
tion 7.2.1) was used. This artificial enlargement of the data set allows for incorporation
of prior knowledge, i.e. invariance over small translation, rotations and scales. This
should not be necessary for large sets of images taken from real-life situations, as such
sets should already contain all possible transformations of textures and structure that
can occur in practice in that application. However, it allows for construction of invari-
ant models based on a limited number of training images. Two kinds of episodes were
used:

• translation-only: whenever a sample is extracted from the image at position
(x0, y0), four other samples are extracted at positions (x0 + x, y0 + y), where
x ∼ U(−5, 5) and y ∼ U(−5, 5), giving a total of five samples per episode.
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• all-transformation: next to a sample extracted at position (x0, y0), four translated
samples are extracted as above; five samples are taken at the same position in
images rotated over -45◦, -22.5◦, 0◦, 22.5◦and 45◦; and five samples are taken at the
same position in images scaled to 1.1×, 1.2×, 1.3×, 1.4× and 1.5× the original
size. This gives a total of 15 samples per episode.

In most of the experiments, data sets of 1,500 samples per texture were created in this
way, containing either 300 translation-only episodes or 100 all-transformation episodes,
except where indicated otherwise. After data set construction, the notion of episodes
is only used in clustering, i.e. episodes are assigned to clusters as a whole. For fitting
individual models, this knowledge is not required.

Note that in all-transformation sampling, the invariances are incorporated only by
themselves; that is, there are no samples that are translated, rotated as well as scaled. Al-
though this might be beneficial, applying combinations of transformations would lead
to a huge increase in episode size.

7.3.2 Normalisation and pre-mapping

An important question that remains is whether the data should be pre-processed fur-
ther. In [197], several steps are taken in training the ASSOM. First, samples are high-
pass filtered by subtracting local averages. Next, a Gaussian window is applied, which
is flattened during training. However, the goal of these experiments was to obtain
wavelet-like basis vectors, as shown in figure 7.2.

Some pre-processing can be used to achieve invariance to illumination. In general, illu-
mination differences are modelled by a gain and an offset, i.e. for two image windows
IA and IB of identical content taken under different illuminations the following should
hold:

IB = c1 IA + c2, (7.2)

where c1, c2 are constants. If each sample is normalised by subtracting the mean grey
value from each pixel and dividing each pixel by the standard deviation of grey values
in the sampling window (i.e. equalising the length of each sample), an illumination
invariant representation can be obtained. A major disadvantage of this approach is that
any noise present in the image will be blown up due to the normalisation of standard
deviation. Note that normalisation also has an effect on the type of model applicable;
this will be discussed in section 7.4.2.

Finally, once entire data sets are created, these can optionally be pre-processed by re-
moving directions in which there is little or no variance. These directions can be as-
sumed to contain noise. This will be called pre-mapping. The algorithm used is PCA;
the data is pre-mapped by projecting onto the eigenvectors corresponding to the set of
largest eigenvalues explaining more than r of the variance, where r = 90% was used in
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(a) (b)

Figure 7.5: (a) An example Gabor pair: the real and imaginary parts of the filter. (b) Cover-
age of the frequency domain by the 12-filter bank; due to the symmetry of Fourier
transforms of real-valued images, only one half of the plane needs to be covered.

the experiments in this chapter. The data is not whitened, however (see section 7.4.2);
the variances in the retained dimensions are as they were before. For 16× 16 windows
taken out of structured textures, this leaves 50 dimensions on average; out of natural
textures, on average 70 dimensions remain.

7.3.3 The Gabor filter bank

To compare the model types to be introduced in the next section to a standard approach
to texture description, a Gabor filter bank can be used. A Gabor filter is a complex filter
in the image domain [31]:

g(x, y) =
(

1
2πλσ2

)
exp

(
− (x′/λ)2 + (y′)2

2σ2

)
exp (2π j(u0x + v0y)) (7.3)

i.e. a Gaussian modulated by a complex sine wave. Here (x′, y′) is (x, y) rotated over
an angle φ, i.e. (x′, y′) = (x cos φ + y sin φ,−x sin φ + y cos φ) and (u0, v0) is the center
frequency. Figure 7.5 (a) shows a pair of Gabor filters, i.e. the real and imaginary parts
of g(x, y).

The parameters of the Gabor filter can be found by specifying the filter’s frequency f ,
orientation φ, radial frequency bandwidth B f and orientation bandwidth Bφ:

σ =

√
ln
√

2
/

tan(
1
2

Bφ)π f (7.4)

λ =

√
ln
√

2
(

2B f + 1
)/

π f σ
(

2B f − 1
)

(7.5)

(u0, v0) = ( f cos φ, f sin φ) . (7.6)
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Following [182] and [217], the following parameters were chosen: f ∈ {0.088388 ,
0.176777, 0.353553}, φ ∈ {0 , π

4 , π
2 , 3π

4

}
, B f = 1 and Bφ = π

4 . Before applying the
Gabor filter, the local mean in a 7 × 7 pixel neighbourhood was subtracted from each
pixel, to remove the DC component. Figure 7.5 (b) shows how the daisy petal-like fre-
quency responses of this set of 12 filters occupy the frequency domain. Only 12 filters
are necessary; because of the symmetry in the Fourier transform of real-valued images
filters in the other half-plane do not add information. Note that the filter bank is rather
coarse; especially the higher frequencies are covered poorly. For each of the 12 filters,
the squared magnitude of its complex output is taken as a texture descriptor for each
pixel. These can then be used in the same way that local image windows were used.
In the experiments below, Gaussian models were used, both with mean-only and full
covariance matrix (see section 7.4.1).

7.4 Models

This section discusses some basic models that can be applied in a mixture algorithm.
Starting from the Gaussian model, principal component analysis (PCA) is introduced
as a trade-off between modelling power and model complexity. Finally, independent
component analysis (ICA) will be discussed as an alternative to PCA.

Throughout this section a data set of d-dimensional vectors x will be denoted by L =
{xn}, n = 1, . . . , N. When subspace models are discussed, m will denote the number of
dimensions of the subspace.

7.4.1 Gaussian

In a Gaussian model, x is modelled as follows:

p(x|Θ) =
1

(2π)
d
2 | det(C)| 1

2
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
, (7.7)

where Θ = {µ, C} is the set of parameters, µ is the mean and C the covariance matrix
over all x ∈ L. Different models can be constructed by constraining C:

• C is a full covariance matrix, leading to an elliptic Gaussian;

• C = Ψ, a diagonal matrix, leading to an elliptic Gaussian with axis-aligned major
axes, i.e. covariances are not taken into account, only variance in each dimension;

• C = σ2I, a matrix with equal values on the diagonal, leads to a spherical Gaussian,
ignoring covariances and the difference between variance in different dimensions;

• C = I: only the mean is used.
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In the experiments in this chapter, only the two extreme cases are considered, i.e. the
full-covariance Gaussian and the mean-only model. To estimate their parameters, the
sample mean and covariance matrix can be used:

µ̂ = x̄ = E(X) =
1
N

N

∑
n=1

xn (7.8)

Ĉ = S = E((X− E(X))2) =
1

N − 1

N

∑
n=1

(xn − x̄)(xn − x̄). (7.9)

Distance to a Gaussian

Distances to these models follow in a straightforward way from eqn. 7.7. The negative
log-likelihood − ln p(z|ΘG), or normalised Mahalanobis distance [348] between a vector z
and the full Gaussian model G specified by ΘG is defined as:

D(z, G) =
d
2

ln(2π) +
1
2

ln | det(C)|+ 1
2
(z− µ)TC−1(z− µ), (7.10)

which is the Mahalanobis distance normalised for the volume introduced by C. For the
mean-only model, the distance measure used is simply

D(z, G) = ‖z− µ‖2, (7.11)

the squared Euclidean distance between z and µ.

When Gaussian models with full C are trained on data which does not fill the en-
tire space, C will be poorly conditioned. That is, | det(C)| will be very small and
ln | det(C)| → −∞. However, the standard Mahalanobis distance can still be used:

DM(z, G) = (z− µ)TC−1(z− µ), (7.12)

Another possibility is to pre-map the data to retain a certain proportion of variance, say
r = 90% (see section 7.3.2); in other words, the data set can be adapted to fit the model.
Note that models trained in this pre-mapped space are not comparable to those trained
in the original space.

7.4.2 Principal component analysis

Principal component analysis (PCA, [162, 231]) is a well-known linear technique for
reducing the dimensionality of a data set. In short, PCA is a projection from d to m
dimensions,

u = W(x− µ), (7.13)
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which preserves as well as possible the retained variance. Here the m × d matrix W
contains the PCA projection vectors as its rows. It can be shown (see e.g. [377]) that the
m projection vectors that maximise the variance of u, i.e. the principal axes, are given by
the eigenvectors e1 . . . em of the sample covariance matrix (eqn. 7.9) corresponding to
the largest non-zero eigenvalues λ1 . . . λm. These vectors can be found by solving the
set of equations

(S− λiI)ei = 0, i = 1, . . . , d (7.14)

(see e.g. [343]) and sorting the ei by the associated eigenvalues λi. The PCA projection
matrix is then W = ET, where the columns of E contain the eigenvectors. Usually, the
vectors ei are first made orthonormal, so that the eigenvalues are proportional to the
variance in the eigenvector directions. The proportion of variance retained by map-
ping down to m dimensions can therefore be found as the normalised sum of these m
eigenvalues, i.e.

r =
∑m

i=1 λi

∑d
i=1 λi

. (7.15)

Note that this can also be used to find the number of dimensions m required to retain at
least a proportion r of the variance.

Besides maximising the retained variance, PCA has two other important properties:

• decorrelation: the projected data is decorrelated, i.e. E(UUT)ij = 0, ∀i 6= j. This can
easily be seen by the following observation. Let W = ET be the matrix containing
the eigenvectors corresponding to all non-zero eigenvalues as its rows, and Λ be a
matrix containing the associated eigenvalues λ on the diagonal. Then the covari-
ance matrix of the projected data U = WX, where X =

[
x1x2 . . . xn], can be found

to be:

E(UUT) = E((ETX)(XTE)) = ETE(XXT)E = ETSE. (7.16)

But, as the eigenvector equation (eqn. 7.14) gives SE = EΛ, this is:

E(UUT) = ETEΛ = IΛ = Λ, (7.17)

since E is orthogonal. In other words, the covariance matrix of the projected data
is a diagonal matrix – there are no correlations.

Using an almost identical derivation, it can be shown that when the data is projec-
ted using W = Λ− 1

2 ET, the data has equal variance in all dimensions as well:

E(UUT) = Λ− 1
2 ETEΛ− 1

2 Λ = Λ−1Λ = I. (7.18)

This process is called sphering or whitening. PCA is not the only method to do this;
any projection which results in E(UUT) = I is a sphering projection.
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• least squares reconstruction: PCA projection minimises the squared reconstruction
error. That is, if the projected vector u = W(x − µ) is projected back into the
original space as x̂ = AW(x − µ), where A = WT contains the basis vectors, then
the squared reconstruction error ‖(x − µ) − x̂‖2 is minimal. A PCA projection is
the optimal projection in the least squares reconstruction sense.

Note that the backprojection matrix A equals WT only when W is orthogonal.
If W just contains orthogonal vectors, the more general projection operator A =
W(WWT)−1WT should be used.

Distance to a PCA base

The distance of a vector z to a PCA subspace P specified by parameters ΘP = {µ, W}
can be defined as the reconstruction error, i.e.:

D(z, P)2 = ‖(z− µ)−AW(z− µ)‖2 = ‖(z− µ)− ẑ‖2, (7.19)

where ẑ is now the result of projecting (z− µ) onto the subspace. Note that for arbitrary
z and P, this distance measure does not say anything about the distance in the subspace;
it just says how far vectors lie from the subspace.

Here, the difference between working on original and normalised data (see section 7.3.2)
comes into play. Normalised data will lie on a hypersphere of radius 1 around the ori-
gin, due to the length normalisation of each sample. From the other normalisation step,
subtraction of the average pixel intensity in each sample, it does not follow that an entire
normalised data set will have zero mean in the d-dimensional space. However, assum-
ing all transformed versions of a sample (i.e., all linear combinations of subspace basis
vectors with unit vector length) are equally likely, the prior distribution of the data set
inside the subspace is uniform on the intersection of the subspace and the hypersphere.
As a consequence, the origin of the subspace can be assumed to be zero, i.e. µ can be
fixed at 0 in algorithms trained on normalised data.

In this case, there is no need for a model inside the subspace, as new normalised vectors
will also lie on the same hypersphere. Therefore, the squared length of a projected
vector (inside the subspace) will be negatively proportional to the squared projection
error (outside from the subspace), see eqn. 7.19. Measuring distance inside the subspace
would not add any information.

For non-normalised data, the simplest approach is to assume a Gaussian model in the
subspace and to devise a distance measure combining within-subspace distance and
out-of-subspace distance. Attempts at such a distance have been made by, among oth-
ers, Moghaddam and Pentland [245], Sung and Pong [348], Hinton et al. [151] and Tip-
ping and Bishop [356]. Moghaddam and Pentland start by defining a distance measure
as a composite of a distance-from-subspace D f and distance-in-subspace Di [245]. The
basic idea is shown in figure 7.6.
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The squared distance-from-subspace is simply the reconstruction error, eqn. 7.19. For
the distance-in-subspace they start with the Mahalanobis distance in the original d-
dimensional space (eqn. 7.12, assuming, without loss of generality, zero mean data, i.e.
µ = 0):

D2
M(z) = zTC−1z. (7.20)

Due to the definition of PCA, this can be written as (assuming non-zero eigenvalues):

D2
M(z) = zT(EΛET)−1z = ẑTΛ−1ẑ =

d

∑
i=1

ẑ2
i

λi
, (7.21)

where E now is the d × d orthogonal matrix containing all eigenvectors, so E−1 = ET.
Now when taking only an m-dimensional subspace P into account, only the first m ele-
ments of ẑ will lie inside P. Denoting this part by ẑP, the squared distance-in-subspace
simply becomes:

D2
i (z, P) = D2

M(ẑP) =
m

∑
i=1

ẑ2
i

λi
. (7.22)

For the squared distance-from-subspace, note that eqn. 7.19 for P can be written as:

D2
f (z, P) = ‖z− ẑP‖2 = ‖z‖2 − ‖ẑP‖2 =

d

∑
i=1

z2
i −

m

∑
i=1

ẑ2
i =

d

∑
i=m+1

ẑ2
i . (7.23)

So when the data is mapped to subspace P, eqn. 7.21 can be approximated by

D2
M(z, P) = Di(z, P)2 + βD f (z, P)2 =

m

∑
i=1

ẑ2
i

λi
+ β

d

∑
i=m+1

ẑ2
i . (7.24)

The optimal constant β can be shown quite easily to be [245]

β =
d−m

∑d
i=m+1 λi

, (7.25)

i.e. the inverse of the average of the eigenvalues outside the subspace.

There are two serious problems with eqn. 7.24:

• The distance measure is not normalised like the Mahalanobis distance in eqn. 7.10,
as was noted by Hinton et al. [151] and Sung and Poggio [348]. Whereas Hinton
et al. add “a constant”, Sung and Poggio give the only right solution. As for the
Gaussian model (section 7.4.1), the Mahalanobis distance should be normalised to
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Figure 7.6: A PCA distance measure, composite of distance-from-subspace D f and distance-in-
subspace Di.

the negative likelihood (dropping constants):

D2
M(z, P) = ln | det(C)|+ D2

i (z, P) + βD2
f (z, P)

= ln | det(EΛET)|+ D2
i (z, P) + βD2

f (z, P)

= ln | det(Λ)|+ D2
i (z, P) + βD2

f (z, P)

=
d

∑
i=1

ln λi +
d

∑
i=1

ẑ2
i

λi
+ β

d

∑
i=m+1

ẑ2
i . (7.26)

• More importantly, in order to weight the distance inside the subspace (eqn. 7.22),
the dimensions outside the subspace have to be taken into account (eqn. 7.23). This
now imposes not only a model inside the subspace, but also outside: a Gaussian
model with equal variance

σ2 =
1
β

=
1

d−m

d

∑
i=m+1

λi. (7.27)

If the model does not hold, e.g. when the subspace model fits perfectly and λi = 0
for i > m, the distance measure blows up as β will be ∞.

In fact, the resulting model is exactly the same as those introduced by Roweis [304] and
Tipping and Bishop [355]. In their approaches, the data set is modelled by a Gaussian
with covariance matrix C constrained to C = AAT + σ2I, where the subspace basis
A and the noise level σ2 are learned. This shows how PCA can be seen as a trade-
off between a full-covariance Gaussian model and a restricted Gaussian model with
C = σ2I (section 7.4.1).

Implementation

Summing up, in the experiments performed in this chapter, two different distance meas-
ures were used:
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• for PCA models trained on normalised data, the distance measure was simply the
reconstruction error (eqn. 7.19);

• for PCA models trained on non-normalised data, the distance measure was the
normalised distance-in-subspace/distance-from-subspace measure (eqn. 7.26).

A final question is what number of dimensions the subspace should have. A rough
approximation would be to set the number of dimensions equal to the number of de-
grees of freedom that need to be modelled, e.g. 4 for translation in the x-direction and
y-direction, rotation and scaling. However, this supposes that transformed textures can
be described by a linear subspace, which need not be the case for two reasons:

• the texture itself may require more dimensions to be described well. Consider, for
example, a 1D block wave signal of period p; a subspace would need to have p
dimensions to describe this in a translation-invariant way;

• the transformations may lead to nonlinear subspaces, which – although low-
dimensional – would need to be modelled using more dimensions when using
a single linear subspace.

The question as to what number of dimensions is sufficient will be answered by per-
forming experiments (section 7.5.6).

7.4.3 Independent component analysis

Lately, a technique different from PCA has gained considerable interest: independent
component analysis or ICA [176]. In its most basic form, this method tries to find not
just projection directions in which the data is uncorrelated, but directions in which the
data is independent. The model is identical to PCA:

u = W(x− µ). (7.28)

However, as ICA was originally applied to blind separation of various signals (or
sources) s under an additive model, here the matrix W is often called the unmixing matrix
and backprojection matrix A the mixing matrix. This backprojection is defined, cf. PCA,
as:

x = As + µ. (7.29)

Note that in the notation here, u is used to denote an estimate of s.

Clearly, independence, i.e.

E(g1(ui)g2(uj)) = E(g1(ui))E(g2(uj)), ∀i 6= j, g1(.), g2(.), (7.30)

where g1(.) and g2(.) are any measurable functions, is a stronger demand than the un-
correlatedness of PCA:

E(uiuj) = E(ui)E(uj), ∀i 6= j, (7.31)
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Figure 7.7: Kurtoses κ calculated for a set of 100,000 points drawn from three distributions:
(a) the uniform distribution, which is sub-Gaussian or platykurtotic; (b) the Gaus-
sian distribution, which is mesokurtotic; and (c) the Laplacian distribution, which is
super-Gaussian or leptokurtotic.

and cannot be obtained using at most second order information3. As such, there is no
closed form expression to find an ICA base. Instead, many iterative algorithms have
been proposed based on the following observations:

• independent source distributions should have a smaller differential entropy, i.e.
H(u) = −

∫
f (u) ln f (u)du, than the Gaussian distribution [173];

• independent sources ui should have as little mutual information, i.e.
I(u1, . . . , um) = ∑m

i=1 H(ui)− H(u), about each other as possible [171];

• the Kullback-Leibler divergence between the factorised density fF(u) = ∏i fi(ui)
and the true density f (u),

∫
fF(u) ln fF(u)

f (u) du, should be minimal [5];

• independent sources are likely to be found by looking for non-Gaussian distribu-
tions in the projection, e.g. by specifying a non-Gaussian distribution and fitting
it using maximum likelihood [20, 212].

Most of the observations listed above lead to similar or even identical algorithms [38,
175]. The general idea behind all of them is that distributions of the data projected
onto an ICA basis vector should be as non-Gaussian as possible. This links ICA to
projection pursuit [110, 111, 186], which often uses non-Gaussianity as a measure of
“interestingness” of a projection. An intuitive reasoning is that, due to the central limit
theorem which states that a sum of i.i.d. random variables will tend in the limit to
have a Gaussian distribution, non-Gaussian projection distributions will indicate that
the projection is not a sum of random variables but a single one.

A measure often used to judge the property of non-Gaussianity is the (Pearson) kurtosis

3Information contained in the covariance matrix of the data.
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of a distribution f (u), i.e. the central fourth-order moment:

κ f (u) =
µ4

µ2
2

=
E((u′)4)
E((u′)2)2 , (7.32)

where u′ = u − E(u). In this definition of kurtosis, the Gaussian distribution has a
kurtosis of 3. More peaked distributions, such as the Laplacian, have a higher kurtosis,
whereas more flat distributions, e.g. the uniform distribution, have a smaller kurtosis.
Figure 7.7 illustrates this. Some algorithms simply maximise the absolute difference in
kurtosis between the projection distribution and the Gaussian.

A limitation of ICA therefore is that Gaussian independent components (ICs) cannot
be found. However, for Gaussian ICs simple decorrelation (as performed by PCA)
also makes the components independent, as the Gaussian distribution is specified com-
pletely by the mean and covariance matrix (cf. section 7.4.1). When it is know that data
is distributed according to a Gaussian, whitening will result in i.i.d. Gaussian projec-
tions.

Pre-whitening

Whitening, e.g. by PCA, is often used as a pre-processing step for ICA. Some algorithms
require this, to find independent component irrespective of differences in the variance of
projected data. However, even when it is not required, it speeds up algorithms, because:

• the data is already decorrelated, which is a requirement for independence;

• some of the resulting properties of data and parameters can be used to speed up
algorithms, such as the mixing matrix W being orthogonal and the variance being
equal in all directions;

• as ICA is very noise sensitive, it is advisable to use PCA pre-processing for dis-
carding dimensions of low variance (assumed to contain noise) as well. This again
speeds up algorithms as there are fewer dimensions in the data presented to the
ICA algorithm.

The consequence of pre-whitening is that the ICA projection itself is merely a rotation
of the axes. Figure 7.8 gives an example for a 2D data set.

Independent component analysis on image data

The first major application of ICA was to the blind unmixing of signals (also known as
blind source separation or the cocktail party problem), see section C.4.1. However, the ICA
model can be applied to image data as well. In order to discuss its possible merits, the
discussion in [22] is summarised here. The starting point for both PCA and ICA is the
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Figure 7.8: A 2D uniform distribution with PCA and ICA bases, in three different spaces.

idea that image patches can be modelled as weighted sums of a number of underlying
causes, cf. eqn. 7.29 (in the rest of this discussion, the mean image patch µ is assumed
to be 0). If a first demand on the causes is that they are uncorrelated, this means that for
a projection matrix W the following should hold:

WTW = C−1. (7.33)

or, equivalently, that AAT = C. However, this demand does not uniquely define a solu-
tion; additional demands should be made. One demand is orthogonality of the rows
of W, which leads to PCA (eqn. 7.18). PCA projection vectors are global in the im-
age domain and localised in the frequency domain (see figure 7.9); in fact, for stationary
signals, PCA projection vectors can be shown to be the basis vectors of the Fourier trans-
form [85, 104]. Another demand could be that W is a symmetric matrix, which leads to
zero-phase component analysis (ZCA). In ZCA, W = C− 1

2 , giving on-center off-surround
projection vectors which are localised in the image domain, but global in the frequency
domain (figure 7.9). ICA can be seen as a trade-off between these two opposites. The
demand that the projections are not only uncorrelated, but also independent, gives fil-
ters which are localised both in frequency and space (figure 7.9). In this light, several
authors have suggested links with wavelets [21, 22, 166, 167, 211, 214] and receptive
fields found in the mammalian visual cortex [13, 104, 164, 263, 264].

Given the emerging filters, the idea is that ICA might be useful for image data which
cannot be described well using the global, low-frequency PCA bases. This would be im-
age data in which certain characteristic high-frequency elements regularly occur against
an otherwise irregular background, such as the natural textures shown in figure 7.3 (b).
However, although this idea has been expressed by many authors, a successful applic-
ation of this aspect of ICA to image processing problems has not yet been published.
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Figure 7.9: PCA, ZCA and ICA filters, or projection vectors, W found on 10,000 12 × 12 pixel
patches taken from natural images (see figure C.6 on page 239) and the magnitude
of their Fourier transforms.

Algorithm

An algorithm was developed for this work as a variation on the extended infomax ICA
algorithm of Lee et al. [212]. This algorithm is a maximum likelihood (ML) fit of a set
of distributions, in which a switching matrix K (also learned, see section C.1.2) decides
whether to fit a sub-Gaussian or a super-Gaussian distribution to each dimension of
the projected data u = Wx. These distributions are given by eqns. C.26 and C.30, in
appendix C. An advantage of using an ML algorithm is that it can easily be extended to
a mixture model [211, 214].

The main limitation of the original algorithm is the fact that it works only for m = d,
i.e. to find as many ICs as there are dimensions in the original space. In the case of
texture description, it is not to be expected that there are that many ICs. Therefore, a
new learning rule was derived for the case where m < d, by modelling the remaining
dimensions as Gaussian noise. Training is done using a generalised EM algorithm in
which the estimate for W is updated by a gradient descent learning rule. This algorithm
is worked out in detail in appendix C.

Distance to an ICA base

As for the other models, the distance of a point z to an ICA base I defined by ΘI =
{W, µ, C, K} (see appendix C) is defined as the negative log-likelihood,

z′ = C− 1
2 z

D(z, I) =
d
2

ln 2π +
1
2

ln | det(C)|+ 1
2

ln | det(ATA)

+
1
2
(
z′ −Au

)T (z′ −Au
)
− ln p(u). (7.34)
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cf. eqn. C.50 (page 231) in which β = 1 and C− 1
2 is used to pre-whiten the data. The

estimate of the sources is found as u = Wz′ and the matrix A is the pseudo-inverse of
W, i.e. A = WT(WWT)−1. In this distance measure, the distribution of each dimension
of u is chosen according to K; the possible expressions are given by eqns. C.38 and C.39
on page 229.

7.5 Model experiments

In this section, a number of experiments is performed in which each texture in the Brod-
atz set (see section 7.3) is modelled by one model. To assess the power of each of the
model types, a performance measure is introduced in section 7.5.1. Next, experimental
results are shown and the effects of normalisation, the choice of subspace dimensional-
ity and sample size are discussed in sections 7.5.2-7.5.5. Finally, in section 7.5.7 experi-
ments are performed to see to what extent the models are truly invariant representations
of the texture data.

Where applicable, the models introduced in the previous section are compared to mod-
els trained on features found using a Gabor filter bank (section 7.3.3). As for each pixel
a 12D vector is found, the mean-only and full-covariance Gaussian models are applied
without any changes to this data as well.

7.5.1 Measures

Texture segmentation quality can be evaluated in a number of ways (see, e.g., [391]
and section 2.4.3 on page 25). However, as the focus of this chapter is on investigating
the descriptive power of various models trained in an unsupervised way, segmentation
quality measures are not really applicable. What is needed is an indication of the quality
of each single model. In general, a good model should induce a small intra-class dis-
tance, compared to the inter-class distances to other models. That is, samples described
by a certain model should have small distances to that model and large distances to all
other models. In the case of a set of models Mi trained on sets of samples Li taken from
individual textures, this means that the distances of samples in Li to model Mi should
be small, whereas distances of samples in Lj to model Mi should be large, for j 6= i. This
idea fits quite naturally with the models introduced in this chapter, as for each model
type a distance of a sample z to a model Mi was defined, most often as the negative
log-likelihood of z belonging to Mi.

Let Fi be the set of distances of samples in Li to Mi and Fj the set of distances of samples
in Lj to Mi. If these distances are viewed as features, an often-used feature evaluation
measure expressing the requirements above can be applied, the Fisher distance between
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two feature sets F1 and F2:

F (F1, F2) =
(µ2 − µ1)

2

σ2
1 + σ2

2
(7.35)

where µi is the average value of Fi and σ2
i its variance. Given a number of feature sets Fj

(distances of other sets of samples to Mi), a measure for that model Mi could therefore
be:

F ′(Fi) = F (Fi, Fj) =
1

|M| − 1 ∑
j 6=i
F (Fi, Fj) (7.36)

i.e. the average Fisher distance to other models. Note that this measure might give a
wrong impression, as distances are not features in the sense that when µj < µi, classific-
ation will become worse even though the Fisher distance increases. Therefore, F (Fi, Fj)
is set to zero when evaluating model Mi and µj < µi.

A problem with this measure is that it is unbounded, i.e. if σ2
i + σ2

j → 0 for any Mj,
F ′(Mi) → ∞. The Fisher measure can be bounded using a transformation

ε(Fi, Fj) =
1
2
− 1

2
erf
(

1
2

√
F (Fi, Fj)

)
, (7.37)

where ε ∈ [0, 0.5] is the predicted classification error (or Bayes error) between classes i and
j described by feature sets Fi and Fj, assuming normally distributed features with equal
variance and equal prior probabilities. This assumption is valid, as the distribution of a
likelihood calculated in d dimensions can be approximated by a χ2

d distribution, which
itself for large d can be approximated by a normal distribution.

For one model Mi, a measure based on this error probability could be the mean pre-
dicted error between that model and all other models, i.e. ε′(Fi) = 1

|M|−1 ∑j 6=i ε(Fi, Fj).
However, preliminary experiments showed that this gave a poor impression of per-
formance due to outliers. Some textures were very hard to describe well using some
models, whereas others could be described perfectly. Therefore, the median value was
used:

ε′(Fi) = med
j 6=i

ε(Fi, Fj). (7.38)

This measure is too pessimistic as an approximation of the error a classifier based on
distances to a set of models might make, for a number of reasons:

• each model is judged by a single feature, the distance of a set of samples to that
model. In a mixture model used for classification, distances to multiple mod-
els would be taken into account, i.e. multiple features. If these distances would
be uncorrelated, the error estimate would be exact. However, the very nature of
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Figure 7.10: The problem of over-estimating the error by evaluating single features: Fi and Fj
overlap severely when judged separately, yet are very well separable when used
together.

distances makes them highly correlated. Therefore, where distance distributions
might overlap in 1D, they might be completely separable in a higher dimensional
space. Figure 7.10 illustrates this.

• for the models requiring PCA pre-mapping (see section 7.4.1), the pre-mapping
matrix was calculated for each model individually, whereas in a mixture model
this would be done on the entire training set before finding any models. This may
discard directions which are useful for discriminating between the model under
consideration and other models. In fact, it may map two distinct data sets on top
of each other.

However, all model types will suffer from the first problem in the same way. Therefore,
although the measures cannot be used as indications of absolute performance, they can
be used for comparing different model types, provided they use the same pre-mapping.

7.5.2 Initial experiments

In the first set of experiments, all models were trained on non-normalised (original)
data. For each of the images in the sets of structured textures and natural textures
(see section 7.3), one model was trained on 1,500 samples extracted using either the
translation-only episode method (300 episodes) or the all-transformation method (100
episodes), as discussed in section 7.3.1. The window size was set to 16× 16 pixels, and
the window shape used was rectangular. For the subspace models, 4 dimensions were
used.

The Gaussian model with full covariance matrix could not be applied in a straight-
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Figure 7.11: First experiments: predicted error ε′ of various models trained on structured and
natural texture sets, using the translation-only and the all-transformation episode
construction methods.

forward way to the data sets thus extracted, as the term ln | det(C)| in eqn. 7.10 was −∞
for several textures. Therefore, the standard Mahalanobis distance, eqn. 7.12, was used.

As the ICA model needs PCA pre-mapping to reduce the influence of noise (see sec-
tion 21), and pre-mapping may introduce overlap between classes, the Gaussian models
were also trained on pre-mapped data, to allow for comparison. Models trained on pre-
mapped data are denoted by “pm” in figures. Unfortunately, this shortcoming of the
evaluation measure ε′ (eqn. 7.38) means that pre-mapped models (Gaussian, ICA) and
non pre-mapped models (Gaussian, PCA) cannot be compared directly. However, they
can be compared to what extent they differ from the Gaussian models trained under the
same circumstances, i.e. an indirect comparison.

The Gaussian models trained on the Gabor features used the original normalised Ma-
halanobis distance, as in the 12D space there were no problems in finding a well-
conditioned covariance matrix.

After all models were found, the median predicted errors ε′ were calculated. These
are shown in figure 7.11. For the structured textures, the Gabor filter methods seem to



152 SUBSPACE MODELS FOR FEATURE EXTRACTION

perform worst, at least according to the measure used. This is not too surprising, as
the Gabor filter output space is only 12D, whereas the other models are trained in a
256D space; it is likely there is less room for discrimination. Also, the Gabor filter bank
specification chosen may lead to too coarse a discretisation of the frequency domain.
Still, as texture descriptions, models in Gabor feature space seem to be less tight than
those in the original space. Note that as the Gabor method is not trained on data sets
but on entire images, only one result is shown in the figures; no episode construction is
necessary.

The mean-only Gaussian model (henceforth “Mean”) is only slightly better than the
Gabor-based models, which is not surprising given its limited power. The full-
covariance Gaussian method and PCA perform well, with the Gaussian clearly the best
method. However, the loss in performance is not large considering PCA uses only 4
dimensions, whereas the Gaussian uses all 256.

Comparing the left and right graph in figure 7.11 (a), the effect of pre-mapping is obvi-
ous. The predicted error of the Gaussian model trained on pre-mapped data is much
higher than that of the same model trained on the original data, especially for structured
textures. Structured texture data will lose many more dimensions by pre-mapping than
natural texture data, as the covariance structure will be limited to a smaller number of
dimensions (see section 7.3.2). Therefore, there might be more dimensions lost which
might have been discriminating. This also explains why all-transformation sampling is
of more use here, as it will (artificially) increase the covariance structure in the data. Still,
the figure shows that there is hardly any difference between the Gausspm and ICApm

models. An experiment to demonstrate why this is the case is discussed below, in sec-
tion 7.6.

On the structured textures, overall absolute performance is quite good. As the predicted
error is a pessimistic estimate of the minimum classification error possible in a mixture
model setting, this indicates that these models are applicable to texture description for
segmentation purposes. In contrast, on the natural textures, almost all methods perform
equally poor (figure 7.11 (b)). The Mean method, the simplest in the experiments, per-
forms best here. Modelling regularity in image patches, the basis for all other methods,
is not a good method of describing these textures.

In conclusion, for both types of textures, there is not a very large difference in per-
formance between the Gaussian, PCA and ICA models when trained under identical
circumstances. However, several choices made in training the PCA models have been
rather arbitrary. The next few sections will discuss the influence of these choices.

7.5.3 Normalisation

Next, the effect of normalisation was investigated. The experiments in the previous
section were repeated on normalised data; all other settings were kept identical. For
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Figure 7.12: The effect of normalisation: predicted error ε′ for various models trained on original
and normalised samples taken from structured and natural texture sets, using the
translation-only and the all-transformation episode construction methods.

the Gabor approaches, normalisation is not applicable, so the results reported here are
identical to those presented earlier. The Mean model cannot be used on normalised
data, as for all data sets the mean will be 0. Finally, the Gaussian model could not
be used on normalised data without pre-mapping, as even inversion of C (used in the
Mahalanobis distance) became impossible. Results for all other model types are shown
in figure 7.12; from here on, “nrm” indicates models trained on normalised data.

Clearly, results for models trained on normalised structured texture data are better than
before; in most cases, the predicted error is nearly halved. For PCAnrm, the drop in
predicted error is even larger. This can be explained mostly by the removal of shading,
which in some textures is a problem. As an example, figure 7.13 shows the distance of
texture S4 to 8D PCA and PCAnrm models. The spots of small and large distance occur
where the original texture has a higher-than-average mean grey value and a smaller-
than-average mean grey value, respectively. Although both models show the same ef-
fect, the absolute value of the coefficient-of-variation CV = |σ/µ| indicates that for the
PCAnrm model it has less influence.
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Figure 7.13: Difference in illumination sensitivity between PCA trained on the original data and
PCA trained on normalised data (PCAnrm): (a) original texture, (b) and (c) distances
to the different models.

For the natural textures, normalisation worsens performance for some models. This is
likely due to the amplification of unimportant details (or noise) which is present in these
textures and the removal of the mean grey-value, which is important for describing
these textures. However, it may also indicate that the condition of the covariance matrix
deteriorates.

Again, the performance of ICApm
nrm is much like that of the Gausspm

nrm model, although
the difference here is slightly larger.

7.5.4 Implementation choices

As discussed in section 7.3.1, there are various choices for the window size and shape
to be used in sampling the images to create a data set. Until now, the window size
used has been 16 × 16 pixels and the shape was simply rectangular. To verify whether
these choices make sense, for PCA and PCAnrm only the experiments were repeated
with window sizes of 8 × 8 and 12 × 12 pixels, and with round and Gaussian window
shapes.

Results are shown in figure 7.14. The rectangular window shape perform best, although
there is not a large difference between the rectangular and round shapes. The Gaussian
window shapes give much worse results. This is to be expected, as the use of a Gaus-
sian window shape effectively halves the amount of information used, by weighing the
pixels near the border of the window with very small values. For the PCAnrm models,
the performance using 16× 16 pixel Gaussian window shapes is nearly the same as that
using 8× 8 pixel round window shapes. This problem could be solved by using larger
windows (e.g. 24 × 24 or even 32 × 32 pixels), but this is computationally infeasible.
Remarkable is the fact that for PCA the predicted error increases quickly to 0.5. This is
due to the fact that there is too little information outside the subspace, which will cause
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Figure 7.14: Predicted error for 4D PCA and PCAnrm models, as a function of window size and
shape. Only results for structured textures are shown.

the distance measure used (eqn. 7.26) to blow up. The PCAnrm models do not suffer
from this problem, as they do not use this information.

For the natural textures the same conclusions can be drawn, although the differences in
performance are much smaller, since they were poor to begin with. These results are
not shown here.

Based on these results, for the remaining experiments in this chapter and the experi-
ments on texture segmentation in the next chapter, rectangular 16 × 16 pixel windows
were used in sampling the images.

7.5.5 Sample size

The number of samples used for calculating the models thus far was 1,500, divided
over either 300 translation-only episodes or 100 all-transformation episodes. However, a
larger sample size might yield better results. A number of experiments were performed
for a range of sample sizes. The results are shown in figure 7.15. Results for ICA are not
shown, as the results again are very similar to those for the Gaussian model.

The results on the structured textures show that for most models, a sample size of 1,500
is quite sufficient. Only the Gaussian model gives slightly lower errors for larger sample
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Figure 7.15: The effect of training sample size on the results for the various models. Only the
results for structured textures are shown, trained on data sets constructed using the
translation-only and all-transformation episode construction methods.

sizes, although the differences are not significant. This is to be expected, as for the
Gaussian model a large number of parameters has to be estimated; for pre-mapped
data of, say, 60 dimensions, the covariance matrix contains 3,600 parameters.

On the natural texture set, the results (not shown here) are more or less the same, al-
though the drop in error is less pronounced as the error remains quite high for all
models. For the remaining texture experiments in this chapter and those using mix-
ture models in the next chapter, a sample size of 1,500 was used. However, note that in
principle for PCA and PCAnrm a much lower sample size should be enough; even for
only 375 samples, the predicted error is remarkably low.

7.5.6 Subspace dimensionality

Until now, the number of dimensions used in the PCA and PCAnrm experiments was
fixed at 4. This was based on the rough approximation that as there are 4 degrees of
freedom the subspace needs to cope with, 4 dimensions should suffice (see section 7.4.2).
However, for reasons discussed earlier, this need not be the case.

For the PCA, PCAnrm, ICApm and ICApm
nrm models, trained on both the original and
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Figure 7.16: The effect of varying subspace dimensionality for the PCA and ICA models, trained
on both original and normalised data. For ICA, only the results for structured tex-
tures are shown.

normalised data, the experiments were repeated for mD subspaces, where m ∈
{2, 4, 6, 8, 12, 16}. The resulting predicted error values are shown in figure 7.16. In-
terestingly, for PCAnrm models, the predicted error drops much faster with increasing
m than it does for PCA models. This is caused by the fact that normalisation reduces the
number of degrees of freedom present in the data, so that a lower number of dimensions
should suffice to describe it. For PCA models, the predicted error levels out at approx-
imately 8 dimensions; for PCAnrm, it stops decreasing significantly at 4 dimensions.

For PCA on natural textures, the effect of increasing dimensionality is not present; for
PCAnrm, there is a small effect. However, the predicted error ε′ stabilises at a high value.
Finally, for ICApm and ICApm

nrm the dimensionality does not have any influence at all.
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(a) Rotation (b) Scaling

Figure 7.17: Sub-images used for measurement of invariance to rotation and scaling. The thick
boxes indicate the original sub-image. Note that for scaling the relative is indicated;
in all cases, the content was the same.

In conclusion, PCA with as little as 8 dimensions or PCAnrm with 4 dimensions can
reach performances as good as that of a full-covariance matrix Gaussian model (com-
pare figures 7.16 (a) and (b) to figure 7.11 (a)).

7.5.7 Invariance

A final remaining question is to what extent these methods are truly invariant, and what
role the episode construction methods and normalisation (section 7.3.1) and the number
of dimensions used in PCA and PCAnrm play. The expectation is that translation-only
sampling should have little effect, since in these texture images the content is quite
homogeneous; normal, non-episode sampling should already yield translated versions
of the same image patches. All-transformation sampling, however, is expected to be
useful. With respect to the dimensionality of subspaces, the expectation is that a lar-
ger number of dimensions will yield a smaller sensitivity to transformations. To find
answers to these questions, a slightly different set of experiments was performed, in
which images were rotated or scaled before the predicted error was calculated. Fig-
ure 7.17 illustrates the method used for both invariances.

To test invariance to rotation, the measure ε′ was calculated on rotated textures.
Each texture i described by model Mi was rotated over φ degrees, where φ ∈
{−20◦,−10◦,−5◦, 0◦, 5◦, 10◦, 20◦}. Rotation was performed by re-sampling using bicu-
bic interpolation. The other textures used in the calculation of ε′ were not rotated. After
rotation, a sub-image of relative size 1

2

√
2 = 135× 135 pixels around the center of each

192 × 192 pixel texture image was used. The measures ε′ were then calculated based
on the distances of the pixels in this sub-image. Note that as only a part of the image is
taken into consideration, this will give different results than those found before.

For testing invariance to scaling a similar procedure was followed. Textures were scaled
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Figure 7.18: Invariance to rotation for the Gabor and Gaussian models trained on structured
textures, using different episode-construction methods.
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Figure 7.19: Invariance to scale for the Gabor and Gaussian models trained on structured tex-
tures, using different episode-construction methods.
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Figure 7.20: Invariance to rotation for PCA and PCAnrm models of various dimensions, trained
on structured textures, using different episode-construction methods.

over a range of s ∈ {0.6, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4} times the original scale. Scaling was
also performed by re-sampling using bicubic interpolation. For each scale, a sub-image
of relative size 0.6 = 115 × 115 pixels was extracted around the center of the image.
Again, the other texture images were kept the same, and the predicted error ε′ was
calculated for each scale. The range of scales used will test invariance in a region which
was not explicitly used in constructing the episodes for training; recall that only scales
in the range [1.0, 1.5] times the original were used (section 7.3.1).

These procedures were applied to the Gabor, Gaussian, PCA and PCAnrm models. Fig-
ures 7.18 and 7.20 show the results for rotation; figures 7.19 and 7.21 those for scale.
Only results for structured textures are reported; for natural textures, the effects were
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Figure 7.21: Invariance to scale for PCA and PCAnrm models of various dimensions, trained on
structured textures, using different episode-construction methods.

the same. Furthermore, results for the ICA models are not shown, as they are similar to
those for the Gaussian model.

The figures show the following:

• as was to be expected, the Gabor models and the Mean model are invariant over
a large range of rotation angles and scales (figures 7.18). However, as perform-
ance was poor to start with, these numbers should be interpreted with caution.
For these models, there is no significant difference between using translation-only
episodes and all-transformation episodes.

• for the Mean model, the predicted error decreases slightly when the images are
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rotated or scaled. This is due to the smoothing involved in the re-sampling step
necessary for rotating or scaling the images. This will decrease variation in the
mean over the image, which in turn decreases the variance over the distances of
each pixel to that mean and therefore increases the Fisher distance used in calcu-
lating the predicted error (eqn. 7.35).

• comparing the remaining methods, the full-covariance Gaussian model gives the
best results over a wide range of transformations. This is to be expected, since it
models all possible variation in the data.

• in the rotation results, most graphs are symmetric around 0◦, which is to be expec-
ted as there was no bias towards clockwise or counter-clockwise rotation in the
episode construction. In the PCA and PCAnrm graphs, there is slight asymmetry.
This is probably due to the fact that some structured textures have a strong dom-
inant orientation, so that rotating a texture might cause it to be described better by
another model. As PCA and PCAnrm model the data more tightly than the other
models, they may be more sensitive to this effect.

• the scale experiments show large asymmetry around scale 1.0, especially for those
models trained on all-transformation episodes. This was already expected, as the
range of scales tested here is not the same as that used in episode construction.

• high-dimensional PCA models are more invariant than those with a low number
of dimensions, but over a smaller range, especially those trained on translation-
only episodes (figures 7.20 (a)-(c)-(e)). This can be explained by looking at the
distance measure used (eqn. 7.26). As more dimensions are used in the subspace,
there will be less variance outside the subspace and β (eqn. 7.25) will rapidly in-
crease. The model becomes more tight, making it very unlikely for data to fall
outside. This means the subspace will describe the data it was trained on better
when more dimensions are used, but at the same time accommodates previously
unseen samples worse.

• in contrast, PCAnrm models give smaller predicted errors with increasing dimen-
sionality over the entire range of transformations. This effect is most noticeable
in the scaling experiments (figures 7.21 (a)-(c)-(e) and (b)-(d)-(f)). The error drops
more quickly than for PCA models, as was already shown in section 7.5.6. Also,
for PCAnrm the range over which performance is good expands with increasing
dimensionality, see e.g. figures 7.20 (a)-(c)-(e). The lack of a model outside the
subspace makes these models more invariant.

• the use of all-transformation episodes clearly helps models to become more in-
variant. This effect is most pronounced in results for the high-dimensional PCA
and PCAnrm models.

In conclusion, the Gaussian models give the best overall results. Still, PCA and PCAnrm
models yield nearly similar results using only a fraction of the number of parameters
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Figure 7.22: (a) Histogram of kurtoses of projected distributions, over all textures and all ICA
models. (b) Normalised difference in likelihood between the ICA and Gaussian
models trained on structured textures S1-S6. (c) Same, for natural textures N1-N6.

needed for the Gaussian model, although their ranges of invariance seem to be some-
what smaller. Of the subspace models, those trained on normalised data (PCAnrm)
perform best. Finally, there is evidence that the all-transformation episode extraction
method helps in achieving invariance to rotation and scale.

7.6 Applicability of independent component analysis

The experiments discussed in sections 7.5.2 and 7.5.3 showed that the performance
measures found for ICA models were very close to those found for Gaussian models.
Furthermore, for an increase in the number of independent components used (see sec-
tion 7.5.6), performance did not increase at all. This leads to the question what directions
the ICA model actually finds.

Investigation of the kurtoses of the distributions of data projected onto the extracted
independent components shows that non-Gaussian directions have indeed been found.
Figure 7.22 (a) shows a histogram of the kurtoses κ found using the independent com-
ponents of all ICA models of all dimensions, trained on all textures. Clearly, sub-
Gaussian (κ < 3) and super-Gaussian (κ > 3) distributions have been found, whereas
none of the projected distributions resemble a Gaussian (for which κ = 3). This indicates
that there are independent components present in the data, most of which correspond
to super-Gaussian distributions.

To investigate the difference between the Gaussian and ICA models, inspection of the
likelihood of the data set after training is instructive. If the ICA model really fits much
better than the Gaussian, its likelihood LICA (see appendix C) should be significantly
larger than that of the Gaussian, LGauss. However, for nearly all textures, the increase in
likelihood was negligible. Figures 7.22 (b) and (c) show the relative change in likelihood,
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(a) PCA (b) ICA, W (c) ICA, A

Figure 7.23: (a) The first 12 basis vectors of PCA. (b),(c) Filters and basis vectors of 12D ICA on
texture N2.

LICA−LGauss
LGauss

, for ICA models of different dimensionality, trained on different textures.
Clearly, for most models the likelihood increases only slightly or not at all. For some
textures the ICA model even seems to be less likely than the Gaussian model.

To get a better idea of why these increases are so low, the “Straw” natural texture N2
(see figure 7.24 (a)) is considered. Figure 7.23 shows the first 12 PCA basis vectors and
the ICA filters and basis vectors found after training a 12D ICA model. Clearly, the ICA
filters are directed edge detectors, whereas the PCA basis vectors correspond to global
content. One would expect these filters to be of use in segmenting the straw image.
To see their effect, for each pixel in the original image the likelihood of the window of
which it is the center can be plotted, again as an image. Figures 7.24 (b) and (c) show
these likelihood images for both the 64D ICA model and the Gaussian model. At first
glance, there is no difference between the two. However, there is a difference, albeit
small; figure 7.24 (d)-(l) shows this difference, for an increasing number of independent
components in the ICA model. For presentation purposes, negative differences (which
fell in the range [−2, 0]) have not been shown.

It now becomes obvious why the ICA model shows no improvement over the Gaus-
sian model. In general, the independent components correspond to characteristic but
more or less unique high-frequency events in images. For this image, these are the few
straws that have a different orientation than the majority. The first few independent
components (2D-4D models) correspond to the straws below the center of the image;
as more dimensions are added, the straws at the top of the image get modelled better
as well. Finally, as more and more independent components are found, all straws with
non-standard orientations are singled out (relative to the Gaussian model), whereas the
main structure of the texture becomes slightly more likely, but in a noise-like fashion.

In fact, this happens for all textures. The reason that some of the structured textures
show a large increase in relative likelihood (S4, S1 and S3 in figure 7.22 (b)) is that for
structured textures, these high-frequency events are plentiful in the images, so that the
overall likelihood increases faster. The increase in likelihood per pixel, though, is of
the same order as for N2. Moreover, as these events are not described in a translation
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Figure 7.24: Difference between ICA and Gaussian models, for various dimensions of the ICA
subspace. The top row shows (a) the original image, N2; (b) LICA, the likelihood of
each pixel belonging to a 64D ICA model; (c) LGauss, the same for a Gaussian model
and (d)-(l) the difference between LICA of various dimensionalities and LGauss.
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invariant way, very large numbers of independent components are needed to come to a
significant increase in overall likelihood. Given the algorithmic and storage complexity
of ICA, this is not worth the effort.

These observations lead to the following conclusions:

• the increase in likelihood is generally so low, that the full-covariance Gaussian
model may be considered a good model for a data set consisting of texture image
patches.

• ICA is not useful as a texture description tool. For segmentation, the goal is to
find models which describe textures in a shift-invariant way. To this end, non-
standard regions should be ignored rather than modelled. The Gaussian model
does this by modelling the data by (co)variance only, ignoring outliers. Under
the ICA model, as it focuses on non-Gaussianity alone, outliers are more probable
(for super-Gaussian sources); in fact, the sources are indirectly optimised to make
outliers more likely.

• it also means that ICA is potentially useful for detection and coding. For example,
given a set images containing objects, ICA might find features corresponding to
unique properties of the objects. However, there is no guarantee these will be
useful properties. In coding, one of the goals is to obtain a sparse code, in which
each code word specifically describes the occurrence of one event. Following the
outlier argument above, ICA might be appropriate for this goal.

The main conclusion is that, where many authors have suggested ICA might be useful
for image processing (see section 21), its application area is limited to problems in which
the detection of unique, characteristic events is of importance. Texture description is not
one of these.

7.7 Conclusions

This chapter introduced the idea of using subspace models for feature extraction, ap-
plied to texture description. In section 7.2, an overview was given of work published
on subspace models. The ASSOM was discussed as an interesting model, yet cumber-
some to use in practice. It was argued that the self-organising capabilities of the SOM
might not be useful in many applications, and that simplifying the ASSOM by dropping
these capabilities leads to a mixture-of-PCA algorithm. The basic elements of these al-
gorithms are clustering and the calculation of subspaces. This chapter then continued
to focus on the latter; possible clustering schemes will be discussed in the next chapter.

Next, two sets of Brodatz texture images were presented in section 7.3, one containing
structured textures and the other containing natural textures. These sets were used as a
benchmark in subsequent texture description experiments. It was shown how data sets
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can be constructed by sampling from these images, how the notion of episodes used
in the ASSOM can be used, and how normalisation and pre-mapping might help in
achieving illumination invariance and removing noise.

Section 7.4 then introduced a number of models and discussed them theoretically: the
Gaussian, principal component analysis (PCA) and independent component analysis
(ICA) models. It was shown how distance measures to each of these models can be
expressed, and what effect normalisation has on the applicable PCA distance measure.
An algorithm for finding undercomplete ICA bases was briefly presented; a complete
derivation can be found in appendix C. Based on several publications, expectations
with respect to the usefulness of ICA in image description were formulated, i.e. that the
method might be useful to describe textures containing characteristic high-frequency
elements.

In section 7.5, these models were put to the test. A performance measure was intro-
duced, the median predicted classification error. The models discussed in section 7.4
were then trained on the Brodatz texture sets and performances were compared. On
structured textures, most models performed well, indicating that they are applicable
for description of such data. Of the different models, the Gaussian performed best.
However, the differences with PCA were small, whereas PCA uses only a fraction of
the number of parameters the Gaussian model needs. Although not all models could
be compared directly as some of them needed a PCA pre-mapping, ICA was shown
to give nearly the same performance as a Gaussian model trained under the same cir-
cumstances. On natural textures, finally, none of the models seem particularly applic-
able; the mean-only Gaussian model performed best. The underlying idea of using sub-
spaces, i.e. modelling certain regularity in an invariant way, is not applicable to these
textures; they are probably best described statistically at the level of individual pixels.

Further experiments showed that on the texture data used, normalisation of the data
improves PCA results; that the use of rectangular, 16 × 16 windows gave the best per-
formance; that small sample sizes suffice to train PCA models, whereas the Gaussian
model needs larger data sets; and that for PCA models, 4-8 dimensions are enough to
give good performance, depending on whether the original data or normalised data
is used to train them. Finally, experiments were performed on the invariance of mod-
els over a range of rotation angles and scaling factors. These showed the Gaussian
model to be the most invariant. However, PCA models with 8-16 dimensions, espe-
cially those trained on normalised data, again come very close over a limited range
of transformations. These experiments also demonstrated the drawback of training on
non-normalised data, that is that the need for estimating a model inside the subspace
introduces a noise model outside the subspace, which might not always be applicable.
Although regularisation might help to overcome this, this introduces several new prob-
lems. Interestingly, this contradicts of some authors that a problem of PCA is that it does
not define a probability model [355]; in some applications we find that such a model is
simply not needed. The all-transformation episode construction method, in which ro-
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tated and scaled versions of samples are added to the data set, was found to be useful
when the training data does not yet contain these transformations.

The experimental finding that the Gaussian and ICA models gave nearly the same res-
ults was investigated in section 7.6. It was shown that, although the ICA method does
find non-Gaussian directions in the data, they mainly describe unique events in the im-
age in a shift-dependent way. Therefore, for any reasonable number of independent
components, the likelihood does not increase significantly. The conclusion is that ICA,
although it might be useful for detection of rare occurrences of high-frequency struc-
ture in images, is not applicable to texture segmentation. Given its high computational
cost and lack of use, ICA will not be further considered in chapter 8 as a mixture model
element.

This chapter has laid the basis for application of subspace models to image processing
problems. PCA, especially when trained on normalised data, has been shown to be
able to give well-performing, invariant descriptions of structured textures. In the next
chapter, mixtures of these models will be applied to texture segmentation, object recog-
nition and image database retrieval problems.



8

IMAGE DESCRIPTION USING
MIXTURE-OF-SUBSPACE MODELS

8.1 Introduction

In the previous chapter, a number of subspace models was examined in the context of
texture description. It was shown how PCA can be used to describe single textures in-
variant to simple transformations. In practical applications however, multiple textures
will have to be modelled, e.g. for segmenting an image. Section 7.2 introduced the
idea of using mixtures-of-subspaces to approach this kind of application. This chapter
discusses various ways of formulating mixture-of-subspaces models (henceforth “MoS
models”) and apply the resulting algorithms to a number of problems.

First, section 8.2 introduces a number of clustering algorithms which can be used to train
MoSs. Next, in section 8.3, the resulting models will be applied to texture segmentation.
Section 8.4 shows how MoS models can be used to describe the content of single images,
and how distances between these mixtures can be used as distance measures between
images. A natural application for this method is image database retrieval. Next, sec-
tion 8.5 introduces the idea of using MoS assignments as image class descriptions, i.e.
sets of features characterising image content for a range of images. This technique will
be applied to the problem of object recognition. As a last application, section 8.6 returns
to the problem discussed in chapter 3, handwritten digit recognition. It is shown how
the MoS approach reaches performances quite near those of the heavily optimised su-
pervised methods used before. Furthermore, the ease of interpretation of these models
will be demonstrated. The chapter ends with some conclusions in section 8.7.

The application of MoSs to various problems in this chapter is meant to be illustrative
rather than proving that such models are the best methods available; they probably
are not. As such, little attempts have been made to pre-process data or post-process
results to increase performance. However, when possible the methods are compared to
alternative approaches.
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8.2 Clustering

8.2.1 The k-subspaces algorithm

The simplest way of clustering data in subspaces is to use a variation on the k-means
algorithm [85, 92], one of the simplest clustering algorithms available. The main dif-
ference with the k-means algorithm is that, where k-means only recalculates the cluster
mean µ in each iteration, the k-subspaces algorithm recalculates the PCA projection
matrix W as well. Furthermore, the distance measure D(x, P) used is a distance to a
subspace P, either eqn. 7.19 or 7.26, rather than a distance to a cluster centre µ only.

Say a data set L = {xn}, n = 1 . . . N is given and a set of k subspaces {P1, . . . , Pk} with m
dimensions each is to be trained, where each Pi is characterised by its set of parameters
Θi = {µi, Wi}. The basic algorithm then consists of the following iteration (starting with
t = 0):

1. assign each sample xn ∈ L to that subspace Pi to which it has the smallest distance
D(xn, Pi), i.e. Si =

{
xn|i = arg minj D(xn, Pj)

}
;

2. for each subspace Pi, re-calculate the parameters Wi and µi by performing PCA on
the set of samples Si;

3. set t = t + 1; while the average change in distance is larger than τ and t < tmax, go
to 1.

Here τ and tmax are a stopping criterion and maximum number of iterations, respect-
ively. In the experiments in this chapter, τ was set to 1.0× 10−6, and tmax to 1,000. Note
that the number of subspaces k has to be specified beforehand.

An advantage of the k-subspaces algorithm is that it allows for easy incorporation of the
episode idea introduced in section 7.3.1. As samples are assigned to a single subspace,
groups of samples can be treated in the same way. Recall that Kohonen proposed to use
episodes E in an adapted distance formulation (eqn 7.1). However, where he used the
minimum of the distances over all samples in the episode, in this chapter the average
distance is used:

D(E , Pi) =
1
|E | ∑

xn∈E
||xn − x̂n

i ||, (8.1)

where x̂n
i is the projection of xn onto subspace Pi. This distance measure was found to

give more stable convergence. Step 1 of the algorithm above then becomes:

1. for each episode E , assign all samples xn ∈ E to that subspace Pi to which it has
the lowest distance D(E , Pi), i.e. Si =

{
xn : xn ∈ E ∧ i = arg minj D(E , Pj)

}
;

MoS models trained using the k-subspaces algorithm will from here on be called adaptive
subspace maps or ASMs.
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8.2.2 Maximum likelihood

The expectation-maximisation (EM) algorithm can be used for clustering probabil-
ity density models to find the maximum likelihood (ML) solution. Unlike in the k-
subspaces algorithm, samples are given a soft assignment to each model in the mixture,
according to the relative probability of belonging to it. The EM algorithm will be dis-
cussed briefly here, based on the work by Tipping and Bishop [355, 356], which can be
consulted for further detail.

Mixtures of probabilistic PCA

In Tipping and Bishop’s probabilistic PCA model (henceforth PPCA), a d-dimensional
observed variable x is supposed to originate from an m-dimensional latent variable u (m ≤
d):

x = Au + µ + ε (8.2)

where A = WT (cf. section 7.4.2) and ε ∼ N(0, σ2I) is noise. The latent variables are
assumed to have a standard normal distribution, i.e.

p(u) =
1

(2π)
m
2

exp
(
−uTu

2

)
(8.3)

and the conditional distribution of the observed variables is modelled by a Gaussian:

p(x|u) =
1

(2π)
d
2 σd

exp
(
− 1

2σ2 (x−Au− µ)T(x−Au− µ)
)

, (8.4)

so that the distribution of x can be written as:

p(x) =
∫

p(x|u)p(u)du =
1

(2π)
d
2
| det(C)|−

1
2 exp

(
−1

2
(x− µ)TC−1(x− µ)

)
(8.5)

in which C = σ2I + AAT is the model covariance matrix. The likelihood of observing
the entire data set L is

LPCA =
N

∑
n=1

ln p(xn) = N
(
−d

2
ln 2π − 1

2
ln | det(C)| − 1

2
(x− µ)C−1(x− µ)

)
= − N

2

(
d ln 2π + ln | det(C)|+ tr(C−1S)

)
, (8.6)

where S = 1
N ∑N

n=1(xn − µ)(xn − µ)T, i.e. the sample covariance matrix of L.

In a mixture model setting with k subspaces P1, . . . , Pk, this likelihood becomes

LPCA =
N

∑
n=1

ln

(
k

∑
i=1

πi p(xn|Pi)

)
, (8.7)
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where πi is the mixing weight (πi ≥ 0, ∀i; ∑ πi = 1). The responsibility of model Pi for
generating point xn is found in the E-step as

Rn
i =

πi p(xn|Pi)
p(xn)

. (8.8)

The maximum-likelihood solution can be found by taking derivatives of LPCA w.r.t. µ,
A and σ2 [355]. This gives the update equations for the M-step, for i = 1, . . . , k:

µi =
1
N

N

∑
n=1

Rn
i (8.9)

πi =
∑N

n=1 Rn
i xn

∑N
n=1 Rn

i

(8.10)

Si =
1

πiN

N

∑
n=1

Rn
i (xn − µi)(xn − µi)T , (8.11)

after which Wi and σ2
i can be found by applying standard PCA (eqns. 7.14 and 7.27)

based on Si, and Ai = WT
i . Note that the k-subspaces algorithm discussed in the previ-

ous section is a limit case of this algorithm, in which πi = 1 and πj = 0, ∀j 6= i.

The soft assignment of samples to subspaces through Rn
i unfortunately makes incorpor-

ation of the idea of episodes difficult. Therefore, in experiments in this chapter using
the EM algorithm, episode-wise assignment of samples to subspaces was not used. Fur-
thermore, the method is quite a bit slower than the k-subspaces algorithm, especially for
a large number of subspaces. In the EM algorithm, all samples participate in the para-
meter estimation of each model, whereas in the k-subspaces algorithm the estimates are
based on just the set of samples assigned to each single model.

A last problem is that the EM algorithm can become unstable when one of the models
shrinks to only one point [28]. In that case, σ → 0 and LPCA → ∞ (eqn. 8.7). Although
there are heuristic ways of circumventing this problem, such as regularising σ or re-
initialising collapsed models, these were not used here; the algorithm was simply re-
started a maximum of four times if it did not converge.

Mixtures of Gaussians

Eqns. 8.2–8.11 are identical to the updates necessary to train a mixture of Gaussians [28],
in which m = d, S is an estimate of the Gaussian covariance matrix C = AAT and there
is thus no need to estimate σ2. The likelihood LGauss of a vector xn is given by−D(xn, G)
(eqn. 7.10).
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8.2.3 The subspace shift algorithm

The k-subspaces and EM algorithms have in common that they fix the number of mod-
els in the mixture and then minimise the average sample-cluster distance. Another
approach would be to fix the maximum sample-cluster distance (or radius) and attempt
to minimise the number of clusters necessary to represent the data. This is how the
subspace shift algorithm works, a variation on the mean shift clustering algorithm. In
the original mean shift algorithm [47, 60, 61], the algorithm tries to find k clusters by
mode seeking. A greedy version of the algorithm introduced for color image segmenta-
tion [59] iteratively finds clusters by seeking a single mode and removing neighbouring
samples until the data set is exhausted, automatically finding k in the process. The sub-
space shift algorithm is based on this greedy algorithm.

As for the k-subspaces algorithm, the difference between the mean shift and subspace
shift algorithms are that the latter re-calculates subspace projection matrices W at each
step as well as µ, and that the distance measure used is D(x, P) instead of D(x, µ). The
algorithm consists of two nested iterations:

1. set the working set W to L;

2. set k, the number of subspaces found thus far, to 1;

3. initialise Pk by calculating Θk = {Wk, µk} on d + 1 randomly selected samples
xn ∈ W , where d is the number of dimensions of xn, and set t = 0;

(a) find the set V ⊂ W of samples xn for which D(xn, Pk) ≤ ρ;

(b) re-calculate Θk = {Wk, µk} on the samples in V ;

(c) set t = t + 1; while the average change in distance is larger than τ and t <
tmax, go to (a).

4. set W = W \ V ;

5. while |W| > d, set k = k + 1 and go to 3.

This algorithm has three parameters: the radius of each subspace, ρ; the stopping cri-
terion τ and the maximum number of iterations tmax. The latter two were always set
to 1.0 × 10−6 and 1,000, respectively. In the remainder of this chapter, subspace-shift
trained MoS models will be denoted by ASMss.

The subspace shift method is fast in training, as subspace parameters are only calculated
on the set of points V assigned to the current subspace Pk. Furthermore, as the working
set S shrinks with each subspace found, less distances will have to be calculated after
each iteration of the outer loop.
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Method Model Clustering Data Distance Parameter(s)
algorithm normalisation equation

Mean mean-only Gaussian k-means 7.11 k
Gauss full-cov. Gaussian EM 7.10 k
Gaussnrm full-cov. Gaussian EM • 7.10 k
ASM PCA k-subspaces 7.26 k, m
ASMnrm PCA k-subspaces • 7.19 k, m
ASMss PCA subspace shift 7.26 ρ, m
ASMss

nrm PCA subspace shift • 7.19 ρ, m
PPCA probabilistic PCA EM 7.26 k, m
PPCAnrm probabilistic PCA EM • 7.26 k, m

Table 8.1: The mixture models used in the experiments in this chapter. In the “Parameters”
column, k indicates the number of models to fit, m the number of dimensions per
model and ρ the subspace radius.

8.2.4 Model overview

The various models discussed in section 7.4 can be combined with the clustering al-
gorithms above in a number of ways. As the goal was to use the original distance
formulations (i.e., the negative likelihood) where possible, for all models pre-mapping
was applied (retaining r = 90% of the variance, see section 7.3.2) to avoid degeneration
of these measures. Besides being necessary for some models, this pre-mapping also
speeds up the training process considerably by lowering d, the number of dimensions
of the training set. Furthermore, the k-subspaces and EM algorithms were initialised by
choosing random orthogonal subspace basis vectors, but setting the origins µ to vectors
containing the average grey value of cluster centres found by simple k-means cluster-
ing on individual image pixels. For the EM algorithm, finally, σ was initialised to 1.
Table 8.1 gives an overview of the methods and their parameters. As algorithms trained
on normalised data (see section 7.3.2) have different characteristics, i.e. µi = 0 ∀i, these
are treated as different models.

There is no reason to favour one model a priori. On the one hand, the k-subspaces and
subspace shift algorithms allow the idea of episodes to be used during training. On
the other hand, in real segmentation problems there are border effects (i.e. windows in
which more than one texture occurs), to which the EM algorithm may be more robust
due to its soft assignment procedure.

8.3 Texture segmentation

The mixture models listed in 8.1 can be tested as texture segmentation methods. To this
end, of the set of 6 structured Brodatz textures used in chapter 7 (see figure 7.3) all 15
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(a) C1 (b) C2 (c) C3 (d) C4 (e) C5

(f) C6 (g) C7 (h) C8 (i) C9 (j) C10

(k) C11 (l) C12 (m) C13 (n) C14 (o) C15

Figure 8.1: The 15 structured Brodatz texture combinations.

possible combinations of two textures were created using a cross-shaped mask image,
following [103]. Figure 8.1 shows these combinations. The methods were not tested
on combinations of natural textures, as they were already shown to perform poorly on
these textures in chapter 7. Furthermore, no rotated or scaled versions of the textures
were used, as the effect of these transformations on the descriptive power of the models
was already studied in section 7.5.7.

8.3.1 Segmentation

All models were trained on the combination images. From each image, 3,000 samples
were extracted using either the translation-only or the all-transformation episode
method (see section 7.3). Rectangular w × w = 16 × 16 pixel masks were used; pre-
mapping typically left 40-70 of the original 256 dimensions. The number of subspaces
per model, k, was set to 2; the number of dimensions per subspace, m, was chosen as
4, 8, 12 or 16. Figure 8.2 shows segmentation results for 8D models trained on the tex-
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(a) Mean (b) Gauss

(c) 8D ASM (d) 8D PPCA

(e) 8D ASMnrm (f) 8D PPCAnrm

Figure 8.2: Structured texture combination segmentations using translation-only episodes. In
each figure the ordering is the same as in figure 8.1 (a).
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ture combinations. These images were created by mapping each pixel; i.e. finding the
subspace Pi to which the window around that pixel is closest, and assigning it label i.
Note that the segmented texture combinations are not strictly test images, as training
sets were extracted from the same images.

The segmentations show that the mean-only Gaussian model (figure 8.2 (a)) is ill-
equipped to handle illumination differences. Textures are segregated on average local
grey value only, so some texture combinations are segmented incorrectly. On the con-
trary, the full-covariance Gaussian model gives near-perfect segmentation results (fig-
ure 8.2 (b)). The only problems occur in combination C2, where texture S5 (see figure 7.3
on page 133) is a little irregular and at the border between textures: sometimes the seg-
mented cross is a little too large (e.g. in C14 and C15). The first problem indicates that
segmentation result depends not only on the descriptive power of the models used,
but also on the texture combinations actually present. Although texture S5 occurs in
combinations C1–C5, its description only overlaps with that of the other texture in the
second one.

The MoS models (ASM, PPCA, ASMnrm and PPCAnrm, figures 8.2 (c)-(f)) all give reas-
onably similar results. Note that only segmentation results for 8D subspaces are shown;
other results will be given as segmentation errors only. Each of the models performs
less well on one or two textures, and most fail to some extent on combination C13. The
ASMs seem to have problems mostly with modelling the two directions in the herring-
bone weave texture (S1). For all models, normalisation seems to help, as overall the
segmentations seem to be slightly better. However, for some combinations normalisa-
tion also introduces problems; note for example the difference for the fourth texture in
the second row between ASM and ASMnrm (figures 8.2 (c) and (e)).

8.3.2 Segmentation errors

Segmentation errors were also calculated for all methods, as the relative number of
pixels segmented incorrectly. As the results in figure 8.2 show that many errors occur
around the border, two error percentage were calculated: εtotal, the error percentage
over all pixels; and εsingle, the error percentage over all pixels in windows with just a
single texture present, i.e. with a shortest distance of more than d

√
2 w

2 e = d
√

2 16
2 e = 12

pixels to the texture border. Figure 8.3 shows the results. As the average error percent-
ages thus calculated are heavily influenced by the one or two texture combinations that
are segmented poorly, the 10% largest errors for each method were not included in the
average error, but plotted separately as dots. The lines indicate the standard deviation
in the εtotal results.

The results confirm that the full-covariance Gaussian model and the subspace models
(ASM, PPCA, ASMnrm and PPCAnrm) perform best; much better than the mean-only
Gaussian model and the Gabor-filter based models. Some of the lower-dimensional
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(a) Translation-only episodes
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(b) All-transformation episodes

Figure 8.3: Texture combination segmentation errors, in fraction of pixels segmented incorrectly.
All bars show two levels: the highest level is the overall segmentation error εtotal , the
lowest level is the segmentation error when just pixels outside a range of 12 pixels
from the border are considered, εsingle. Lines indicate the standard deviation of εtotal ;
dots show the 10% largest errors, which were not included in εtotal and εsingle.

subspace models (4D ASM, 4D PPCAnrm on translation-only episodes; 4D ASMnrm on
all-invariance episodes) give relatively large errors, indicating that at least 8 dimensions
are needed to get reliable results. Indeed, these higher-dimensional subspace models
either perform as well as the Gaussian model, or (in one or two cases) fail completely.
Models trained on normalised data perform marginally better than those trained on the
original data. As was already noticed, most of the errors occur near the border: εtotal is
much larger than εsingle for all models.

Training on all-transformation episodes increases the error only slightly for most mod-
els, while it has already been shown to make them invariant over a larger range of
rotations and scale (cf. section 7.5.7). At the same time, the texture combinations for
which segmentation failed using translation-only episodes (the dots in the figures) seem
to give even more problems; compare, for example, the results for the Gaussian model
between figures 8.3 (a) and (b). On all-transformation episodes, the 8D and 16D ASMnrm
models seem to perform slightly better than PPCAnrm, which indicates that the ASMnrm
benefits from the use of episodes.
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8.3.3 Subspace shift-trained models

The subspace shift algorithm was not included in the results presented above, as it did
not always give useful results. An obvious problem with this algorithm is that the
radius of the subspaces will have to be specified beforehand, which might be prob-
lematic. Moreover, it is identical for each subspace, which in the case of textures is
far from optimal. However, since episodes are used (identically to their use in the k-
subspaces algorithm), some idea of the right setting of this parameter can be deduced
from the episode distance. If each episode is supposed to be represented by a single
subspace, that subspace should have a radius of at least the distance of that episode to it
(eqn. 8.1). Formally, this can be achieved by calculating the initial subspace Pk in step 3
of the algorithm on page 173 on a single, randomly selected episode E . The radius ρ for
that subspace can then be set to α · D(E , Pk), where α is some multiplier to prevent the
subspace fit from becoming too tight. This multiplier will still have to be specified, but
allows different subspaces to have different radii. Note that fixing ρ in this way is rather
sensitive to the exact choice of the randomly selected episode, so repeated application
of the algorithm might give different results.

Experiments using this method showed that it only works when there is sufficient sub-
space structure in the data. If the subspace contains more dimensions than are neces-
sary to describe the data (which is often the case for single translation-only episodes)
a reliable estimate of ρ is hard to find for each texture combination. Only for the all-
transformation episodes the method works reasonably well; here, α was set to 3. Fig-
ure 8.4 (a) shows the results. Most images have been over-segmented, i.e. they contain
more than two segments. Some of these images were segmented poorly before, e.g.
C12; in this image, texture S1 (herringbone weave) is represented by two subspaces,
each of which represents one dominant direction of the texture. In C1–C5, additional
subspaces model the illumination difference in the background texture. On C13, only
one subspace was found, as ρ was too large due to the choice of α; however, this was
also the single combination on which most subspace models failed completely.

The segmentations show that some of the subspaces represent only very small parts of
the image. A simple post-processing step would therefore be to discard those subspaces
representing too small a portion of the training data. When all subspaces to which less
than 15% of the episodes in the training set were assigned are removed, there is less
over-segmentation; see figure 8.4 (b). Still, the over-segmentation left makes it hard to
compare this algorithm to the others in terms of segmentation error. Furthermore, using
a threshold on the size of the set of pixels assigned to each subspace introduces another
parameter, of which the optimal setting depends on image scale and size.
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(a) Original segmentation
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(b) After subspace pruning

Figure 8.4: 8D ASMss
nrm segmentation results on the 15 texture combinations using all-

transformation episodes. In each figure the ordering is the same as in figure 8.1 (a).
The bars indicate the number of subspaces.
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8.3.4 Discussion

The experiments in this section showed how MoS models can be used for texture seg-
mentation. Normalisation of the data before training was shown to improve perform-
ance. There is no significant difference in results between the k-subspaces and EM
algorithms; however, the former is faster and allows the use of episodes in training.
Although the training sets used by the EM algorithm also contained these episodes,
there is no guarantee they are actually used as such; there is no mechanism in the EM
algorithm to force it to use episodes as single entities. Finally, the subspace shift al-
gorithm was shown to be less applicable to texture segmentation as it has a tendency to
over-segment.

In this section, ASMs were solely considered as texture segmentation tools. However, an
ASM trained on samples (or episodes) collected from images, or even classes of images,
can also be seen as a descriptor of that image. This opens up a variety of possible
applications based on image description. In the next section, ASMs will be used for
image database retrieval, in which it is often a problem to define feature sets such that
image content can be described in a compact way.

8.4 Image database retrieval

A large body of literature exists on indexing images based on their texture content – see
e.g. [9, 331] for reviews. As Antani et al. [9] note, it is impossible to define a good set
of features a priori for a wide variety of images; therefore, the best approach is to be
adaptive. However, some mechanism should be present to shield the end user from the
actual implementation. One approach is to find an optimal subset of standard features,
as Alexandrov et al. [4] did. They used a large number (120) of Gabor filters, from
which indices were created using feature selection. Of course, one can use any of a
number of texture representation methods. Pentland et al. [275] used Wold components
for textures; Kelly et al. [190] used histograms of texture masks evaluated at each pixel in
an image and developed a method of approximating and comparing these histograms.
Ramesh and Sethi [289] looked at edges, or more precisely, wavelet features extracted at
points of high curvature in edge descriptions.

In the ASM1 approach, the feature extraction and feature selection stages are rolled into
one and performed automatically. All that remains to be able to apply ASMs to image
database retrieval is to define a way of using the ASMs to measure distances between
(classes of) images, say IA and IB. There are two possible strategies:

1In this section and section 8.5, only ASMs trained on normalised data will be used. For brevity, the
term ASM will be used instead of the name ASMnrm used in the previous section.
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1. train ASMs A and B on images (or classes of images) IA and IB and use these as a
descriptor;

2. train an ASM A on image (or class of images) IA and use the histogram of pixels
in image IB assigned to subspaces in ASM A as a descriptor.

The second option seems to be preferable, as it defines distances between images IA and
IB in terms of the content of both images and the size of the regions of similar content.
However, it requires assigning all pixels in each new image (or query image) to all maps
found so far, which is a computation-intensive task. The first option is computationally
much lighter, but discards information on the size of the regions responsible for each
subspace in the map. For the image database retrieval application, the first option will
be used, and a way of taking the image region sizes at least partially into consideration
will be incorporated. For object recognition, the second option is explored, in section 8.5.

8.4.1 ASM distance measures

A distance measure between ASMs A, with kA subspaces PA
i defined by parameters

ΘA
i =

{
WA

i , µA
i
}

, and B, with kB subspaces PB
j can be defined as follows:

D(A, B) = max(D′(A, B), D′(B, A)) (8.12)

D′(A, B) =
1

kA

kA

∑
i=1

min
j=1,...,kB

D′′(PA
i , PB

j ) (8.13)

D′′(PA
i , PB

j ) =
1
m

m

∑
l=1

||eAi
l − êAi

l ||
2 (8.14)

where each m-dimensional subspace P is spanned by basis vectors W = [e1 . . . em]T and
êAi

l is the projection of basis vector l of subspace PA
i onto subspace PB

j . For convenience,
in the rest of this discussion all subspaces are assumed to have zero mean (as is the case
for the ASMnrm model). The idea behind this measure is to find, for each subspace in
ASM A, the closest subspace2 in B and average this distance over all subspaces in A.
The same is done for B and the maximum is taken, like in the Haussdorf distance (see
e.g. [169]).

The problem with this distance measure is that all information about the size of the
regions responsible for the subspaces is discarded. A possible solution for this is to

2Experiments were also performed in which a more principled distance measure between subspaces
called the gap [341] was used: D′′(PA

i , PB
j ) = ||AA

i − AB
j ||2, where A = W(WTW)−1WT is the backpro-

jection matrix onto the subspace spanned by W. However, the computational burden of this method was
much higher due to the singular value decomposition needed for the calculation of the norm, and results
were nearly identical.
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weigh the distance between a subspace PA
i and an ASM B with the relative importance

ζA
i of PA

i in ASM A:

D′(A, B) =
1

kA

kA

∑
i=1

ζA
i min

j=1,...,kB
D′′(PA

i , PB
j ) (8.15)

There are various ways of expressing the importance ζA
i of subspace PA

i . First of all,
subspaces can be weighted equally:

ζA
i,0 = 1, ∀i. (8.16)

Two other possible weight measures are:

ζA
i,1 =

hA
i

∑kA

j=1 hA
j

, (8.17)

where hA
i is the ith bin of the histogram hA of the assignment of pixels in the training

image to ASM A, and

ζA
i,2 =

hA
i (1− ε̄A

i )

∑kA

j=1 hA
j

, (8.18)

where ε̄A
i is the average projection error of the pixels assigned to subspace PA

i (eqn. 7.19).
These measures express the ideas that subspace distances should be weighted according
to their importance (using h) and descriptiveness (using 1− ε̄).

8.4.2 The data set

A small database of 200 images was created, containing images taken randomly from
the MPEG7 database and stills from an hour-long video sequence of Sky news. Besides
these images, five sequences of similar images of a news reader (“news reader”), Her
Royal Highness the Queen (“queen”), Guildford cathedral (“cathedral”), a hut (“hut”),
and a US flag (“flag”) were added. The goal of the experiment was, given an image in
a sequence, to find the other images in that sequence. Examples of the images in these
sequences are given in figure 8.5. All 200 database images, originally 24-bit colour, were
converted to grey values and histogram stretched before samples were taken.

8.4.3 Measures

On each individual image, ASMs were trained for various settings of the parameters.
To learn about the influence of the episodes construction methods on this type of ap-
plication, experiments were run using both the translation-only and all-transformation
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(a) (b) (c)

(d) (e)

Figure 8.5: Example images from the five sequences, from left to right: “news reader”, “queen”,
“cathedral”, “hut” and “flag”. The regions indicated were used only in the KIDS
system.

episode extraction methods (see section 7.3) to extract 200 episodes from each image.
Pre-mapping was not applied, as this could remove detail from the data set which may
be important. To reduce the number of dimensions the method has to deal with, a round
sampling mask (see section 7.3) was used, with a diameter of w ∈ {8, 12, 16} pixels. The
experiments were run using ASMs with k ∈ {4, 8, 12, 16, 20} subspaces of m = 2 and
m = 4 dimensions, respectively. An example of a trained ASM and the corresponding
segmented database image is given in figure 8.6.

After training, for each n-image sequence Q, one image Itst
Q was used as a test image.

The distance D(Atst
Q , Ai), i = 1, . . . , 199 between the ASM Atst

Q trained on this image and
all other ASMs was calculated using equations 8.12-8.18 and the images were ordered
by increasing distance of their ASM to that of the test image. Finally, the ranks r1 . . . rn−1
(starting from 0) of the other images in this ordered sequence Q, Itrn

Q,i were noted.

It is not easy to find a single quality measure for image database retrieval. Perhaps one
of the simplest and most intuitive is the normalised recall measure proposed by Faloutsos
et al. [102] in their discussion of IBM’s QBIC (Query By Image Content, [11, 107, 256])
system. Given a number of ranks ri, i = 1, . . . , n− 1, the average retrieval rate (ARR) is
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Figure 8.6: (a) One of the images in the “flag” sequence; (b) segmentation by a k = 8, w = 12
ASM trained on translation-only episodes taken from that image and (c) the basis
vectors of that ASM. Note the vertical and horizontal textures in the flag found by
P5, P4 and P6, respectively.

defined as:

ARR =
1

n− 1

n−1

∑
i=1

ri. (8.19)

for any n ≥ 2. The ideal average retrieval rate is:

IARR =
1

n− 1

n−1

∑
i=1

i− 1, (8.20)

allowing a definition of normalised recall as:

R =
IARR
ARR

=
∑n−1

i=1 i− 1

∑n−1
i=1 ri

. (8.21)

This value will be Rmax = 1 for query results in which the images sought occupy the
first ranks, and will be close to zero in the worst case, in which the images sought are
found last. Say there are N images in the database, then for a sequence of n− 1 images
the worst possible normalised recall value is:

Rmin =
∑n−1

i=1 i− 1

∑n−1
i=1 N − i

≈ n− 2
2N

(8.22)
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which will quickly go to zero for increasing N. For N = 200 and n = 5, Rmin = 7.6 ×
10−3. If the ranks are drawn from a uniform random distribution over the range [0, 198],
simulation shows that Rrnd ≈ 1.7 × 10−2. Note that the measure drops quickly; e.g. if
the 4 test images in Q are found at ranks 10-13, R = 0.14; if they are found at ranks
20-23, R = 0.07.

8.4.4 The KIDS system

As a comparison, the same queries were performed using a state-of-the-art system
called KIDS (or Kieron’s Image Database System, [239, 241]). This system can also
handle colour features, but for the comparison only texture features (local variance in
9 DCT filtered versions, 8 Gabor filtered versions and 4 wavelet filtered versions of the
original image) were used. Basically, KIDS segments each database image using colour
and texture information, and stores segment locations, sizes and median feature values.
Retrieval is based on training a two-output unit feed-forward neural network to distin-
guish between a region the user specified in the query image (output 1) and a randomly
drawn set of regions in the database (output 2). Any region in the database for which
network output 1 is larger than a pre-set threshold T is then labelled as a match. Finally,
a similarity measure for entire images is based on a scoring function incorporating both
the network output and the size of any matched regions.

The regions specified for KIDS are shown in figure 8.5. A network output threshold of
T = 0.5 was used which gave optimal overall results in terms of ranking.

8.4.5 Experiments

Using subspace weight measure ζA
i,2 (cf. equation 8.18) gives for most queries by far

the best results. Therefore, all results reported from here on have been found using
this subspace weight measure. Figure 8.7 shows normalised recall values calculated
for each query and the settings described earlier, using weight measure ζA

i,2. In each of
the images, the recall values can be compared with that obtained using KIDS. Table 8.2
summarises the graphs by showing normalised recall values and rankings for optimal
settings for each query.

The results show that the ASM method gives promising results, even compared to KIDS.
For most of the query images the other images in the sequence are ranked high. The
results show no clear preference for training on all-transformation episodes. Also, the
optimal settings vary quite a bit for the different queries. For most, a window size of
w = 8 and a large number of subspaces (12-20) seems to be optimal. This is likely
to be due to the relatively small images in the database, most of which had a size of
144× 192 pixels and depicted large scenes. As a consequence, they are likely to contain
a large number of regions of fine texture.
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Figure 8.7: Image database query results: normalised recall R for the five queries and various
ASM settings.
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Sequence ASM KIDS
Parameter settings R Ranking R Ranking

w k m episodes

“news reader” 8 20 4 translation-only 1.000 [0, 1, 2, 3] 0.080 [17, 19, 20, 23]
“queen” 8 12 2 translation-only 0.269 [2, 4, 9, 12] 0.095 [14, 15, 17, 21]
“cathedral” 16 16 2 translation-only 0.022 [8, 25, 65, 183] 0.462 [2, 4, 5, 6]
“hut” 8 8 4 translation-only 0.462 [1, 2, 4, 10] 0.857 [1, 2, 3, 5]
“flag” 8 16 2 all-transformation 0.667 [1, 2, 3, 4, 10] 0.063 [24, 25, 30, 35, 50]

“cathedral” (2) 8 12 4 all-transformation 0.048 [4, 5, 23, 97] -

Table 8.2: Optimal results for the image database queries for both the ASM and KIDS.

Although on most queries results are quite good, a notable exception is the “cathedral”
sequence. This is the only sequence consisting of high-resolution images, with areas of
fine texture; it was shot using a digital video camera3. A hypothesis is that it is this
high-frequency content that causes problems, or that the camera might have introduced
artifacts into the texture due to aliasing. Figure 8.8 corroborates this; it shows the im-
ages in the “cathedral” sequence with some of the ASM basis vectors corresponding to
specific textured regions. Due to the aliasing, the episodes constructed by rotating and
scaling do not enforce these invariances well. Therefore, the ASMs represent the texture
quite precisely at a certain orientation and scale, and different views of the cathedral
lead to quite different ASMs, resulting in large distances. Interestingly, KIDS performs
best on this query, indicating that the two techniques might to a certain extent be com-
plementary.

To verify that it was indeed the high frequencies in the “cathedral” images that played
a role, the “cathedral” images were sub-sampled to one half their original size, using
bi-cubic interpolation. The query was then re-run, excluding the original “cathedral”
images. Performances, did indeed improve to a more reasonable level; in table 8.2, the
new optimal results are shown as “cathedral” (2).

8.4.6 Discussion

The problems with the “cathedral” query, and inspection of other ASMs (not shown
here) indicate that the ASMs are more useful when they are coding large-scale image
structure, e.g. edges, than they are when coding small-scale texture. If such textures
are modelled precisely, as they were for the original “cathedral” query, the same tex-
ture under different viewing angles will create two subspaces with a relatively large
distance. The idea that ASMs are useful when coding structure rather than fine texture
is also supported by some of the query returns, such as the ones shown in figure 8.9.

3The “hut” sequence was shot using the same camera, but does not contain texture as fine as the
“cathedral” sequence.



8.5 OBJECT RECOGNITION 189

Figure 8.8: The 5 “cathedral” query images. The inserts show some basis vectors tuned to spe-
cific textures and specific orientations.

Note how for the “hut” query, which contains a large number of horizontal and vertical
edges, images containing quite different textures but identical edges are found.

While it was possible to find reasonable overall ASM settings (w, k and m), the actual op-
timal settings were different for each query, which would pose a problem in real-world
application. Of course, this is to be expected, as discriminative features will be found on
different scales and in different quantities in each image. For easy applicability, though,
the settings would have to be found automatically. For example, m could be optimised,
per subspace, by demanding that a certain percentage r of the variance in the original
data be explained by the subspace (e.g. 80%); or the subspace shift algorithm could be
applied, for which the radius ρ may be easier to specify than the k for the ASMs used
here. The only parameter that cannot be optimised well is the window size w, as it
needs to be fixed throughout the database to allow ASM comparison. However, ASMs
with different window sizes could be used and the resulting distance measures could
be combined.

8.5 Object recognition

In the previous section, ASMs were used as for description of single images. However,
the algorithms can trivially be trained on a class of images, simply by sampling the data
set from images representative of that class. As discussed in section 8.4 on page 182, the
histograms of image pixels assigned to such a class ASM can then be used for classific-
ation. In this section, this idea wil be illustrated on a simple object recognition problem.
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Figure 8.9: Returns for the “hut” query, using an all-transformation ASM (w = 8, k = 12 and
m = 4). The original query image is shown in the top-left.

The idea of using assignment histograms has been explored earlier by e.g. Idris and
Panchanathan [178], who use vector quantisation on an entire set of images and use his-
tograms of images assigned to the code book vectors as descriptors. Another example is
the work of Lampinen and Oja [202], in which clusters are found in a space spanned by
Gabor filters at different resolutions, and a supervised layer is applied for classification.

8.5.1 Experiments

A small data set of images of 6 different classes (book cases, chess pieces, mugs, work-
stations, a tea flask and some bridges) was created [216]. All images were acquired
using a Sony digital camera, re-sized to 320× 240 pixels, converted to grey values and
histogram stretched. Per class, 9 training images and 6 test images were used. The
intra-class variation between objects was quite high, since objects were photographed
at different distances and against different backgrounds. Also, the inter-class distance
was kept low for the object images (chess pieces, mugs and the tea flask) by taking pho-
tographs of each of these against three different backgrounds. For some examples, see
figure 8.10.
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Figure 8.10: Some training images in the object image data set: book cases, workstations,
bridges, chess pieces (3×), mugs (3×) and tea flasks (3×).
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Figure 8.11: Test error for various settings of the number of subspaces k, the sample window
size w and subspace dimensionalities m.

Figure 8.12: The four incorrectly classified images.
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Figure 8.13: Feature evaluation measures for an image containing a chess piece (left), a mug
(middle) and a tea flask (right). For some regions, the corresponding subspace basis
vectors are shown, together with the feature rank.

An ASM Ac with k subspaces of m dimensions each was trained for each class c =
1, . . . , 6, on 900 translation-only episodes taken from 9 training images Itrn

c , using a
round window with a diameter of w pixels. No data pre-mapping was applied. After
training, for each class c all training images Itrn

c,i were pixel-wise assigned to their ASM
Ac, and a k-bin class histogram htrn

c,i was created by counting the relative number of
pixels assigned to each subspace (i.e. the number of pixels assigned to a subspace di-
vided by the total number of pixels in the image). The mean µc and covariance matrix
Cc of these histograms were then used as class descriptions.

Each test image Itst
l,j (class l = 1, . . . , 6; image j = 1, . . . , 6) was pixel-wise assigned to

each of the class ASMs Ac. The histograms htst
l,j,c of these assignments were then used to

calculate the Mahalanobis distance to each of the classes:

D2
M(Itst

l,j , Ac) = (htst
l,j,c − µc)TC−1

c (htst
l,j,c − µc). (8.23)

Due to the small number of training images, some regularisation was necessary: Cc =
Cc + 10−4 I. Each test image Itst

l,j was then assigned to that class c which gave the lowest
Mahalanobis distance:

c = arg min
c′

D2
M(Itst

l,j , Ac′). (8.24)

The results of these experiments, performed for k ∈ {8, 12, 16, 20} subspaces, subspace
dimensionality m ∈ {2, 4}, and a sample window size of w ∈ {8, 16}, are shown in
figure 8.11. The best result obtained is a test error of 11% (4 out of 36 images classified
incorrectly), which is quite reasonable given the difficulty of the problem. The window
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size does not seem to be too important in this application, as for both w = 8 and w = 16
the optimum is reached. There is an optimal number of subspaces, but again the exact
choice is not too critical. Furthermore, m = 2 is sufficient; 4-dimensional subspaces lack
the distinctiveness needed to describe class-specific image information well.

8.5.2 Discussion

Mappings of images onto ASMs were shown to yield useful features for object recogni-
tion. Although performance is not impressive, it is certainly reasonable. To gain insight,
it is interesting to look at the misclassifications of the best performing ASMs. Mostly
the same test images are misclassified for a variety of settings: three images in the mugs
class and one workstation image. These are shown in figure 8.12. The three images
of mugs are the only three images in which the ears of the mug are not visible; they
appeared only in the testing set. These images are classified as chess pieces. The work-
stations image is the only one in which a row of books is also visible, and is labelled as
a book case. In all these cases, the difference in Mahalanobis distance to the true class
and to the class the image was labelled as, was small.

To investigate what features are found by the ASMs, and whether the ASMs do not
merely describe the background, the subspaces can be ranked as follows. Only the
classes of images containing chess pieces, mugs and teaflasks were considered, as these
shared the same backgrounds. Each subspace PAc

i , i = 1, . . . , k representing class c was
evaluated as a feature by calculating the average Mahalanobis distance of the training
images of the other classes to that class c, using only assignment histogram bin hi. This
distance was then used to label the image: the brighter the colour of a region, the higher
the Mahalanobis distance due to the feature describing that region, the more useful
the feature. Figure 8.13 shows three examples of these rankings. The background is
assigned to just a few subspaces, more or less randomly. For some regions, the fact that
they are not textured is important (e.g., the region with feature rank 8.5 in the chess
piece image). However, some informative and discriminating features corresponding
to structure have been found for each of the classes as well: curved edges for the chess
pieces, the curved ears of the mugs and curves and horizontal edges for the tea flask.
Of course, it is the Mahalanobis distance that makes use of these features – the ASM is
not trained to specifically find discriminating features, it just tries to describe the image
as well as possible.

8.6 Handwritten digit recognition

Finally, the original ASM model and the subspace shift trained ASMss were applied
to the problem of handwritten digit recognition. This has been a popular benchmark
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application in various publications on MoSs [151, 356]. Most of the results reported
were obtained on the CEDAR database [165]; however, as section 3.3.2 contains a large
number of results obtained on the NIST database, the same training and testing sets (see
section 3.3.1) were used here, to allow easy comparison. Note that only results obtained
on the entire training set, containing 1,000 samples per class, are given. The testing set
again contained 1,000 samples per class as well.

8.6.1 Experiments

Normalisation of the data is not applicable here, as the average grey-value and standard
deviation may be important cues for judging (dis)similarity between digits. Therefore,
only the ASM, PPCA and ASMss algorithms were considered. The use of episodes it not
necessary either; the data was already pre-processed to remove the major degrees of
freedom (slant and line width, cf. section 3.3.1). The entire training set was pre-mapped
to retain r = 90% of the variance; this left 51 dimensions. For each of the 10 classes,
an MoS was then trained on the 1,000 samples available of that class in the training
set. The number of subspaces and number of dimensions per subspace were varied:
k ∈ {2, 4, 8, 12, 16}, m ∈ {4, 8, 12, 16, 20}. Of course, the ASMss do not need k to be
set, but the radius ρ; after some experimentation, it was set to 80. After training the
ASMss models, subspaces representing less than 20 samples were removed to reduce
over-fitting.

Table 8.3 shows the results, in % error on the testing set. For larger m and k (numbers of
dimensions and subspaces), in fact for all k ≥ 12, the PPCA methods could no longer be
trained, as for some of the models σ went to zero and the models collapsed. Note that
the algorithm was restarted four times before giving up. Apparently, hard-assignment
clustering algorithms are more robust on this data set for these settings of m and k.

8.6.2 Discussion

Overall results are very good, especially when considering that the models are trained
on individual classes without using the classification error as a criterion. The best
ASM reaches a testing set error of 2.2%, which is better than the LeCun ANN (see fig-
ure 3.5 (a)). Clearly, the MoS models also fit the data better than single Gaussian dens-
ities (the “lc” and “qc” curves in figure 3.5 (b)). The ASMss algorithm reaches nearly
the same performance as the ASM, but at a fraction of the computational cost; as was
already discussed in section 8.2.3, it is much faster to train than the k-subspaces al-
gorithm. Per digit, it finds the appropriate number of subspaces. This number seems to
correspond roughly to the amount of variation possible in writing each digit; e.g., there
are less ways of writing a “1” (modelled by 2-3 subspaces) than there are of writing a “2”
(modelled by 6-10 subspaces). Only for m = 2 does the ASMss find too little subspaces,



8.7 CONCLUSIONS 195

ASM PPCA ASMss

k = 2 4 8 12 16 k = 2 4 8 error k, for “0” . . . “9” and total

m = 2 4.1 3.5 3.0 3.0 2.6 6.8 5.6 4.5 4.1 6 3 8 8 7 12 7 5 8 6 70
4 3.1 2.5 2.4 2.7 2.6 5.5 4.2 4.1 2.5 5 2 8 7 6 9 4 4 9 3 57
8 2.6 2.5 2.4 3.0 3.2 5.3 3.2 - 2.4 3 3 10 8 5 8 4 3 8 4 56

12 2.4 2.2 2.6 3.4 3.6 4.7 - - 2.2 5 3 8 6 6 7 4 3 7 3 52
16 2.3 2.3 3.0 3.7 4.3 - - - 2.3 3 2 6 6 4 6 3 3 6 3 42

Table 8.3: Handwritten digit recognition results, in % error on the testing set, for various num-
bers of subspaces k and subspace dimensionalities m. For ASMss, the number of sub-
spaces found is also shown, per digit.

resulting in a larger error than that of the ASM. This is caused by the fixed setting of ρ
for all experiments; it is probably too large for the m = 2 experiments, resulting in too
few subspaces being found.

In general the ASMss algorithm finds somewhat more subspaces than ASMs giving sim-
ilar performance. Still, both algorithms seem to perform well using, say, between 40 and
60 12D subspaces. In total, they use one 51× 256 pre-mapping matrix, and 40 to 60 sub-
spaces of (12 + 1)× 51 elements, including the origin of each subspace. This amounts
to between 39,576 and 52,836 parameters, which is even lower than the LeCun ANN in
section 3.3.2.

An added advantage of the MoS models is the ease with which they can be interpreted.
Whereas ANNs are to a large extent “black boxes”, the subspace models can easily
be visualised. An example is shown in figure 8.14. Of each of the 9 subspaces in the
description of the digit “5” in the 4D ASMss, the origin µ is plotted, together with the
variation allowed by the first basis vector e1 of the subspace. For most subspaces, it is
clear which variations they model: P1 allows for slight slant differences, P2, P5, P7 and
P9 for horizontal size differences, P3, P4 and P6 for differences in writing style. P8 even
seems to account for mis-segmented digits in which the top stroke is missing. These
plots make it possible to investigate the variation in the data set and, where necessary,
remove erroneous training samples or even superfluous subspaces.

8.7 Conclusions

This chapter introduced three clustering algorithms useful for training MoS models:
k-subspaces, EM and subspace shift. For the first two, next to the dimensionality of
each subspace, the number of subspaces to be found has to be given beforehand. The
subspace shift algorithm, an adaptation of the mean shift algorithm, requires a radius
parameter ρ which might be easier to specify. The k-subspaces and subspace shift al-
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Figure 8.14: The 9-subspace, 4D ASMss trained on digit 5. For each subspace, the origin µ and
the variation due to the first basis vector e1 is shown. The range of variation is set
using the corresponding eigenvalue λ1.

gorithms have the advantage that the use of episodes can easily be incorporated into the
algorithm; however, the EM algorithm might deal better with data overlap (i.e. sampled
windows containing multiple textures).

The resulting models were then applied to the problem of texture segmentation; exper-
iments were performed on a number of artificially combined structured textures. The
segmented images and an overview of segmentation errors showed that:

• the Gaussian mixture model, 8D/16D k-subspaces-trained PCA mixture models
(ASM) and 8D/16D EM-trained PCA mixture models (PPCA) perform well in seg-
menting textures;

• normalisation even improves this performance somewhat;
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• for most models, segmentation errors occur mainly in the region around the bor-
der between two textures;

• sometimes the models fail to find the right segmentation completely, when one of
the textures is hard to describe using a single subspace;

• it is difficult to assess the subspace shift algorithm, as it tends to oversegment
images;

• errors remain low when models are trained on episodes constructed according to
the all-transformation method, which in chapter 7 was demonstrated to increase
invariance to rotation and scaling.

The ASM model can be used for more than just texture segmentation, as a trained ASM
can be seen as a description or “signature” of an image, or even for a class of images.
This idea was demonstrated on two applications: image database retrieval and object
recognition. For image database retrieval, a distance measure was proposed between
two sets of subspaces. Each image in an image database can then be represented by an
ASM, and queries can be performed by sorting images based on distances between their
representative ASMs. Experimental results, although the database used was small, were
quite good compared to a state-of-the-art system, given the fact that only texture and
edge information is used (since the average grey value is removed from the samples).
Some experiments on one of the queries on which performance was poor, together with
inspection of ASMs and query returns, lead to the conclusion that on this image data-
base the ASMs code large-scale structure rather than fine texture. This is due to the fact
that less texture is present, but also because texture usually has a much smaller scale
than in the Brodatz texture images and is harder to model.

Besides using the ASMs themselves, histograms of image pixels assigned to the ASMs
subspaces may be used as well. In an object recognition experiment, classes of objects
were each represented by one ASM. Histograms of images pixel-wise assigned to the
ASMs were then used as features in a simple classification scheme based on the Ma-
halanobis distance. This method gave a reasonably low test error. A feature ranking
method was applied to learn what subspaces are important for classification; it was
shown that the ASMs had picked up on structures (edges etc.) specific to each of the
classes.

In a last application, the handwritten digit recognition problem of chapter 3 was revis-
ited. On this problem, MoS models trained using the hard clustering algorithms (i.e.
k-subspaces, subspace shift) were shown to be more robust than the EM-trained ones.
Overall, performance was quite good, considering that the method is not trained with
the goal of minimising classification error and that the number of parameters used is
quite low compared to classifiers applied earlier. Furthermore, the subspace shift al-
gorithm was shown to automatically find an optimal number of subspaces, with errors
as low as the best-performing ASM.
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In most of the experiments in this chapter some important settings, such as the number
of subspaces to use within each ASM, the number of dimensions per subspace and the
sampling window size, were optimised by hand. For easier applicability, it would be
interesting to investigate optimising these automatically, or perhaps to use a multi-scale
approach. Although some authors propose methods to find optimal parameter settings
(e.g. by a Bayesian approach, [29, 30, 123]), these do not seem quite applicable to the
applications discussed here due to their high computational complexity and the fact
that results depend on the size of the training set. Another possible extension is the
use of colour information. This would be quite desirable, as the literature on image
databases clearly shows color information to be the most important to use in image
database retrieval [9].

An important finding is that unsupervised methods not only perform well on the ap-
plications discussed in this chapter, but also allow for easier interpretation than super-
vised methods. In image segmentation and description, textured regions and structures
in an image are characterised by (sets of) subspace basis vectors. These can easily be
seen to respond to certain specific elements in images, e.g. edges of various slopes
at various rotations. In the handwritten digit recognition application, subspace ori-
gins correspond to typical ways of writing digits, while basis vectors indicate which
variations in writing occur (e.g. size, writing style etc.). In view of the problems en-
countered in interpreting supervised feed-forward neural networks (see chapters 4 and
6), this is quite an advantage.
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CONCLUSIONS

This thesis discussed the application of adaptive methods in image processing. Three
main questions were formulated in chapter 1:

• Applicability: can (nonlinear) image processing operations be learned by adaptive
methods?

• Prior knowledge: how can prior knowledge be used in the construction and training
of adaptive methods?

• Interpretability: what can be learned from adaptive methods trained to solve image
processing problems?

These three questions return throughout this thesis, for three different approaches: su-
pervised classification (chapters 3-4), supervised regression (chapters 5-6) and unsu-
pervised clustering (chapters 7-8). Below, answers will be formulated to each of the
questions for the different approaches.

9.1 Applicability

The review in chapter 2 showed that many researchers have attempted to apply arti-
ficial neural networks (ANNs) to image processing problems. To a large extent, it is
an overview of what can now perhaps be called the “neural network hype” in image
processing: the approximately 15-year period following the publications of Kohonen,
Hopfield and Rumelhart et al. Their work inspired many researchers to apply ANNs to
their own problem in any of the stages of the image processing chain. In some cases, the
reason was biological plausibility; however, in most cases the goal was simply to obtain
well-performing classification, regression or clustering methods.

In some of these applications the most interesting aspect of ANNs, the fact that they can
be trained, was not (or only partly) used. This held especially for applications to the first
few tasks in the image processing chain: pre-processing and feature extraction. Another
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advantage of ANNs often used to justify their use is the ease of hardware implement-
ation; however, in most publications this did not seem to be the reason for application.
These observations, and the fact that often researchers did not compare their results to
established techniques, casted some doubt on the actual advantage of using ANNs. In
the remainder of the thesis, ANNs were therefore trained on three tasks in the image
processing chain: object recognition (supervised classification), pre-processing (super-
vised regression) and feature extraction (unsupervised) and, where possible, compared
to traditional approaches.

The experiments on supervised classification, in handwritten digit recognition and
automatic target recognition, showed that ANNs are quite capable of solving difficult
object recognition problems. Training was not without problems. This was shown by
the LeNet ANN, for which detailed inspection revealed that parts were not function-
ing at all after training. Training ANNs to perform automatic target recognition was
also difficult. Of a number of trained instances of an ANN architecture, only some per-
formed well. Still, in both object recognition problems the ANNs performed well. On
handwritten digit recognition, ANNs performed nearly as well as some traditional pat-
tern recognition methods, such as the nearest neighbour rule and support vector clas-
sifiers, but at a fraction of the computational cost. This corroborates the finding in the
review that object recognition was one of the most popular application areas of ANNs.

As supervised regressors, a number of ANN architectures was trained to mimic the
Kuwahara filter, a nonlinear edge-preserving smoothing filter used in pre-processing.
The experiments showed that careful construction of the training set is very important.
If filter behaviour is critical only in parts of the image represented by a small subset
of the training set, this behaviour will not be learned. Constructing training sets using
the knowledge that the Kuwahara filter is at its most nonlinear around edges improved
performance considerably. This problem is also due to the use of the mean squared er-
ror (MSE) as a training criterion, which will allow poor performance if it only occurs
for a small number of samples. Another problem connected with the use of the MSE
is that it is insufficiently discriminative for model choice; in first attempts, almost all
ANN architectures showed identical MSEs on test images. Criteria which were pro-
posed to measure smoothing and sharpening performance showed larger differences.
An attempt at using another criterion for training (the Lp norm) was not successful, as
for most p smoothing and sharpening performance was worse than for p = 2, i.e. the
MSE. It did however illustrate the large influence of the choice of error criterion. Unfor-
tunately, the results indicate that the training set and performance measure will have to
be tailored for each specific application, with which ANNs lose much of their attract-
iveness as all-round methods. The findings also explain why in many of the reviewed
papers in chapter 2, ANNs applied to pre-processing were non-adaptive.

Finally, mixture-of-subspace (MoS) models were used as unsupervised clustering meth-
ods for feature extraction. These models were inspired by an ANN, the adaptive sub-
space self-organising map (ASSOM). One can argue about whether MoS models are
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neural, as they do not fit the description given in section 1.1.2 and they are not as gen-
erally applicable as the feed-forward ANNs used before. However, the only difference
with the self-organising map is the lack of topological correctness, which in most ap-
plications is never used. Various subspace models were discussed. Principal compon-
ent analysis (PCA) was first examined as a texture description method and proved to
perform well compared to Gaussian models and Gabor filter banks. In contrast, inde-
pendent component analysers (ICA, for which a new training algorithm was derived),
were shown not to be useful for texture description, as they focused on rarely occurring,
high-frequency elements in images. Next, mixtures of PCA subspaces were considered.
As these MoS models themselves do not yet perform a task, but simply describe the
data, various post-processing steps can be added. Simply using the distance to the
MoS gave good results in segmentation (of Brodatz textures) and object recognition (of
handwritten digits). In the recognition of handwritten digits, MoS models gave results
as good as the shared weight ANNs used earlier, using less parameters. Histograms
of pixel assignments were useful for object recognition; and using inter-model distance
measures lead to a well-performing image database retrieval method. An open problem
with MoS models is the setting of a number of model parameters, which should ideally
be optimised automatically.

In conclusion, supervised methods seem to be most applicable for problems requiring
a nonlinear solution, for which there is a clear, unequivocal performance criterion. This
means ANNs are more suitable for high-level tasks in the image processing chain, such
as object recognition, rather than low-level tasks. For both classification and regression,
the choice of architecture, the performance criterion and data set construction play a
large role and will have to be optimised for each application. Unsupervised methods are
suitable as feature extraction mechanisms and can easily be coupled to post-processing
steps to perform segmentation and object recognition. Here, parameter settings rather
than architectural choices are important.

9.2 Prior knowledge

In a large number of the publications reviewed in chapter 2, prior knowledge was used
to constrain ANNs. This is to be expected; unconstrained ANNs contain large numbers
of parameters and run a high risk of being overtrained. Prior knowledge can be used to
lower the number of parameters in a way which does not restrict the ANN to such an
extent that it can no longer perform the desired function. One way to do this is to con-
struct modular architectures, in which use is made of the knowledge that an operation
is best performed as a number of individual sub-operations. Another way is to use the
knowledge that neighbouring pixels are related and should be treated in the same way,
e.g. by using receptive fields in shared weights ANN.

The latter idea was tested in supervised classification, i.e. object recognition. The shared
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weight ANNs used contain several layers of feature maps (detecting features in a shift-
invariant way) and subsampling maps (combining information gathered in previous
layers). The question is to what extent this prior knowledge was truly useful. Visual in-
spection of trained ANNs revealed little. Standard feed-forward ANNs comparable in
the number of connections (and therefore the amount of computation involved), but with
a much larger number of weights, performed as well as the shared weight ANNs. This
proves that the prior knowledge was indeed useful in lowering the number of paramet-
ers without affecting performance. However, it also indicates that training a standard
ANN with more weights than required does not necessarily lead to overtraining.

For supervised regression, a number of modular ANNs was constructed. Each mod-
ule was trained on a specific subtask in the nonlinear filtering problem the ANN was
applied to. Furthermore, of each module different versions were created, ranging from
architectures specifically designed to solve the problem (using hand-set weights and
tailored transfer functions) to standard feed-forward ANNs. According to the pro-
posed smoothing and sharpening performance measures, the fully hand-constructed
ANN performed best. However, when the hand-constructed ANNs were (gradually)
replaced by more standard ANNs, performance quickly decreased and became level
with that of some of the standard feed-forward ANNs. Furthermore, in the modular
ANNs that performed well the modular initialisation was no longer visible (see also
the next section). The only remaining advantage of a modular approach is that careful
optimisation of the number of hidden layers and units, as for the standard ANNs, is not
necessary.

In the MoS models finally, prior knowledge is rather easy to incorporate. Normalisa-
tion of the data uses the knowledge that image data should be modelled invariant to
illumination. The very use of subspace mixture models itself is a powerful use of prior
knowledge, i.e. that the data can be locally modelled by linear subspaces, invariant
to certain transformations. Although there is a large difference in the number of para-
meters, the MoS models perform nearly as well as mixtures-of-Gaussians. The model
parameters (the number of subspaces, the number of dimensions per subspace) too have
a certain physical meaning which gives insight into their optimal setting. The only ap-
plication in which such prior knowledge was not available due to the large range of
image content, the image database retrieval problem, gave most problems in choosing
optimal parameter settings. Finally, the fact that MoS models describe data rather than a
function on it can be used to find simple yet powerful post-processing steps using prior
knowledge. Examples were the use of the histogram of pixels of an image assigned
to an MoS as a “signature” of that image, and the measurement of distances between
images by inter-MoS distances.

These observations lead to the conclusion that prior knowledge can be used to restrict
adaptive methods in a useful way. However, various experiments showed that feed-
forward ANNs are not natural vehicles for doing so, as this prior knowledge will have
to be translated into a choice for ANN size, connectivity, transfer functions etc., para-
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meters which do not have any physical meaning related to the problem. Therefore, such
a translation does not necessarily result in an optimal ANN. It is easier, as the MoS ap-
plications showed, to construct a (rough) model of the data and allow model variation
by allowing freedom in a number of well-defined parameters. Prior knowledge should
be used in constructing models rather than in molding general approaches.

9.3 Interpretability

Throughout this thesis, strong emphasis was placed on the question whether ANN op-
eration could be inspected after training. Rather than just applying ANNs, the goal was
to learn from the way in which they solved a problem. In almost none of the public-
ations discussed in the review (chapter 2) this played a large role, although it would
seem to be an important issue when ANNs are applied in mission-critical systems, e.g.
in medicine, process control or defensive systems.

Supervised classification ANNs were inspected w.r.t. their feature extraction capabil-
ities. As feature extractors, shared weight ANNs were shown to perform well, since
standard pattern recognition algorithms trained on extracted features performed better
than on the original images. Unfortunately, visual inspection of trained shared weight
ANNs revealed nothing. The danger here is of over-interpretation, i.e. reading image
processing operations into the ANN which are not really there. To be able to find out
what features are extracted, two smaller problems were investigated: edge recognition
and two-class handwritten digit recognition. A range of ANNs was built, which showed
that ANNs need not comply with our ideas of how such applications should be solved.
The ANNs took many “short cuts”, using biases and hidden layer-output layer weights.
Only after severely restricting the ANN did it make sense in terms of image processing
primitives. Furthermore, in experiments on an ANN with two feature maps the ANN
was shown to distribute its functionality over these maps in an unclear way. An in-
terpretation tool, the decorrelating conjugate gradient algorithm (DCGD), can help in
distributing functionality more clearly over different ANN parts. The findings lead to
the formulation of the interpretability trade-off, between realistic yet hard-to-interpret
experiments on the one hand and easily interpreted yet non-representative experiments
on the other.

This interpretability trade-off returned in the supervised regression problem. Modular
ANNs constructed using prior knowledge of the filtering algorithm performed well,
but could not be interpreted anymore in terms of the individual sub-operations. In fact,
retention of the modular initialisation was negatively correlated to performance. ANN
error evaluation was shown to be a useful tool in gaining understanding of where the
ANN fails; it showed that filter operation was most poor around edges. The DCGD
algorithm was then used to find out why: most of the standard feed-forward ANNs
found a sub-optimal linear approximation to the Kuwahara filter. The conclusion of the
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experiments on supervised classification and regression is that as long as a distributed
system such as an ANN is trained on single goal, i.e. minimisation of prediction error,
the operation of sub-systems cannot be expected to make sense in terms of traditional
image processing operations. This held for both the receptive fields in the shared weight
ANNs and the modular setup of the regression ANNs: although they are there, they are
not necessarily used as such. This also supports the conclusion of the previous section,
that the use of prior knowledge in ANNs is not straightforward.

Finally, the MoS models offer very natural ways of interpretation. First, the models
themselves allow immediate inspection of subspace basis vectors as possible variations
on prototypical image patches; the model parameters are expressed in terms of im-
age data itself. It is rather easy to point out specific invariances, as was shown for the
handwritten digit recognition problem. This even does not lead to a degradation in
performance; there is no interpretability trade-off. Second, the parameters (number of
subspaces, number of dimensions) have a clear interpretation. Third, as most applic-
ations of the MoS models just used the notion of distance to the model, inspection of
feature importance is simple. This was demonstrated for segmentation, i.e. the problem
with the cathedral image in the image database retrieval problem; but also for the object
recognition problem, in which features were ranked by their discriminative powers.

This thesis showed that interpretation of supervised ANNs is hazardous. As large dis-
tributed systems, they can solve problems in a number of ways, not all of which neces-
sarily correspond to human approaches to these problems. Simply opening the black
box at some location one expects the ANN to exhibit certain behaviour does not give
insight into the overall operation. Furthermore, knowledge obtained from the ANNs
cannot be used in any other systems, as it only makes sense in the precise setting of the
ANN itself. In contrast, unsupervised methods allow easy interpretation, as they do not
depend on any derived performance criteria.

9.4 Conclusions

We believe that the last few years have seen an attitude change towards ANNs, in which
ANNs are not anymore automatically seen as the best solution to any problem. The
field of ANNs has to a large extent been re-incorporated in the various disciplines that
inspired it: machine learning, psychology and neurophysiology. In machine learning,
researchers are now turning towards other, non-neural adaptive methods, such as the
support vector classifier. For them the ANN has become a tool, rather than the tool it
was originally thought to be.

So when are ANNs useful in image processing? First, they are interesting tools when
there is a real need for a fast parallel solution. Second, biological plausibility may be
a factor for some researchers. But most importantly, ANNs trained based on examples
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can be valuable when a problem is too complex to construct an overall model based
on knowledge only. Often, real applications consist of several individual modules per-
forming tasks in various steps of the image processing chain. A neural approach can
combine these modules, control each of them and provide feedback from the highest
level to change operations at the lowest level. The price one pays for this power is the
black-box character, which makes interpretation difficult, and the problematic use of
prior knowledge. If prior knowledge is available, it is better to use this to construct a
model-based adaptive method and learn its parameters; performance can be as good,
and interpretation comes natural.
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A

SHARED WEIGHT NETWORK
ARCHITECTURES

A.1 LeCun

This was the original proposal, as found in [207, 209, 233]. It was described in sec-
tion 3.2.1. The only difference is that a border of 1 pixel has been added on the top and
the left and a border of 2 pixels on the bottom and on the right, to take care of the prob-
lems encountered in places where the filter extended beyond the borders of the 16× 16
image. Therefore, instead of 1256 cells, this network has 1256− 162 + 192 = 1361 cells, as
indicated in table A.1. Table A.2 shows how subsampling maps are connected to feature
maps. In figure A.1 the LeCun ANN architecture is shown; figure A.2 depicts a trained
LeCun ANN.

A.2 LeNet

This network is described in section 3.2.2 and was found in [208]. Note that although
this network has much more connections than the previous one, the number of weights
is far less (table A.1). Table A.3 details how feature maps are connected to subsampling
maps. Figure A.3 shows the LeNet architecture and figure A.4 a trained LeNet ANN.

A.3 LeNotre

The LeNotre-architecture is a proposal by Fogelman Soullie et al. in [109] and, under
the name Quick, by Viennet [364]. It was used to show that the ideas that resulted in the
construction of the networks described above can be used to make very small networks
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No. of... LeCun LeNet LeNotre

Units 1361 4634 394
Connections 63660 94952 2210
Weights 8760 2584 626
Biases 1000 3850 138

Table A.1: Number of elements in the LeCun, LeNet and LeNotre architectures.

Subsampling map
1 2 3 4 5 6 7 8 9 10 11 12

1 • • • • • •
2 • • • • • •
3 • • • • • •
4 • • • • • •
5 • • • • • •
6 • • • • • •
7 • • • • • •
8 • • • • • •
9 • • • • • • • • • • • •

10 • • • • • • • • • • • •
11 • • • • • • • • • • • •

Fe
at

ur
e

m
ap

12 • • • • • • • • • • • •

Table A.2: Connections between the feature map layer and subsampling map layer in the LeCun
architecture.

Subs. map Subs. map
1 2 3 4 1 2 3 4

1 • 7 •
2 • • 8 • •
3 • • 9 • •
4 • 10 •
5 • • 11 • •

Fe
at

ur
e

m
ap

6 • • Fe
at

ur
e

m
ap

12 • •

Table A.3: Connections between the feature map layer and subsampling map layer in the LeNet
architecture.
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Figure A.1: The LeCun architecture. The top layer is the input layer.

that still perform reasonably well. Notice that the second layer contains two differently
sized feature maps. Also, this network does not enlarge the input image to compensate
for border effects. Table A.1 shows the number of components of the ANN. Figure A.5
shows the layout of the ANN, figure A.6 a trained instance of the LeNotre ANN.



212 SHARED WEIGHT NETWORK ARCHITECTURES

Figure A.2: The LeCun ANN trained on the handwritten digit set, 1,000 samples/class. Note:
for each map in the third layer, only the first set of weights (the first filter) is depicted.
Bias is not shown in the figure. In this representation, the bottom layer is the input
layer.
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Figure A.3: The LeNet architecture. The top layer is the input layer.
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Figure A.4: The LeNet ANN trained on the handwritten digit set, 1,000 samples/class. Bias is
not shown in the figure. In this representation, the bottom layer is the input layer.
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Figure A.5: The LeNotre architecture. The top layer is the input layer.

Figure A.6: The LeNotre ANN trained on the handwritten digit set, 1,000 samples/class. Bias is
not shown in the figure. In this representation, the bottom layer is the input layer.





B

ARTIFICIAL NEURAL NETWORK ERROR
EVALUATION

In this appendix, an expression will be derived for calculation of the variance of a single
neural network output given a training set and one input vector. It is an abridged ver-
sion of [28], pp. 385-401. The basic idea is to view the output of a trained ANN as
generated by a probability density function. When certain assumptions are made re-
garding the distribution of the weights of the ANN, this variance can be calculated and
can serve as an indication of ANN confidence for a certain input.

Let the ANN function be denoted by R(x; w) (cf. section 2.2.1), where x is an input
vector (with corresponding scalar target z) and w is now considered to be a vector of
length W containing all weights and biases (note that this is slightly different from the
notation used in chapter 2). The ANN has been trained on a set L with samples (xi, yi),
i = 1, . . . , |L|.

The distribution of a single ANN output z given an input vector x can be written as

p(z|x,L) =
∫

p(z|x, w)p(w|L)dw, (B.1)

where
∫

dw is shorthand for
∫

R
· · ·
∫

R
dw1 · · · dwW . In the integral, the first term corres-

ponds to the noise on the ANN targets, which is modelled by a Gaussian with a known
and fixed variance σ2

N:

p(z|x, w) ∼ exp

(
1

2σ2
N

(R(x; w)− z)2

)
. (B.2)

The second term is the posterior distribution of the weights, i.e. the distribution of the
weight values after the ANN has been trained. It can be found using Bayes’ theorem,
which states that

p(w|L) =
p(L|w)p(w)

p(L)
=

p(L|w)p(w)∫
p(L|w)p(w)dw

. (B.3)
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This means a prior distribution p(w) will have to be found for the weights. Usually,
a Gaussian distribution is assumed, as it corresponds to using a weight regularisation
term r

2 ||w||
2 during training (where r is the regularisation parameter). However, in the

experiments in chapter 5 no regularisation has been used. To simplify calculations, a
non-informative prior is chosen, in which p(w) is considered to be uniformly distributed
over the entire space1. This simplifies eqn. B.3 to:

p(w|L) = c
p(L|w)∫

p(L|w)dw
, (B.4)

with c a suitable normalisation constant.

Now, as the input vectors x are drawn independently, the likelihood p(L|w) in eqn. B.4
can be written as

p(L|w) = ∏
(xi ,yi∈L)

p(yi|xi, w) (B.5)

=
1

(2πσ2
N)

|L|
2

exp

− 1
2σ2

N
∑

(xi ,yi)∈L
(R(xi; w)− yi)2

 (B.6)

= c′ exp(−S(w)), (B.7)

in which the mean squared error criterion of eqn. 2.12 can be recognised:

S(w) =
|L|
σ2

N
E(w). (B.8)

This gives as posterior distribution of the weights

p(w|L) = c′′
exp(−S(w))∫
exp(−S(w))

(B.9)

After training, this distribution can be approximated by a Gaussian around the min-
imum of the MSE, or equivalently, the maximum of the likelihood (eqn. B.9). If the
weights at this minimum are denoted by wMP, the second-order approximation of S(w)
becomes:

S(w) ≈ S(wMP) +
1
2
(w−wMP)TH(w−wMP) (B.10)

in which H is the Hessian of the ANN output w.r.t. its weights, i.e.

Hij =
∂2E

∂wi∂wj
. (B.11)

1Strictly speaking this is not allowed, as this is an improper prior: the integrals can no longer be eval-
uated. However, it shortens the following derivation considerably and corresponds exactly to the end
result of the derivation in [28] with the regularisation constant r set to 0.
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The overall expression for the distribution of the ANN outputs now becomes, putting
together eqns. B.2 and B.9, using eqn. B.10 and dropping terms not involving z or w:

p(z|x,L) ∼
∫

exp

(
− 1

2σ2
N

(R(x; w)− z)2

)
exp

(
−1

2
(w−wMP)TH(w−wMP)

)
dw.

(B.12)
If the width of the posterior distribution of the weights is small enough, the ANN func-
tion can be approximated by a linear expansion around wMP:

R(x; w) ≈ R(x; wMP) + ∇wR(x; w)|wMP
, (B.13)

where the last term is the derivative of the ANN w.r.t. its weights, evaluated at wMP.
Then eqn. B.12 can be written as ([28], p. 399):

p(z|x,L) ∼ 1

(2πσ2
tot)

1
2

exp
(
− 1

2σ2
tot

(z− R(x; wMP))2
)

, (B.14)

i.e. a Gaussian distribution with variance

σ2
tot = σ2

N +
(
∇wR(x; w)|wMP

)T
H−1

(
∇wR(x; w)|wMP

)
. (B.15)

If the contribution due to the variance of the ANN outputs is negligible, i.e. when σ2
N

is small, the second term dominates the variance σ2
tot. The values of σ2

tot can then be
calculated using just the derivative and Hessian of the ANN w.r.t. its weights. This
Hessian can be found using any of a number of (rather involved) techniques discussed
in [27, 28]. In chapter 5, simple finite differencing approximation has been used.





C

A MAXIMUM LIKELIHOOD ALGORITHM
FOR UNDERCOMPLETE ICA BASES

In this appendix, the extended infomax ICA algorithm proposed by Lee et al. is dis-
cussed, in section C.1. It will go into more technical detail than Lee’s publication [212]
and the various assumptions made by the authors will be discussed. A fundamental
problem of this algorithm is that it can only be used to find as many independent com-
ponents (m) as there are dimensions in the data set (d). A new formulation is given in
section C.2 to find undercomplete ICA bases, or ICA subspaces, the case where m < d.
In section C.3 some properties of the algorithm are discussed, i.e. sensitivity to variance,
implementation and sample size requirements. Finally, as a benchmark, in section C.4
the algorithm is applied to some simple 1D and 2D data sets and a data set of natural
image patches.

C.1 Extended infomax ICA

The starting point is the basic ICA model, a latent variable model without noise [212,
227]:

x = As + µ, (C.1)

where x is a d-dimensional vector, s is the d-dimensional vector containing the inde-
pendent sources and A is a full rank d× d mixing matrix. The goal of ICA is to find both
matrix A and the sources s from a data set L = {xn} , n = 1, . . . , N.

First, maximum likelihood ICA will be discussed in section C.1.1. Next, the extensions
to the basic ML approach introduced by Lee et al. [212] will be given in subsection C.1.2.
In the derivations, without loss of generality the mean vector µ is assumed to be zero,
i.e. x = As.
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C.1.1 Maximum likelihood ICA

Likelihood

Given the model in eqn. C.1, the probability of observing a data vector x given the latent
variable s is not a true distribution, since there is no noise. The distribution can therefore
be modelled by a Kronecker delta function [227]:

p(x|s, A) = δ(x−As) =
d

∏
l=1

δ

(
xl −

d

∑
k=1

Alksk

)
, (C.2)

where the factorisation is possible due to the independence assumption. The likelihood
of observing a data vector x is

p(x|A) =
∫

p(x|s, A)p(s)ds =
∫

δ(x−As)p(s)ds. (C.3)

The following identity can be used to work out the integral, using y = as:∫
δ(x − as) f (s)ds =

∫
δ(x − y) f

(y
a

) 1
a

dy =
1
a

f
(x

a

)
(C.4)

which, for vectors, translates to:∫
δ(x−As) f (s)ds =

∫
δ(x− y) f (A−1y)

1
| det(A)|

dy = | det(A)|−1 f (A−1x).(C.5)

Here, the factor | det(A)|−1 should be seen as a normalisation factor. The linear trans-
formation A causes a unit hypercube with volume 1 to have a volume | det(A)| after the
transform – since | det(A)| is the volume of the parallepepid spanned by the columns
of A, i.e. the basis vectors of the transformation.

This allows equation C.3 to be solved:

p(x|A) =
∫

δ(x−As)p(s)ds = | det(A)|−1 p(A−1x), (C.6)

so the log-likelihood becomes, again using the fact that the elements of s are independ-
ent,

ln p(x|A) = ln
[
| det(A)|−1 p(A−1x)

]
= − ln | det(A)|+ ln

[
d

∏
l=1

p

(
d

∑
k=1

A−1
lk xk

)]

= − ln | det(A)|+
d

∑
l=1

ln p

(
d

∑
k=1

A−1
lk xk

)
. (C.7)
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Here the summation over A−1
lk xk simply is the multiplication of row l of A−1 with x.

Letting W = A−1 and making use of det(A−1) = 1
det(A) , this can also be written as

ln p(x|A) = ln | det(W)|+
d

∑
l=1

ln p

(
d

∑
k=1

Wlkxk

)
, (C.8)

where W is called the unmixing matrix. The log-likelihood for the entire data set is:

L =
N

∑
n=1

ln p(xn|A) =
N

∑
n=1

[
ln | det(W)|+

d

∑
l=1

ln p

(
d

∑
k=1

Wlkxn
k

)]
. (C.9)

A generalised EM algorithm

The log-likelihood found in eqn. C.7 can now be maximised to find a maximum like-
lihood (ML) solution. This is achieved using a generalised expectation-maximisation al-
gorithm (GEM): in each step the expectation of the log-likelihood is calculated (E-step)
and gradient ascent is performed in a direction which maximises this likelihood (M-
step). For more information on the GEM algorithm, see [84].

Rules for taking derivatives of matrix functions w.r.t. matrix elements can be found
in [85]. Using the following basic equations:

∂

∂Mij
f (M) = M(i,j) (C.10)

∂

∂Mij
f (MT) = M(j,i), (C.11)

where M(i,j) is a matrix filled with zeros and just Mij = 1, the following rules are given
or derived:

∂

∂Mij
[ f (M) + g(M)] =

∂

∂Mij
f (M) +

∂

∂Mij
g(M) (C.12)

∂

∂Mij
[ f (M)g(M)] =

[
∂

∂Mij
f (M)

]
g(M) + f (M)

[
∂

∂Mij
g(M)

]
(C.13)

∂

∂Mij
f−1(M) = − f−1(M)

[
∂

∂Mij
f (M)

]
f−1(M) (C.14)

∂

∂Mij
det(M) = det(M) M−1

ji . (C.15)

Note that the expressions obtained in this way can be gathered for entire matrices by
using the identity

PM(i,j)Q = (PTQT)ij. (C.16)
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Taking the derivative with respect to W = A−1 instead of the derivative with respect
to A simplifies the final expression. The derivative of eqn. C.8 with respect to a single
element Wij is:

∂

∂Wij
ln p(x|A) =

∂

∂Wij

ln | det(W)|︸ ︷︷ ︸
(I)

+
d

∑
l=1

ln p

(
d

∑
k=1

Wlkxk

)
︸ ︷︷ ︸

(I I)

 . (C.17)

The derivative of (I) is quite easy to find using eqn. C.15:

∂

∂Wij
ln | det(W)| = | det(W)|−1 ∂

∂Wij
| det(W)|

= | det(W)|−1| det(W)|W−1
ji = Aji. (C.18)

For (II), it is useful to denote the estimate of the source si by

ui =
d

∑
k=1

Wikxk, (C.19)

since u = A−1x = Wx. Then (II) can be written as:

∂

∂Wij

d

∑
l=1

ln p

(
d

∑
k=1

Wlkxk

)
=

d

∑
l=1

∂ ln p
(

∑d
k=1 Wlkxk

)
∂ ∑d

k=1 Wlkxk


∂ ∑d

k=1 Wlkxk

∂Wij


= φi(ui)xj, (C.20)

in which the nonlinearity φi(ui) is the derivative of the log-likelihood of one source ui
w.r.t. ui itself:

φi(ui) =
∂ ln p(ui)

∂ui
=

1
p(ui)

∂p(ui)
∂ui

(C.21)

Choosing a function φi(ui) amounts to choosing a model distribution for si. For ex-
ample, using φi(ui) = −cui, i.e. no nonlinearity, is equivalent to assuming si is normally
distributed. Using φi(ui) = − tanh(ui) is equivalent to assuming p(si) = cosh−1(si), i.e.
a heavier-tailed distribution than the Gaussian [227].

The total gradient (eqn. C.17) therefore becomes:

∂

∂Wij
ln p(x|A) = Aji + φi(ui)xj (C.22)
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or, for matrices,

∂

∂W
ln p(x|A) = AT + [φ1(u1) . . . φd(ud)]

T xT = AT + φ(u)xT . (C.23)

The learning rule is

∆W = η
[
AT + φ(u)xT

]
(C.24)

where η is a learning rate. The batch learning rule, for the entire N-sample dataset
(where U is now the matrix containing the source approximations u as its columns and
X likewise), is:

∆W = η
[

NAT + φ(U)XT
]

(C.25)

This rule was found by various authors [20, 212, 227]. The assumptions made to find it
were:

• there is no noise;

• matrix A is full rank, i.e. there are as many sources as there are mixtures.

C.1.2 Extended infomax model distributions

The only remaining choice is now how to model the distributions of the sources ui.
In [212], Lee et al. propose using two different models, one for sub-Gaussian sources
and one for super-Gaussian sources. A switching matrix K is then used to decide per
source which distribution is most likely.

A sub-Gaussian distribution

A sub-Gaussian model is found by noting that the Pearson distribution function,

p(ui) = fsub(ui; µ, σ2) =
1
2

(
fN(ui; µ, σ2) + fN(ui; −µ, σ2)

)
, (C.26)

where fN(ui; µ, σ2) is a Gaussian distribution function, can model any distribution
between a Gaussian (µ = 0) and a bimodal, sub-Gaussian distribution (µ ' 1.5). Calcu-
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lating φi(ui) using eqn. C.21, writing c′ for 1√
2πσ2 , gives:

φi (ui) =
1

p (ui)
∂p (ui)

∂ui

=

1
2 c′ exp

(
− 1

2

(
ui−µ

σ

)2
)
· −
(

ui−µ
σ

)
1
σ + 1

2 c′ exp
(
− 1

2

(
ui+µ

σ

)2
)
· −
(

ui+µ
σ

)
1
σ

1
2 c′ exp

(
− 1

2

(
ui−µ

σ

)2
)

+ 1
2 c′ exp

(
− 1

2

(
ui+µ

σ

)2
)

= − ui

σ2

exp
(
− 1

2

(
ui−µ

σ

)2
)

+ exp
(
− 1

2

(
ui+µ

σ

)2
)

exp
(
− 1

2

(
ui−µ

σ

)2
)

+ exp
(
− 1

2

(
ui+µ

σ

)2
)
+

µ

σ2

exp
(
− 1

2

(
ui−µ

σ

)2
)
− exp

(
− 1

2

(
ui+µ

σ

)2
)

exp
(
− 1

2

(
ui−µ

σ

)2
)

+ exp
(
− 1

2

(
ui+µ

σ

)2
)


= − ui

σ2 +
µ

σ2

exp
(

uiµ
σ2

)
exp

(
− 1

2
u2

i +µ2

σ2

)
− exp

(
−uiµ

σ2

)
exp

(
− 1

2
u2

i +µ2

σ2

)
exp

(
uiµ
σ2

)
exp

(
− 1

2
u2

i +µ2

σ2

)
+ exp

(
−uiµ

σ2

)
exp

(
− 1

2
u2

i +µ2

σ2

)


= − ui

σ2 +
µ

σ2

exp
(

µ
σ2 ui

)
− exp

(
− µ

σ2 ui

)
exp

(
µ
σ2 ui

)
+ exp

(
− µ

σ2 ui

)


= − ui

σ2 +
µ

σ2 tanh
( µ

σ2 ui

)
, (C.27)

which, setting µ = σ2 = 1, reduces to:

φi (ui) = tanh (ui)− ui, (C.28)

giving for the learning rule in eqn. C.24:

∆W = η
[
AT + (tanh(u)− u)xT

]
. (C.29)

Although the distribution given by eqn. C.26 is not yet bimodal for µ = 1, it is sub-
Gaussian; see figure C.1 (a). From here on, fsub(ui) will be used to denote fsub(ui; 1, 1).
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Figure C.1: (a) The sub-Gaussian function given by eqn. C.26, for σ = 1 and various values
of µ. (b) The super-Gaussian function given by eqn. C.30, compared to a normal
Gaussian.

A super-Gaussian distribution

Following more or less the same sort of derivation, starting with

p(ui) = fsup (ui) = c fN (ui; 0, 1) sech (ui) =
c√
2π

exp
(
− 1

2 u2
i
)

cosh (ui)

=
[

c′′ exp
(
−1

2
u2

i

)] [
2 (exp (ui) + exp (−ui))

−1
]

, (C.30)

with fN (ui; 0, 1) the standard normal distribution, one gets:

φi (ui) =
1

p (ui)
∂p (ui)

∂ui

=
1

c′′ exp
(
− 1

2 u2
i
)

2 (exp (ui) + exp (−ui))
−1[

c′′ exp
(
−1

2
u2

i

)
· (−ui) · 2 (exp (ui) + exp (−ui))

−1 +

c′′ exp
(
−1

2
u2

i

)
· −2 (exp (ui) + exp (−ui))

−2 (exp (ui)− exp (−ui))
]

= − ui −
exp (ui)− exp (−ui)
exp (ui) + exp (−ui)

= −ui − tanh (ui) . (C.31)

In eqn. C.30, c is a constant needed to make fsup a true density function. Numerical
integration shows that c ≈ 1

0.741264 makes the integral of fsup equal to 1.
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This gives as a learning rule:

∆W = η
[
AT + (− tanh (u)− u)xT

]
. (C.32)

The nonlinearity used makes for a peaked distribution, but not much more peaked than
a Gaussian – see figure C.1 (b).

Switching matrix

Noting the similarity between eqns. C.29 and C.32, Lee proposes to use a switching mat-
rix K, a diagonal matrix in which Kii = −1 if ui has a sub-Gaussian distribution and
Kii = 1 if ui has a super-Gaussian distribution. This allows the single sample learning
rule to be written as

∆W = η
[
AT − (K tanh (u) + u) xT

]
. (C.33)

The switching matrix can be found by, for example, setting Kii according to the kur-
tosis of the distribution of ui. However, Lee uses a stability criterion [212] to find the
following expression for Kii:

Kii = sign
[

E(sech2(ui))E(u2
i )− E(ui tanh(ui))

]
. (C.34)

Approximation of likelihood

Equations C.26 and C.30 can also be used to approximate the distribution of s using u,
to use in the log-likelihood L (eqn. C.9). For sub-Gaussian sources (Kii = −1), using the
settings µ = 1 and σ = 1 as before, the likelihood for the entire data set is:

ln p(ui) = ln
N

∏
n=1

1
2

[ fN(ui; 1, 1) + fN(ui; −1, 1)]

= ln
1

(2
√

2π)N
+

N

∑
n=1

ln
[

exp
(
−1

2
(un

i − 1)2
)

+ exp
(
−1

2
(un

i + 1)2
)]

= − N ln(2
√

2π) +
N

∑
n=1

ln
[

exp
(
−1

2

(
(un

i )2 + 1
))

(exp (un
i ) + exp (−un

i ))
]

= − N ln(2
√

2π) +
N

∑
n=1

[
−1

2

(
(un

i )2 + 1
)

+ ln (exp (un
i ) + exp (−un

i ))
]

= − N ln(2
√

2π) +
N

∑
n=1

[
ln (2 cosh (un

i ))− 1
2

(un
i )2 − 1

2

]
= − 1

2
N (1 + ln 2π) +

N

∑
n=1

[
ln cosh (un

i )− 1
2

(un
i )2
]

, (C.35)
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and for super-Gaussian sources (Kii = 1),

ln p(ui) = ln
N

∏
n=1

c fN (ui; 0, 1) sech (un
i ) = ln

N

∏
n=1

c√
2π

exp
(
− 1

2

(
un

i
)2
)

cosh
(
un

i
)

= ln

[(
c√
2π

)N
]

+
N

∑
n=1

ln
[

cosh−1 (un
i ) exp

(
−1

2
(un

i )2
)]

= − 1
2

N (−2 ln c + ln 2π) +
N

∑
n=1

[
− ln cosh (un

i )− 1
2

(un
i )2
]

. (C.36)

Lee [212] leaves out the constants in eqns. C.35 and C.36 and arrives at a single expres-
sion:

ln p(ui) =
N

∑
n=1

[
−K ln cosh (un

i )− 1
2

(un
i )2
]

. (C.37)

Although simple to use, this equation would give wrong likelihood values.

Note that there is a problem when eqns. C.35 and C.36 are used for comparing likeli-
hoods, e.g. to see which model is more applicable: they do not have equal variance.
The variance of the sub-Gaussian distribution, a sum of two Gaussians, is simply the
sum of the individual variances, i.e. 2. Numerical integration shows that the variance
of the super-Gaussian distribution is approximately 0.591833. Therefore, the follow-
ing expression can be used to calculate the likelihood of the data belonging to a unit
variance sub-Gaussian distribution:

ln p(ui) = −1
2

N (1 + ln 2π − ln 2) +
N

∑
n=1

[
ln
(

cosh
(√

2 un
i

))
− 1

2

(√
2 un

i

)2
]

(C.38)

and the expression for the unit variance super-Gaussian distribution becomes:

ln p(ui) = − 1
2

N (2 ln 0.741264 + ln 2π − ln 0.591833)

+
N

∑
n=1

[
− ln cosh

(√
0.591833 un

i

)
− 1

2

(√
0.591833 un

i

)2
]

. (C.39)

C.2 Undercomplete ICA bases

C.2.1 Learning rule

The model for finding undercomplete ICA bases, in which the number of sources m is
smaller than the number of dimensions in the original data set d, is similar to eqn. C.1,
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but now contains a noise term:

x = As + µ + ε, (C.40)

where s is now an m-dimensional vector containing the independent sources, A is a
d × m mixing matrix and ε is Gaussian distributed noise. Again, the mean is assumed
to have been removed (µ = 0). As parts of the derivation of the learning rule for this
model are identical in the derivation of the learning rule in the previous section, the
focus here will be on the differences.

The probability of observing a data vector x given the latent vector s now becomes:

p(x|s, A) =
1

(2π)
d
2 | det(C)| 1

2
exp

(
−1

2
(x−As)T C−1 (x−As)

)
. (C.41)

The assumption on the noise is that it is i.i.d. and small:

Cij = 0, ∀i 6= j

Cii = σ2 =
1
β

. (C.42)

This simplifies eqn. C.41 to:

p(x|s, A) =
1

(2π)
d
2 β−

d
2

exp
(
−β

2
(x−As)T (x−As)

)
. (C.43)

In the following derivation, W can no longer be expressed as the inverse of A, as the
matrices are no longer square. The Moore-Penrose pseudo-inverse can be used, how-
ever:

W = A+ = (ATA)−1AT . (C.44)

This implies the following identities, which will be used below:

A = W+ = WT(WWT)−1 (C.45)
ATA = (WWT)−1 (C.46)

WTAT = (AW)T = AW (C.47)
AWAW = AW. (C.48)

The likelihood for one vector x again is:

p(x|A) =
∫

p(x|s, A)p(s)ds. (C.49)
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Now if β is large enough (i.e. the noise variance σ2 is small enough), the term p(x|s, A)
has a single peak at, say, sMP that dominates the integral in each dimension. In other
words, the distribution is such that the optimal value sMP can be used instead of the
entire distribution, just as the Kronecker function was used in eqn. C.6. As before, the
change in volume due to the matrix A will have to be normalised for. The log-likelihood
then becomes

ln p(x|A) ≈ ln
[

p(x|sMP, A)p(sMP)| det(ATA)|−
1
2

]
= ln

[
1

(2π)
d
2 β−

d
2

exp
(
−β

2
(x−AsMP)T(x−AsMP)

)
| det(ATA)|−

1
2 p(sMP)

]

=
d
2

ln
β

2π
− β

2
(x−AsMP)T (x−AsMP)− 1

2
ln | det(ATA)|+ ln p(sMP),

(C.50)

with

sMP = Wx. (C.51)

In this formula, the previous normalisation by | det(A)|−1 has been replaced by
| det(ATA)|− 1

2 , as A is no longer a square matrix.

Taking the derivative is slightly more complicated than before. Starting with the second
term, denoting the estimate of sMP by u and using equations C.12-C.15 and C.45-C.48,
one obtains

∂

∂Wij

[
−β

2
(x−Au)T (x−Au)

]
= − β

2
∂

∂Wij

[
xTx− uTATx− xTAu− uTATAu

]
= − β

2
∂

∂Wij

[
xTx− xTWTATx− xTAWx + xTAWx

]
= − β

2
∂

∂Wij

[
−xTAWx

]
= − β

2
∂

∂Wij

[
−xTWT(WWT)−1Wx

]
= − β

2

[
−xTW(j,i)

[
(WWT)−1Wx

]
− xTWT

[
−(WWT)−1 ∂WWT

∂Wij
(WWT)−1

]
Wx

−xTWT(WWT)−1W(i,j)x
]

(C.52)
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= − β

2

[
−xTW(j,i)

[
(WWT)−1Wx

]
− xTWT

[
−(WWT)−1

[
W(i,j)W

T + WW(j,i)

]
(WWT)−1

]
Wx

−xTWT(WWT)−1W(i,j)x
]

= − β

2

[
−xTW(j,i)A

Tx + xTAW(i,j)AWx + xTWTATW(j,i)A
Tx −xTAW(i,j)x

]
.

(C.53)

Now since the first and fourth term result in scalars and they are each others transposed,
they are identical. This also holds for the second term and third term. This simplifies
the equation to:

∂

∂Wij

[
−β

2
(x−Au)T (x−Au)

]
= − β

2

[
−2xTAW(i,j)x + 2xTAW(i,j)AWx

]
= β

[
ATxxT + ATxxTWTAT

]
. (C.54)

Although the derivatives of the last two terms in eqn. C.50 are also slightly harder to
compute, the results are the same as those found before in eqn. C.33. The single sample
learning rule therefore becomes:

∆W = η
[

βATxxT (I−AW) + AT − (K tanh(u) + u) xT
]

. (C.55)

It is obvious that in the case where m = d and therefore W = A−1, the first term of the
derivative is zero and the learning rule is identical to the one found earlier (eqn. C.33).
Furthermore, in the first term the covariance matrix C = E(xxT) can be recognised; the
batch update rule can be written as:

∆W = η
[

βNATC (I−AW) + NAT − (K tanh(U) + U) XT
]

. (C.56)

The first term is an orthogonalisation term which works in the space rotated and scaled
by C.

C.3 The algorithm

C.3.1 Pre-whitening

Equation C.55 gives the basic learning rule for W. However, the noise parameter β has
to be estimated as well. This can easily be done using the GEM algorithm. In each step,
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estimate the current parameters in the E-step by:

A = WT(WWT)−1 (C.57)
un = Wxn, i = 1, . . . , N (C.58)

Kii = sign
[

E(sech2(ui))E(u2
i )− E(ui tanh(ui))

]
, ∀i = 1, . . . , m (C.59)

vn = W>xn, i = 1, . . . , N (C.60)

β−1 =
1

d−m

d−m

∑
i=1

var(vi), (C.61)

where W> is the nullspace of W, i.e. β corresponds to the inverse of the average noise
outside the subspace (cf. probabilistic PCA, eqn. 7.27 on page 142). In the M-step, the
log-likelihood is then maximised by applying the learning rule (eqn. C.56) to W.

However, the new algorithm does not only find independent components: it finds sub-
spaces as well. In the log-likelihood, eqn. C.50, there is an inherent trade-off between
finding a subspace (the second term) and finding independent components (the fourth
term). This trade-off is controlled by β, which decides how much weight the subspace
term has. As the estimate of β is based on the current orientation of the subspace, it
might be estimated incorrectly and the algorithm might converge to a local maximum.
Moreover, the data might not fit the model in which the noise has equal variance in all
directions, which would also lead to incorrect estimates.

This is illustrated in figure C.2. The data set consists of 2D samples of which the x-
coordinate is drawn from a uniform distribution in the range [−0.5, 0.5] with variance≈
0.2872 and the y-coordinate is drawn from a Gaussian distribution with zero mean and
variance σ2. If β is fixed at σ−2, the algorithm converges for any setting of σ. However,
if β is learned, this is not always the case. For various settings of σ2, figure C.2 indicates
the likelihood L of the model for each setting of W. Clearly, as σ increases, finding
the independent component becomes less likely than finding the Gaussian component,
depending on initialisation.

To find only independent components, the role variance plays will have to be elimin-
ated. A solution would be to use β as a parameter instead of a variable. It can be fixed
at a small value, e.g. 0.1, to stress finding independent components rather than sub-
spaces. However, in the experiments in chapter 7 and this appendix, another method
was chosen: the data was whitened before applying the ICA subspace algorithm. This
means using x′ = C− 1

2 x, which is often done in ICA algorithms. This will make the data
variance 1 in all directions.

Pre-whitening also simplifies the algorithm in a number of ways:

• β can be fixed at 1;

• the rows of W and columns of A can be constrained to have unit length;
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Figure C.2: (a) A simple 2D data set. (b)-(f) The likelihood L as a function of W. For small
σ2, the local maxima correspond to the independent component; for large σ2, they
correspond to the Gaussian component.

• in the batch learning rule only, the first term of eqn. C.56 drops out, as for the
whitened data C = I:

NATC(I−AW) = N
(

AT −ATAW
)

= N
(

AT −ATA(ATA)−1AT
)

= 0. (C.62)

so the learning rule is identical to the one originally proposed by Lee at al.
(eqn. C.33).

This discussion exposes a problem of most ICA algorithms: the high sensitivity to vari-
ance estimates. Although for simple 1D or 2D problems the learning rule in eqn. C.55
can be used, the difficulty in estimating β means that for high-dimensional problems
the only working solution is to use prior knowledge of β or to pre-whiten the data. As
by pre-whitening the subspace nature of the model no longer plays a role (i.e. there
is no more subspace structure in the data), the rule is simplified to eqn. C.33, the one
proposed originally by Lee.



C.3 THE ALGORITHM 235

10
2

10
3

10
4

10
5

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

N

K

(a)

10
2

10
3

10
4

10
5

2.4

2.6

2.8

3

3.2

3.4

3.6

N

κ

(b)

Figure C.3: Mean ± standard deviation over 100 repetitions of the estimate of (a) the switching
matrix K and (b) the kurtosis of a 1D Gaussian data set, as a function of the sample
size N.

C.3.2 Implementation

The algorithm outlined in section C.3 still needs a few settings. The learning rate, η,
was experimentally found to be optimal when it is set to approximately 0.1

N . If it is
set larger, the algorithm can diverge. Second, the algorithm needs to be initialised. W
was initialised simply to a matrix containing random elements drawn from a uniform
distribution in the range [−0.5, 0.5], after which the rows of W were made orthonormal.

To avoid fitting noise, which is a problem in ICA (see below), image data was usually
pre-mapped using PCA to retain r = 90% of the variance. Note that this automatically
whitens the data in the remaining dimensions too, so the whitening step discussed in
the previous section does not need to be applied.

C.3.3 Sample size requirements

ICA algorithms are notoriously sensitive to noise [177] due to their use of higher order
moments. In the ML algorithm discussed here, this holds especially true for the calcu-
lation of K, the switching matrix. Once a wrong Kii is found for a certain source ui, the
algorithm may diverge from the right solution. Figure C.3 illustrates this by plotting
the mean and standard deviation of the estimates of K and the kurtosis κ over 100 real-
isations of a 1D Gaussian data set, as a function of the sample size. For a Gaussian, K
should be zero and κ should be 3. Clearly, for small sample sizes the estimate has a very
large error. Therefore, in the experiments on images, data sets of 10,000 samples were
used.
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C.4 Application

To illustrate the working of the ML-ICA algorithm, this section discusses some experi-
ments on simple signal and 2D data sets and a data set containing patches taken from
a set of natural images. The outcome of the ML algorithm is compared to that of a
well-known and often applied ICA algorithm, fastICA [170, 174] (see also chapter 21).

C.4.1 Blind source separation

In the first toy problem, three simple signals were mixed: a sine wave, a sawtooth
wave and a square wave with slightly different frequencies. Each signal contained 2,000
samples. The mixing matrix elements were drawn from a U(0, 1) random distribution.
ML-ICA and fastICA were then applied to find two independent components. The res-
ults are shown in figure C.4. Clearly, ML-ICA and fastICA give similar results, although
they may pick two different ICs depending on initialisation.

C.4.2 Density estimation

In this problem, a density estimate is found on a simple 2D dataset. This data set is a
mixture of a Laplacian and a uniformly distributed component. Figure C.5 shows the
components found, density estimates using both the ML-ICA model and a Gaussian
model (cf. section 7.4.1), and the projected data distributions with their kurtoses. The
likelihood L of the data belonging to the ML-ICA model is higher than it belonging
to the Gaussian model, but not much higher. The model found fits the data well and
gives projections with a high kurtosis (for Laplacian distribution) and a low kurtosis
(the uniform distribution).

C.4.3 Natural image data

Finally, ML-ICA was applied to a data set of 10,000 12 × 12 pixel patches taken from
natural image data. The four natural images, shown in figure C.6, have been used in
publications before [21, 22, 166, 167, 214, 215, 262] and are known to lead to wavelet-like
independent components.

The data set was drawn randomly from the four images and normalised by removing
the mean of each sample and scaling it to unit standard deviation. It was then whitened
using a PCA mapping Λ− 1

2 ET to retain r = 90% of the variance, leaving 59 dimensions.
The fastICA algorithm was used to extract as many independent components as pos-
sible, and ML-ICA was applied with the number of components to extract, m, set to
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Figure C.4: Blind source separation: (a) original signals, (b) mixtures, (c) unmixed signals found
using fastICA and (d) same, using ML-ICA.
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Figure C.5: ML-ICA density estimation: (a) original data set with principal and independent
components; (b) density estimate using ML-ICA; (c) density estimate using a Gaus-
sian; (d)-(e) histograms of projected data.
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8, 16 and 32. The ICA filters and basis vectors thus found, projected back into the ori-
ginal space, are shown in figure C.7. To facilitate comparison, the resulting independent
components were ordered by their duration (or spread) D [269]

D =
∫ ∫

(x2 + y2)|I(x, y)|2dxdy, (C.63)

where (x, y) are pixel coordinates in image I.

Clearly, both fastICA and ML-ICA find similar components, often the same. They are
also similar to those found in literature. The components result in super-Gaussian pro-
jection distributions with high kurtoses, roughly in the range [7, 10]. However, the or-
dering by bandwidth obscures the fact that fastICA finds these components in a more
or less random order, i.e. the first components do not necessarily correspond to those
giving the highest kurtosis. The least wavelet-like components, leading to lower kur-
toses, are found by fastICA only. This, and the fact that many of the components are
identical for m = 8, 16 and 32, indicates that ML-ICA succeeds in finding the most kur-
totic distributions present in the data.
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Figure C.6: Four natural images.
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Figure C.7: Filters (left) and base vectors (right) found by fastICA and ML-ICA.
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SUMMARY

This thesis is concerned with the application of adaptive methods in image processing.
Adaptive methods, among which artificial neural networks, have since the 1980s be-
come popular all-purpose tools. In chapter 1, three basic questions are formulated:

• Can (nonlinear) image processing operations be learned by adaptive methods?

• How can prior knowledge be used in the construction and training of adaptive
methods?

• What can be learned from adaptive methods trained to solve image processing
problems?

The remainder of the thesis answers these questions for three types of adaptive meth-
ods:

• supervised classification by shared weight feed-forward neural networks;

• supervised regression by modular feed-forward networks;

• unsupervised clustering by mixture-of-subspace models.

First, chapter 2 reviews publications on applications of artificial neural networks to im-
age processing problems. To this end, the image processing chain is discussed: pre-
processing, feature extraction, segmentation, object recognition and image understand-
ing. As many problems can be seen as optimisation problems, optimisation methods
are viewed as a separate, auxiliary category. In the review, it is noted that many of the
more low-level applications do not use the adaptive capabilities of artificial neural net-
works; here, the possibility of hardware implementation seems to be a reason to choose
for an artificial neural network. Artificial neural networks have been mostly applied
for feature extraction (the self-organising map) and segmentation and object recogni-
tion (feed-forward neural networks). A number of problems in application of artificial
neural networks are discussed, among which their black-box character and the ques-
tion whether prior knowledge on the nature of image processing problems can be used
sensibly.

In chapter 3, shared weight neural networks are introduced and applied to the problems
of handwritten digit recognition and automatic target recognition. These networks, con-
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taining receptive field-like weight sets and aggregating layers, have been constructed
with the goal of image processing in mind. They perform well, although some tradi-
tional classification methods are still slightly better. The networks’ feature extraction
capabilities are investigated and found to be quite good. Unfortunately, it is hard to
make sense of the extracted features. To learn more, in chapter 4 two simpler problems
are treated: edge recognition and two-class handwritten digit recognition. By construct-
ing a number of more and more restricted networks, it is shown that the networks have
a tendency to use all their degrees of freedom. Standard feed-forward networks intern-
ally do not conform to the traditional image processing approach, and functionality is
distributed over the network in an unclear way. A learning algorithm, decorrelating
conjugate gradient descent, is proposed to obtain separate feature detectors. This helps
in understanding the networks behaviour after training. However, the restrictions on
the network needed for interpretation make the situation non-representative of every-
day neural network use. This is called the interpretability trade-off.

Next, chapter 5 moves to another problem, that of pre-processing. A set of modular and
standard feed-forward regression networks is trained to emulate the Kuwahara edge-
preserving smoothing filter. The modular networks have been constructed using the
fact that the Kuwahara filter can be split up into four sub-systems. Judging by the mean
squared error (the criterion used in training the networks) the use of prior knowledge
has no influence: all networks seem to perform equally well. In chapter 6, a number
of hypotheses are tested as to why this should be the case. Using a novel performance
criterion for edge-preserving smoothing, it is shown that in fact the modular network
do perform better. Furthermore, evaluation of network errors indicates most errors oc-
cur around the edges in the image. A data set containing relatively more samples taken
around edges improves performance. The mean squared error is a poor criterion both
for learning this nonlinear filter and for selecting between different trained ANNs. To
learn more on how the networks approximate the filter, they are inspected. The modular
networks, which have been trained further after the modules have been concatenated,
are shown to perform better the more they have lost their modular initialisation; mod-
ular initialisation is not useful. Using the weight-decorrelating training algorithm, the
standard networks are shown to have learned a linear approximation of the Kuwahara
filter.

As a last method, in chapter 7 subspace models are introduced as feature extraction
mechanisms, applied to texture description. Many images, high-dimensional vectors
when described as collections of pixels, can be adequately described using a small num-
ber of subspace basis vectors. These subspaces can also be learned using episodes,
collections of samples which have been translated, rotated or scaled. In this way, the
subspaces become descriptions invariant to these transformations. Two subspace mod-
els are compared, principal component analysis and independent component analysis.
Principal component analysis is shown to give results nearly as good as those obtain us-
ing full Gaussian models, and better than Gabor filters, yet at a fraction of the number
of parameters needed. A number of experiments proves the descriptive power of prin-
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cipal component subspaces. Independent component analysis, for which a learning rule
is derived in appendix C, is not fit for description of textures. It focuses on rarely oc-
curring, high-frequency image elements. In chapter 8, mixtures of principal subspaces
are then applied successfully to image segmentation and handwritten digit recognition.
On the digit recognition problem, performance is identical to that of the shared weight
neural networks, but using less parameters. Extending these results, histograms of im-
age pixels assigned to subspaces are used for object recognition and distances between
mixture models are used as distances between images themselves in an image data-
base retrieval application. In all these applications, interpretation of the working of the
method is straightforward.

The conclusion is that artificial neural networks can well be applied to high-level, com-
plex image processing problems for which it is too hard to construct a model, but for
which a clearly measurable criterion function is available. The black-box problem re-
mains: after training, it is hard to say what solution the network has arrived at. If prior
knowledge is available, it should be used to construct a (simple) adaptive model and
find the remaining parameters by learning. Such models can perform as well as artificial
neural networks, at the same time offering more insight.

Dick de Ridder





SAMENVATTING

Dit proefschrift onderzoekt de toepassing van adaptieve methoden in de beeldbewer-
king. Adaptieve methoden, waaronder kunstmatige neurale netwerken, zijn sinds de
jaren tachtig populaire gereedschappen geworden met een breed toepassingsgebied. In
hoofdstuk 1 worden drie kernvragen geformuleerd:

• Kunnen (niet-lineaire) beeldbewerkingsoperaties door adaptieve methoden wor-
den geleerd?

• Hoe kan voorkennis bij het construeren en leren van adaptieve methoden worden
gebruikt?

• Wat kan men leren van adaptieve methoden die geleerd hebben een beeldbewer-
kingsprobleem op te lossen?

De rest van het proefschrift beantwoordt deze vragen voor drie types van adaptieve
methoden:

• classificatie met leraar (supervised) door feed-forward neurale netwerken met ge-
deelde gewichten;

• regressie met leraar door modulaire feed-forward neurale netwerken;

• clustering zonder leraar (unsupervised) door combinatie-van-deelruimten model-
len (subspace mixture models).

In hoofdstuk 2 wordt een overzicht gegeven van publicaties over toepassingen van
kunstmatige neurale netwerken op beeldbewerkingsproblemen. Hiertoe wordt eerst de
beeldbewerkingspijplijn geı̈ntroduceerd: voorbewerking, kenmerk-extractie, segmen-
tatie, objectherkenning en interpretatie. Aangezien veel problemen kunnen worden
beschouwd als optimalisatieproblemen, worden optimalisatietechnieken als aparte, on-
dersteunende categorie gedefinieerd. Uit het overzicht blijkt dat veel van de toepassin-
gen op laag niveau geen gebruik maken van de adaptiviteit van kunstmatige neurale
netwerken; de mogelijkheid om de netwerken in silicon te implementeren lijkt hier een
reden te zijn om voor een kunstmatig neuraal netwerk te kiezen. Kunstmatige neurale
netwerken zijn voornamelijk toegepast op kenmerk-extractie (de self-organising map) en
segmentatie en objectherkenning (feed-forward neurale netwerken). Een aantal proble-
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men bij de toepassing van kunstmatige neurale netwerken wordt besproken, waaronder
hun zwarte-doos-karakter en de vraag of voorkennis over eigenschappen van beeldbe-
werkingsproblemen op een zinvolle manier gebruikt kan worden.

Hoofdstuk 3 behandelt neurale netwerken met gedeelde gewichten, die worden toege-
past op herkenning van handgeschreven cijfers en herkenning van voertuigen. Deze
netwerken, die receptive field-achtige sets van gewichten en middelende lagen hebben,
zijn gebouwd met een toepassing op beeldmateriaal in gedachten. Ze presteren goed,
hoewel sommige traditionele methoden nog iets beter werken. De kenmerk-extractie
capaciteiten worden onderzocht en blijken vrij goed te zijn. Helaas is het onmogelijk
om de gevonden kenmerkdetectoren te interpreteren. Om hierover meer te leren, wor-
den in hoofdstuk 4 twee simpelere problemen behandeld: randherkenning en herken-
ning van twee klassen van handgeschreven cijfers. Een reeks gebouwde netwerken,
steeds meer beperkt in hun vrijheid, laat zien dat neurale netwerken de neiging heb-
ben al hun vrijheidsgraden te gebruiken. Standaard feed-forward netwerken werken
intern niet als traditionele beeldbewerkingsoperaties, en functionaliteit wordt op on-
duidelijke wijze verdeeld binnen het netwerk. Een leeralgoritme, de decorrelerende
geconjugeerde gradiënt methode, wordt geformuleerd om gesepareerde kenmerkde-
tectoren te verkrijgen. Dit helpt in het begrijpen van het gedrag van netwerken na het
leren. De restricties die nodig zijn om het netwerk te begrijpen zorgen ervoor dat de
situatie niet representatief is voor het alledaags gebruik van neurale netwerken. Dit
wordt de interpretatieafweging genoemd.

In hoofdstuk 5 wordt een ander probleem behandeld, dat van voorbewerking. Een ver-
zameling modulaire en standaard feed-forward regressie netwerken wordt geleerd het
Kuwahara filter voor randbehoudende effening te emuleren. De modulaire netwerken
zijn gebouwd gebruikmakend van het feit dat het Kuwahara filter algoritme uit vier
deeltaken bestaat. Afgaand op de gemiddelde kwadratische fout (het criterium zoals
gebruikt tijdens het leren van de netwerken) lijkt dit gebruik van voorkennis geen in-
vloed te hebben: alle netwerken lijken even goed te functioneren. In hoofdstuk 6 wordt
een aantal hypothesen getoetst waarom dit het geval zou zijn. Gebruikmaking van een
nieuw prestatiecriterium voor randbehoudende effening laat zien dat de modulair net-
werken wèl beter presteren. Daarnaast laat evaluatie van de fouten die het netwerk
maakt, zien dat de meeste fouten optreden nabij de randen in een beeld. Als in de data
set relatief meer elementen opgenomen worden die verkregen zijn nabij randen, ver-
beteren de prestaties. De gemiddelde kwadratische fout is een slecht criterium voor
zowel het leren van dit niet-lineaire filter, als voor het selecteren van de beste van een
aantal geleerde netwerken. Tenslotte worden alle netwerken geı̈nspecteerd om meer
kennis te verkrijgen over hoe zij het filter benaderen. De modulaire netwerken, die
doorgeleerd hebben nadat de modules geconcateneerd zijn, blijken beter te presteren
naarmate zij hun modulaire initialisatie verloren hebben; modulaire initialisatie is niet
zinvol. Gebruik van het decorrelerende geconjugeerde gradiënten algoritme laat zien
dat de standaard netwerken het Kuwahara filter lineair benaderd hebben.
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Een laatste methode, combinatie-van-deelruimten modellen, wordt geı̈ntroduceerd in
hoofdstuk 7 voor kenmerk-extractie en toegepast op textuurbeschrijving. Veel beelden,
hoogdimensionale vectoren wanneer ze beschreven worden als verzamelingen pixels,
kunnen goed beschreven worden door gebruik te maken van slechts een klein aantal
deelruimtebasisvectoren. Deze deelruimten kunnen tevens geleerd worden gebruik-
makend van episodes, verzamelingen van getransleerde, geroteerde en geschaalde beel-
den. Op deze manier worden deelruimten beschrijvingen van beelden die invariant zijn
met betrekking tot deze transformaties. Twee deelruimtemodellen worden vergeleken,
principale componenten analyse en onafhankelijke componenten analyse. Principale
componenten analyse geeft resultaten die vrijwel even goed zijn als volledige Gaussi-
sche modellen, en beter dan Gabor filters, maar gebruikmakend van slechts een fractie
van het aantal benodigde parameters. Een aantal experimenten bewijst dat principale
componenten analyse een krachtige beschrijvende methode is. Onafhankelijke compo-
nenten analyse, waarvoor een leerregel wordt afgeleid in appendix C, is niet toepasbaar
op textuurbeschrijving. Het richt zich op weinig voorkomende, hoogfrequente elemen-
ten in beelden. In hoofdstuk 8 worden combinaties van principale deelruimten suc-
cesvol toegepast op beeldsegmentatie en herkenning van handgeschreven cijfers. De
prestaties op het cijferherkenningsprobleem zijn gelijk aan die van de neurale netwer-
ken met gedeelde gewichten, ofschoon zij gebruikmaken van minder parameters. Als
uitbreiding op deze methode worden histogrammen van aan deelruimten toegekende
beeldelementen (pixels) gebruikt voor objectherkenning, en worden afstanden tussen
combinatiemodellen gebruikt als afstanden tussen beelden in een beeld-databank (image
database) toepassing. In al deze toepassingen is interpretatie van het functioneren van
de methode eenvoudig.

De conclusie is dat kunstmatige neurale netwerken goed toegepast kunnen worden op
complexe, hoog niveau beeldbewerkingsproblemen waarvoor het te lastig is een mo-
del op te stellen, maar waarvoor wel een éénduidig meetbaar criterium voorhanden is.
Het zwarte-doos-probleem blijft bestaan; na het leren is het lastig te zeggen wat voor
oplossing het netwerk gevonden heeft. Als voorkennis aanwezig is, zou deze gebruikt
moeten worden om een (eenvoudig) adaptief model op te zetten, waarvoor de parame-
ters door leren gevonden kunnen worden. Zulke modellen kunnen even goed presteren
als kunstmatige neurale netwerken, maar bieden meer inzicht.

Dick de Ridder
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Lemmers, André van der Graaf, Ela P ↪ekalska and Mohamed Musa this thesis would
have been a lot less voluminous. Ela P ↪ekalska offered to read my thesis once it was
finished and, although I did not expect a kind of Spanish Inquisition, managed to find
a couple of important errors and inconsistencies. Thank you all!

Next to direct co-operation, many people have helped me along by having discussions.
I would particularly like to mention David Tax, Alexander Ypma, Ela P ↪ekalska, Pavel
Paclı́k and Marina Skurichina for many good discussions on pattern recognition and
more philosophical issues. The same goes for the Emergentia discussion group, which
showed me how varied the ways in which people approach artificial intelligence are.



278 ACKNOWLEDGEMENTS

Michael van Ginkel was always there to help me get my head around some image pro-
cessing (or, as it often turned out, image processing software) problems.

The diversity of people in the Pattern Recognition Group made sure I had a good time
outside office hours as well. Thanks for all the pub visits, BBQs, ASCI parties, dinners
and so on! I would also like to thank the people in the University of Surrey, who made
my stay there not just fruitful but enjoyable as well (among other things by showing me
a completely new way of playing Monopoly).

Finally I would like to thank my mother Sonja, for making me realise that receiving
an education is a gift, not a right; and my wife, Barbara. I realise I asked a lot of you
whenever I was moody when experiments did not go as I had planned, during the nine
months you spent alone in Rotterdam when I was in Guildford and in the time I wrote
my thesis. Thank you for being there for me.

After 25 years it would seem that my education is finished. I hope I can go on learning
and discovering new things.


	1. Introduction
	1.1 Background
	1.1.1 Artificial intelligence
	1.1.2 Neural networks
	1.1.3 Digital image processing

	1.2 Motivation
	1.3 Main questions
	1.4 Outline of the thesis
	1.5 Sources

	2. Artificial neural networks in image processing
	2.1 Introduction
	2.2 Artificial neural networks
	2.2.1 Feed-forward neural networks
	2.2.2 Self-organising maps
	2.2.3 Hopfield neural networks

	2.3 The image processing chain
	2.4 Artificial neural networks in image processing
	2.4.1 Pre-processing and filtering
	2.4.2 Enhancement and feature extraction
	2.4.3 Segmentation
	2.4.4 Object recognition
	2.4.5 Image understanding
	2.4.6 Optimisation

	2.5 Discussion
	2.5.1 Issues in pattern recognition
	2.5.2 Obstacles for pattern recognition in image processing
	2.5.3 Artificial neural network issues

	2.6 Conclusions

	3. Shared weight networks for object recognition
	3.1 Introduction
	3.2 Shared weight networks
	3.2.1 Architecture
	3.2.2 Other implementations
	3.2.3 Related work

	3.3 Handwritten digit recognition
	3.3.1 The data set
	3.3.2 Experiments
	3.3.3 Comparison
	3.3.4 Feature extraction
	3.3.5 Discussion

	3.4 Automatic target recognition
	3.4.1 The data set
	3.4.2 The vehicle detection algorithm
	3.4.3 Experiments
	3.4.4 Discussion

	3.5 Conclusions

	4. Feature extraction in shared weight networks
	4.1 Introduction
	4.2 Edge recognition
	4.2.1 A sufficient network architecture
	4.2.2 Training
	4.2.3 Discussion

	4.3 Two-class handwritten digit classification
	4.3.1 Training

	4.4 Decorrelating conjugate gradient descent
	4.4.1 Decorrelation
	4.4.2 A decorrelating training algorithm
	4.4.3 Training ANN35 5 using DCGD

	4.5 Conclusions

	5. Regression networks for image restoration
	5.1 Introduction
	5.2 Kuwahara filtering
	5.3 Architectures
	5.3.1 Modular networks
	5.3.2 Standard networks

	5.4 Experiments
	5.4.1 Data sets
	5.4.2 Training
	5.4.3 Modules
	5.4.4 Modular networks
	5.4.5 Standard networks

	5.5 Investigating the error
	5.6 Conclusions

	6. Inspection and improvement of regression networks
	6.1 Introduction
	6.2 Edge-favouring sampling
	6.2.1 Experiments

	6.3 Performance measures for edge-preserving smoothing
	6.3.1 Smoothing versus sharpening
	6.3.2 Experiments
	6.3.3 Discussion

	6.4 Training using different criteria
	6.4.1 Experiments

	6.5 Inspection of standard networks
	6.5.1 Experiments

	6.6 Inspection of modular networks
	6.7 Conclusions

	7. Subspace models for feature extraction
	7.1 Introduction
	7.2 Overview
	7.2.1 Previous work
	7.2.2 Subspace mixture model elements

	7.3 Texture data
	7.3.1 Data collection and episode construction
	7.3.2 Normalisation and pre-mapping
	7.3.3 The Gabor filter bank

	7.4 Models
	7.4.1 Gaussian
	7.4.2 Principal component analysis
	7.4.3 Independent component analysis

	7.5 Model experiments
	7.5.1 Measures
	7.5.2 Initial experiments
	7.5.3 Normalisation
	7.5.4 Implementation choices
	7.5.5 Sample size
	7.5.6 Subspace dimensionality
	7.5.7 Invariance

	7.6 Applicability of independent component analysis
	7.7 Conclusions

	8. Image description using mixture-of-subspace models
	8.1 Introduction
	8.2 Clustering
	8.2.1 The k-subspaces algorithm
	8.2.2 Maximum likelihood
	8.2.3 The subspace shift algorithm
	8.2.4 Model overview

	8.3 Texture segmentation
	8.3.1 Segmentation
	8.3.2 Segmentation errors
	8.3.3 Subspace shift-trained models
	8.3.4 Discussion

	8.4 Image database retrieval
	8.4.1 ASM distance measures
	8.4.2 The data set
	8.4.3 Measures
	8.4.4 The KIDS system
	8.4.5 Experiments
	8.4.6 Discussion

	8.5 Object recognition
	8.5.1 Experiments
	8.5.2 Discussion

	8.6 Handwritten digit recognition
	8.6.1 Experiments
	8.6.2 Discussion

	8.7 Conclusions

	9. Conclusions
	9.1 Applicability
	9.2 Prior knowledge
	9.3 Interpretability
	9.4 Conclusions

	Appendices
	A. Shared weight network architectures
	A.1 LeCun 
	A.2 LeNet 
	A.3 LeNotre 

	B. Artificial neural network error evaluation
	C. A maximum likelihood algorithm for undercomplete ICA bases
	C.1 Extended infomax ICA
	C.1.1 Maximum likelihood ICA
	C.1.2 Extended infomax model distributions

	C.2 Undercomplete ICA bases
	C.2.1 Learning rule

	C.3 The algorithm
	C.3.1 Pre-whitening
	C.3.2 Implementation
	C.3.3 Sample size requirements

	C.4 Application
	C.4.1 Blind source separation
	C.4.2 Density estimation
	C.4.3 Natural image data


	Bibliography
	Summary
	Samenvatting
	Curriculum vitae
	Acknowledgements

